Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 178
Filter
Add more filters

Publication year range
1.
Hum Mol Genet ; 33(14): 1250-1261, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38676400

ABSTRACT

Developmental and functional defects in the lymphatic system are responsible for primary lymphoedema (PL). PL is a chronic debilitating disease caused by increased accumulation of interstitial fluid, predisposing to inflammation, infections and fibrosis. There is no cure, only symptomatic treatment is available. Thirty-two genes or loci have been linked to PL, and another 22 are suggested, including Hepatocyte Growth Factor (HGF). We searched for HGF variants in 770 index patients from the Brussels PL cohort. We identified ten variants predicted to cause HGF loss-of-function (six nonsense, two frameshifts, and two splice-site changes; 1.3% of our cohort), and 14 missense variants predicted to be pathogenic in 17 families (2.21%). We studied co-segregation within families, mRNA stability for non-sense variants, and in vitro functional effects of the missense variants. Analyses of the mRNA of patient cells revealed degradation of the nonsense mutant allele. Reduced protein secretion was detected for nine of the 14 missense variants expressed in COS-7 cells. Stimulation of lymphatic endothelial cells with these 14 HGF variant proteins resulted in decreased activation of the downstream targets AKT and ERK1/2 for three of them. Clinically, HGF-associated PL was diverse, but predominantly bilateral in the lower limbs with onset varying from early childhood to adulthood. Finally, aggregation study in a second independent cohort underscored that rare likely pathogenic variants in HGF explain about 2% of PL. Therefore, HGF signalling seems crucial for lymphatic development and/or maintenance in human beings and HGF should be included in diagnostic genetic screens for PL.


Subject(s)
Hepatocyte Growth Factor , Lymphedema , Humans , Hepatocyte Growth Factor/genetics , Hepatocyte Growth Factor/metabolism , Male , Female , Child , Adult , Lymphedema/genetics , Lymphedema/pathology , Adolescent , Middle Aged , Animals , Mutation, Missense/genetics , Loss of Function Mutation , Age of Onset , Child, Preschool , COS Cells , Chlorocebus aethiops , Endothelial Cells/metabolism , Endothelial Cells/pathology , Young Adult
2.
Hum Mol Genet ; 32(2): 276-289, 2023 01 06.
Article in English | MEDLINE | ID: mdl-35972810

ABSTRACT

Somatic activating Kirsten rat sarcoma viral oncogene homologue (KRAS) mutations have been reported in patients with arteriovenous malformations. By producing LSL-Kras (G12D); Cdh5 (PAC)-CreERT2 [iEC-Kras (G12D*)] mice, we hoped to activate KRAS within vascular endothelial cells (ECs) to generate an arteriovenous malformation mouse model. Neonatal mice were treated daily with tamoxifen from postnatal (PN) days 1-3. Mortality and phenotypes varied amongst iEC-Kras (G12D*) pups, with only 31.5% surviving at PN14. Phenotypes (focal lesions, vessel dilations) developed in a consistent manner, although with unpredictable severity within multiple soft tissues (such as the brain, liver, heart and brain). Overall, iEC-Kras (G12D*) pups developed significantly larger vascular lumen areas compared with control littermates, beginning at PN8. We subsequently tested whether the MEK inhibitor trametinib could effectively alleviate lesion progression. At PN16, iEC-Kras (G12D*) pup survival improved to 76.9%, and average vessel sizes were closer to controls than in untreated and vehicle-treated mutants. In addition, trametinib treatment helped normalize iEC-Kras (G12D*) vessel morphology in PN14 brains. Thus, trametinib could act as an effective therapy for KRAS-induced vascular malformations in patients.


Subject(s)
Pancreatic Neoplasms , Proto-Oncogene Proteins p21(ras) , Mice , Animals , Proto-Oncogene Proteins p21(ras)/genetics , Pancreatic Neoplasms/genetics , Endothelial Cells/pathology , Disease Models, Animal , Mutation
3.
Brief Bioinform ; 24(6)2023 09 22.
Article in English | MEDLINE | ID: mdl-37974506

ABSTRACT

Over the past years, progress made in next-generation sequencing technologies and bioinformatics have sparked a surge in association studies. Especially, genome-wide association studies (GWASs) have demonstrated their effectiveness in identifying disease associations with common genetic variants. Yet, rare variants can contribute to additional disease risk or trait heterogeneity. Because GWASs are underpowered for detecting association with such variants, numerous statistical methods have been recently proposed. Aggregation tests collapse multiple rare variants within a genetic region (e.g. gene, gene set, genomic loci) to test for association. An increasing number of studies using such methods successfully identified trait-associated rare variants and led to a better understanding of the underlying disease mechanism. In this review, we compare existing aggregation tests, their statistical features and scope of application, splitting them into the five classical classes: burden, adaptive burden, variance-component, omnibus and other. Finally, we describe some limitations of current aggregation tests, highlighting potential direction for further investigations.


Subject(s)
Genetic Variation , Genome-Wide Association Study , Humans , Phenotype , Case-Control Studies , Models, Genetic
4.
Am J Med Genet A ; : e63883, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39376044

ABSTRACT

PIK3CA variants are known to cause vascular malformations. We were interested in studying the phenotypic spectrum, the location within the PIK3CA gene, and the variant allele frequency (VAF) of somatic PI3KCA variants in vascular malformations. Clinical data of consecutive patients with extracranial/extraspinal vascular malformations were collected in the context of the VASCOM cohort (2008-2022, n = 558). Starting October 2020, biopsy samples were tested with the TSO500 gene panel (Illumina). All consenting patients with PIK3CA variants were included in this study. Eighty-nine patients had available genetic results by June 2022. PIK3CA variants (n = 25) were found in 16 simple/combined (nonsyndromic) vascular malformations and in nine vascular malformations associated with other anomalies (syndromic). Four hotspot variants in exons 9 and 20 (c.1624G>A, c.1633G>A, c.3140A>G, c.3140A>T) were identified in 16/25 patients (VAF 0.9%-9.7%). Six non-hotspot variants (c.328_330del, c.323_337del, c.353G>A, c.1258T>C, c.3132T>A, c.3195_3203delinsT) were detected in nine patients (VAF 3.6%-31.7%). Non-hotspot variants were more frequent in syndromic than nonsyndromic vascular malformations (p = 0.0034) and exhibited a higher VAF than hotspot variants (p = 0.0253). Our study contributes to the growing body of knowledge of the genetic background in vascular malformations. Further studies will enrich the ever-growing list of pathogenic PIK3CA variants associated with vascular malformations.

5.
Am J Med Genet A ; 194(6): e63551, 2024 06.
Article in English | MEDLINE | ID: mdl-38321651

ABSTRACT

Capillary malformations (CMs) are the most common type of vascular anomalies, affecting around 0.3% of newborns. They are usually caused by somatic pathogenic variants in GNAQ or GNA11. PIK3CA and PIK3R1, part of the phosphoinositide 3-kinase-protein kinase B-mammalian target of rapamycin pathway, are mutated in fainter CMs such as diffuse CM with overgrowth and megalencephaly CM. In this study, we present two young patients with a CM-like phenotype associated with cerebral anomalies and severe epilepsy. Pathogenic variants in PIK3CA and PIK3R1, as well as GNAQ and GNA11, were absent in affected cutaneous tissue biopsies. Instead, we identified two somatic pathogenic variants in the AKT3 gene. Subsequent analysis of the DNA obtained from surgically resected brain tissue of one of the two patients confirmed the presence of the AKT3 variant. Focal cortical dysplasia was also detected in this patient. Genetic analysis thus facilitated workup to reach a precise diagnosis for these patients, associating the vascular anomaly with the neurological symptoms. This study underscores the importance of searching for additional signs and symptoms to guide the diagnostic workup, especially in cases with atypical vascular malformations. In addition, it strongly emphasizes the significance of genotype-phenotype correlation studies in guiding clinicians' informed decision-making regarding patient care.


Subject(s)
Capillaries , Epilepsy , Proto-Oncogene Proteins c-akt , Telangiectasis , Vascular Malformations , Female , Humans , Infant, Newborn , Male , Capillaries/abnormalities , Capillaries/pathology , Epilepsy/genetics , Epilepsy/pathology , Genetic Association Studies , Genetic Predisposition to Disease , Mosaicism , Mutation/genetics , Phenotype , Proto-Oncogene Proteins c-akt/genetics , Telangiectasis/genetics , Telangiectasis/pathology , Telangiectasis/diagnosis , Vascular Malformations/genetics , Vascular Malformations/pathology , Vascular Malformations/diagnosis , Vascular Malformations/complications , Adolescent
6.
PLoS Comput Biol ; 19(9): e1011488, 2023 09.
Article in English | MEDLINE | ID: mdl-37708232

ABSTRACT

The development of high-throughput next-generation sequencing technologies and large-scale genetic association studies produced numerous advances in the biostatistics field. Various aggregation tests, i.e. statistical methods that analyze associations of a trait with multiple markers within a genomic region, have produced a variety of novel discoveries. Notwithstanding their usefulness, there is no single test that fits all needs, each suffering from specific drawbacks. Selecting the right aggregation test, while considering an unknown underlying genetic model of the disease, remains an important challenge. Here we propose a new ensemble method, called Excalibur, based on an optimal combination of 36 aggregation tests created after an in-depth study of the limitations of each test and their impact on the quality of result. Our findings demonstrate the ability of our method to control type I error and illustrate that it offers the best average power across all scenarios. The proposed method allows for novel advances in Whole Exome/Genome sequencing association studies, able to handle a wide range of association models, providing researchers with an optimal aggregation analysis for the genetic regions of interest.


Subject(s)
Genetic Variation , Genome-Wide Association Study , Computer Simulation , Genetic Association Studies , Genomics , Models, Genetic , High-Throughput Nucleotide Sequencing
7.
J Med Genet ; 60(1): 57-64, 2023 01.
Article in English | MEDLINE | ID: mdl-34876502

ABSTRACT

BACKGROUND: Hydrops fetalis, a pathological fluid accumulation in two or more body compartments, is aetiologically heterogeneous. We investigated a consanguineous family with recurrent pregnancy loss due to severe early-onset non-immune hydrops fetalis. METHODS AND RESULTS: Whole exome sequencing in four fetuses with hydrops fetalis revealed that they were homozygous for the angiopoietin-2 (ANGPT2) variant Chr8 (GRCh37/Hg19): 6385085T>C, NM_001147.2:c.557A>G. The substitution introduces a cryptic, exonic splice site predicted to result in loss of 10 nucleotides with subsequent shift in reading frame, leading to a premature stop codon. RNA analysis in the heterozygous parents demonstrated loss of detectable mutant allele, indicative of loss-of-function via nonsense-mediated mRNA decay. Serum ANGPT2 levels were reduced in the parents. In a pregnancy with a healthy, heterozygous child, transiently increased fetal nuchal translucency was noted. CONCLUSION: Pathogenic heterozygous ANGPT2 missense variants were recently shown to cause autosomal dominant primary lymphoedema. ANGPT2 is a ligand of the TIE1-TIE2 (tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 1 and 2) pathway. It is critical to the formation and remodelling of blood and lymphatic vessels and is involved in vessel maintenance. ANGPT2 knockout mice die from generalised lymphatic dysfunction. We show here that a homozygous pathogenic variant causes loss-of-function and results in severe early-onset hydrops fetalis. This is the first report of an autosomal recessive ANGPT2-related disorder in humans.


Subject(s)
Angiopoietin-2 , Hydrops Fetalis , Animals , Female , Humans , Mice , Pregnancy , Angiopoietin-2/genetics , Codon, Nonsense/genetics , Heterozygote , Hydrops Fetalis/genetics , Hydrops Fetalis/metabolism , Mutation, Missense , Infant, Newborn
8.
J Med Genet ; 60(12): 1161-1168, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37225411

ABSTRACT

BACKGROUND: Primary lymphoedema (PL) is a chronic, debilitating disease caused by developmental and functional defects of the lymphatic system. It is marked by an accumulation of interstitial fluid, fat and tissue fibrosis. There is no cure. More than 50 genes and genetic loci have been linked to PL. We sought to study systematically cell polarity signalling protein Cadherin Epidermal Growth Factor Laminin G Seven-pass G-type Receptor 1 (CELSR1) variants linked to PL. METHODS: We investigated 742 index patients from our PL cohort using exome sequencing. RESULTS: We identified nine variants predicted to cause CELSR1 loss of function. Four of them were tested for nonsense-mediated mRNA decay, but none was observed. Most of the truncated CELSR1 proteins would lack the transmembrane domain, if produced. The affected individuals had puberty/late-onset PL on lower extremities. The variants had a statistically significant difference in penetrance between female patients (87%) and male patients (20%). Eight variant carriers had a kidney anomaly, mostly in the form of ureteropelvic junction obstruction, which has not been associated with CELSR1 before. CELSR1 is located in the 22q13.3 deletion locus of the Phelan-McDermid syndrome. As variable renal defects are often seen in patients with the Phelan-McDermid syndrome, CELSR1 may be the long-sought gene for the renal defects. CONCLUSION: PL associated with a renal anomaly suggests a CELSR1-related cause.


Subject(s)
Chromosome Disorders , Lymphedema , Female , Humans , Male , Cadherins/genetics , Cadherins/metabolism , Chromosome Deletion , Chromosome Disorders/genetics , Lymphedema/genetics
9.
J Med Genet ; 60(9): 905-909, 2023 09.
Article in English | MEDLINE | ID: mdl-36813543

ABSTRACT

BACKGROUND: EPHB4 loss of function is associated with type 2 capillary malformation-arteriovenous malformation syndrome, an autosomal dominant vascular disorder. The phenotype partially overlaps with hereditary haemorrhagic telangiectasia (HHT) due to epistaxis, telangiectases and cerebral arteriovenous malformations, but a similar liver involvement has never been described. METHODS: Members of the French HHT network reported their cases of EPHB4 mutation identified after an initial suspicion of HHT. Clinical, radiological and genetic characteristics were analysed. RESULTS: Among 21 patients with EPHB4, 15 had a liver imaging, including 7 with HHT-like abnormalities (2 female patients and 5 male patients, ages 43-69 years). Atypical epistaxis and telangiectases were noted in two cases each. They were significantly older than the eight patients with normal imaging (median: 51 vs 20 years, p<0.0006).The main hepatic artery was dilated in all the cases (diameter: 8-11 mm). Six patients had hepatic telangiectases. All kind of shunts were described (arteriosystemic: five patients, arterioportal: two patients, portosystemic: three patients). The overall liver appearance was considered as typical of HHT in six cases.Six EPHB4 variants were classified as pathogenic and one as likely pathogenic, with no specific hot spot. CONCLUSION: EPHB4 loss-of-function variants can be associated with HHT-like hepatic abnormalities and should be tested for atypical HHT presentations.


Subject(s)
Intracranial Arteriovenous Malformations , Telangiectasia, Hereditary Hemorrhagic , Male , Humans , Female , Telangiectasia, Hereditary Hemorrhagic/complications , Telangiectasia, Hereditary Hemorrhagic/diagnosis , Telangiectasia, Hereditary Hemorrhagic/genetics , Epistaxis/complications , Liver , Mutation
10.
Circ Res ; 129(1): 155-173, 2021 06 25.
Article in English | MEDLINE | ID: mdl-34166070

ABSTRACT

Vascular and lymphatic malformations represent a challenge for clinicians. The identification of inherited and somatic mutations in important signaling pathways, including the PI3K (phosphoinositide 3-kinase)/AKT (protein kinase B)/mTOR (mammalian target of rapamycin), RAS (rat sarcoma)/RAF (rapidly accelerated fibrosarcoma)/MEK (mitogen-activated protein kinase kinase)/ERK (extracellular signal-regulated kinases), HGF (hepatocyte growth factor)/c-Met (hepatocyte growth factor receptor), and VEGF (vascular endothelial growth factor) A/VEGFR (vascular endothelial growth factor receptor) 2 cascades has led to the evaluation of tailored strategies with preexisting cancer drugs that interfere with these signaling pathways. The era of theranostics has started for the treatment of vascular anomalies. Registration: URL: https://www.clinicaltrialsregister.eu; Unique identifier: 2015-001703-32.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Blood Vessels/abnormalities , Blood Vessels/drug effects , Mutation , Neovascularization, Physiologic/drug effects , Protein Kinase Inhibitors/therapeutic use , Vascular Malformations/drug therapy , Vascular Malformations/genetics , Angiogenesis Inhibitors/adverse effects , Animals , Blood Vessels/metabolism , Genetic Predisposition to Disease , Humans , Molecular Targeted Therapy , Phenotype , Protein Kinase Inhibitors/adverse effects , Signal Transduction , Vascular Malformations/metabolism , Vascular Malformations/pathology
11.
Circ Res ; 129(1): 136-154, 2021 06 25.
Article in English | MEDLINE | ID: mdl-34166072

ABSTRACT

Lymphatic vessels maintain tissue fluid homeostasis by returning to blood circulation interstitial fluid that has extravasated from the blood capillaries. They provide a trafficking route for cells of the immune system, thus critically contributing to immune surveillance. Developmental or functional defects in the lymphatic vessels, their obstruction or damage, lead to accumulation of fluid in tissues, resulting in lymphedema. Here we discuss developmental lymphatic anomalies called lymphatic malformations and complex lymphatic anomalies that manifest as localized or multifocal lesions of the lymphatic vasculature, respectively. They are rare diseases that are caused mostly by somatic mutations and can present with variable symptoms based upon the size and location of the lesions composed of fluid-filled cisterns or channels. Substantial progress has been made recently in understanding the molecular basis of their pathogenesis through the identification of their genetic causes, combined with the elucidation of the underlying mechanisms in animal disease models and patient-derived lymphatic endothelial cells. Most of the solitary somatic mutations that cause lymphatic malformations and complex lymphatic anomalies occur in genes that encode components of oncogenic growth factor signal transduction pathways. This has led to successful repurposing of some targeted cancer therapeutics to the treatment of lymphatic malformations and complex lymphatic anomalies. Apart from the mutations that act as lymphatic endothelial cell-autonomous drivers of these anomalies, current evidence points to superimposed paracrine mechanisms that critically contribute to disease pathogenesis and thus provide additional targets for therapeutic intervention. Here, we review these advances and discuss new treatment strategies that are based on the recently identified molecular pathways.


Subject(s)
Lymphangiogenesis , Lymphatic Abnormalities/genetics , Lymphatic Abnormalities/therapy , Lymphatic Vessels/abnormalities , Mutation , Animals , Disease Models, Animal , Genetic Predisposition to Disease , Humans , Lymphatic Abnormalities/metabolism , Lymphatic Abnormalities/pathology , Lymphatic Vessels/metabolism , Phenotype , Signal Transduction
12.
Eur J Neurol ; 29(10): 3061-3070, 2022 10.
Article in English | MEDLINE | ID: mdl-35715928

ABSTRACT

BACKGROUND AND PURPOSE: Sturge-Weber syndrome (SWS) is a neurocutaneous disorder characterized by clinical manifestations involving the brain, eye and skin. SWS is commonly caused by somatic mutations in G protein subunit Alpha Q (GNAQ). Five cases of subunit Alpha 11 (GNA11) mutations have been reported. We studied phenotypic features of GNA11-SWS and compared them with those of classic SWS. METHODS: Within two European multidisciplinary centers we looked for patients with clinical characteristics of SWS and a GNA11 mutation. Clinical and radiological data were collected retrospectively and prospectively. RESULTS: We identified three patients with SWS associated with a somatic GNA11 mutation. All had disseminated capillary malformation (CM) and hyper- or hypotrophy of an extremity. At birth, the CMs of the face, trunk and limbs were pink and patchy, and slowly darkened with age, evolving to a purple color. Two of the patients had glaucoma. All had neurological symptoms and moderate brain atrophy with a lower degree of severity than that classically associated with SWS. Susceptibility-weighted imaging (SWI) and contrast-enhanced fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging demonstrated the best sensitivity to reveal the pial angiomas. CONCLUSIONS: We have differentiated two distinct clinical/radiological phenotypes of SWS; GNAQ- and GNA11-SWS. The classic GNAQ-SWS is characterized by a homogeneous dark-red CM, commonly associated with underlying soft tissue hypertrophy. The CM in GNA11-SWS is more reticulate and darkens with time, and the neurological picture is milder. SWI and post-contrast FLAIR sequences appear to be necessary to demonstrate leptomeningeal angiomatosis. Anti-epileptic medication or future targeted therapies may be useful, as in classic SWS.


Subject(s)
GTP-Binding Protein alpha Subunits , Sturge-Weber Syndrome , Anticonvulsants , Brain/diagnostic imaging , Brain/pathology , GTP-Binding Protein alpha Subunits/genetics , Humans , Magnetic Resonance Imaging , Retrospective Studies , Sturge-Weber Syndrome/complications , Sturge-Weber Syndrome/genetics , Sturge-Weber Syndrome/pathology
13.
J Oral Pathol Med ; 51(10): 878-887, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35610188

ABSTRACT

Vascular anomalies are a heterogenous group of vascular lesions that can be divided, according to the International Society for the Study of Vascular Anomalies Classification, into two main groups: vascular tumors and vascular malformations. Vascular malformations can be further subdivided into slow-flow and fast-flow malformations. This clinical and radiological classification allows for a better understanding of vascular anomalies and aims to offer a more precise final diagnosis. Correct diagnosis is essential to propose the best treatment, which traditionally consists of surgery, embolization, or sclerotherapy. Since a few years, medical treatment has become an important part of multidisciplinary treatment. Genetic and molecular knowledge of vascular anomalies are increasing rapidly and opens the door for a molecular classification of vascular anomalies according to the underlying pathways involved. The main pathways seem to be PI3K/AKT/mTOR and RAS/RAF/MEK/ERK. Knowing the underlying molecular cascades allows us to use targeted medical therapies. The first part of this article aims to review the vascular anomalies seen in the head and neck region and their underlying molecular causes and involved pathways. The second part will propose an overview of the available targeted therapies based on the affected molecular cascade. This article summarizes theragnostic treatments available in vascular anomalies.


Subject(s)
Phosphatidylinositol 3-Kinases , Vascular Malformations , Humans , Vascular Malformations/therapy , Vascular Malformations/diagnostic imaging , Vascular Malformations/pathology , Neck/pathology , Sclerotherapy , Radiography
14.
Am J Med Genet A ; 185(7): 2153-2159, 2021 07.
Article in English | MEDLINE | ID: mdl-33851505

ABSTRACT

Hypotrichosis-lymphedema-telangiectasia syndrome (HLTS) is a rare condition caused by pathogenic variants in the SOX18 gene. SOX18 plays a key role in angio- and lymphangiogenesis due to its expression in venous endothelial cells from which the lymphatic system develops. It is also expressed in embryonic hair follicles, heart, and vascular smooth muscle cells. The main clinical symptoms of HLTS include sparse hair, alopecia totalis, lymphedema, most often affecting lower limbs, and telangiectatic lesions. Only 10 patients with a SOX18 pathogenic variant have been described that presented with additional features such as hydrocele, renal failure, arterial or pulmonary hypertension, aortic dilatation, and facial dysmorphism. Here, we summarize these phenotypic variations and report an additional HLTS patient, with a 14-nucleotide de novo duplication in SOX18 and congenital ileal atresia, a feature not previously associated with HLTS.


Subject(s)
Genetic Predisposition to Disease , Hypotrichosis/genetics , Lymphangiogenesis/genetics , Lymphedema/genetics , SOXF Transcription Factors/genetics , Telangiectasis/genetics , Adolescent , Child , Child, Preschool , Endothelial Cells/metabolism , Endothelial Cells/pathology , Female , Gene Duplication/genetics , Humans , Hypotrichosis/physiopathology , Infant , Infant, Newborn , Lymphedema/physiopathology , Male , Telangiectasis/physiopathology
15.
Am J Med Genet A ; 185(12): 3810-3813, 2021 12.
Article in English | MEDLINE | ID: mdl-34231312

ABSTRACT

Primary lymphedema results from the anomalous development of the lymphatic system and typically presents during infancy, childhood, or adolescence. Adult-onset primary lymphedema is rare and mutations associated with this condition have not been identified. The purpose of this investigation was to search for variants that cause adult-onset primary lymphedema. We discovered an autosomal dominant EPHB4 mutation in a patient who developed unilateral leg lymphedema at age 39 years; the same mutation affected his son who presented with the disease at 14 years of age.


Subject(s)
Genetic Predisposition to Disease , Lymphedema/genetics , Receptor, EphB4/genetics , Adolescent , Adult , Female , Humans , Lymphedema/pathology , Male , Mutation/genetics
16.
J Med Genet ; 57(1): 48-52, 2020 01.
Article in English | MEDLINE | ID: mdl-31300548

ABSTRACT

BACKGROUND: Capillary malformation-arteriovenous malformation is an autosomal dominant disorder, characterised by capillary malformations and increased risk of fast-flow vascular malformations, caused by loss-of-function mutations in the RASA1 or EPHB4 genes. Around 25% of the patients do not seem to carry a germline mutation in either one of these two genes. Even if other genes could be involved, some individuals may have mutations in the known genes that escaped detection by less sensitive techniques. We tested the hypothesis that mosaic mutations could explain some of previously negative cases. METHODS: DNA was extracted from peripheral blood lymphocytes, saliva or vascular malformation tissues from four patients. RASA1 and EPHB4 coding regions and exon/intron boundaries were analysed by targeted custom gene panel sequencing. A second panel and/or Sanger sequencing were used to confirm the identified mutations. RESULTS: Four distinct mosaic RASA1 mutations, with an allele frequency ranging from 3% to 25%, were identified in four index patients with classical capillary malformation-arteriovenous malformation phenotype. Three mutations were known, one was novel. In one patient, a somatic second hit was also identified. One index case had three affected children, illustrating that the mosaicism was also present in the germline. CONCLUSION: This study shows that RASA1 mosaic mutations can cause capillary malformation-arteriovenous malformation. Thus, highly sensitive sequencing techniques should be considered as diagnostic tools, especially for patients with no family history. Even low-level mosaicism can cause the classical phenotype and increased risk for offspring. In addition, our study further supports the second-hit pathophysiological mechanism to explain the multifocality of vascular lesions in this disorder.


Subject(s)
Arteriovenous Malformations/genetics , Capillaries/abnormalities , Mosaicism , Mutation , Port-Wine Stain/genetics , p120 GTPase Activating Protein/genetics , Arteriovenous Malformations/diagnosis , Arteriovenous Malformations/metabolism , Capillaries/metabolism , DNA Mutational Analysis , High-Throughput Nucleotide Sequencing , Humans , Port-Wine Stain/diagnosis , Port-Wine Stain/metabolism
17.
Breast Cancer Res ; 22(1): 36, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32295625

ABSTRACT

BACKGROUND: Multigene panels are routinely used to assess for predisposing germline mutations in families at high breast cancer risk. The number of variants of unknown significance thereby identified increases with the number of sequenced genes. We aimed to determine whether tumor sequencing can help refine the analysis of germline variants based on second somatic genetic events in the same gene. METHODS: Whole-exome sequencing (WES) was performed on whole blood DNA from 70 unrelated breast cancer patients referred for genetic testing and without a BRCA1, BRCA2, TP53, or CHEK2 mutation. Rare variants were retained in a list of 735 genes. WES was performed on matched tumor DNA to identify somatic second hits (copy number alterations (CNAs) or mutations) in the same genes. Distinct methods (among which immunohistochemistry, mutational signatures, homologous recombination deficiency, and tumor mutation burden analyses) were used to further study the role of the variants in tumor development, as appropriate. RESULTS: Sixty-eight patients (97%) carried at least one germline variant (4.7 ± 2.0 variants per patient). Of the 329 variants, 55 (17%) presented a second hit in paired tumor tissue. Of these, 53 were CNAs, resulting in tumor enrichment (28 variants) or depletion (25 variants) of the germline variant. Eleven patients received variant disclosure, with clinical measures for five of them. Seven variants in breast cancer-predisposing genes were considered not implicated in oncogenesis. One patient presented significant tumor enrichment of a germline variant in the oncogene ERBB2, in vitro expression of which caused downstream signaling pathway activation. CONCLUSION: Tumor sequencing is a powerful approach to refine variant interpretation in cancer-predisposing genes in high-risk breast cancer patients. In this series, the strategy provided clinically relevant information for 11 out of 70 patients (16%), adapted to the considered gene and the familial clinical phenotype.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Exome Sequencing/methods , Genetic Testing/methods , Germ-Line Mutation , Adult , Aged , DNA Copy Number Variations , Female , Genetic Predisposition to Disease , Humans , Middle Aged , Neoplasm Grading , Risk Factors
18.
Mem Inst Oswaldo Cruz ; 115: e200504, 2020.
Article in English | MEDLINE | ID: mdl-32578684

ABSTRACT

BACKGROUND: Biodiversity screens and phylogenetic studies are dependent on reliable DNA sequences in public databases. Biological collections possess vouchered specimens with a traceable history. Therefore, DNA sequencing of samples available at institutional collections can greatly contribute to taxonomy, and studies on evolution and biodiversity. METHODS: We sequenced part of the glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) and the SSU rRNA (V7/V8) genes from 102 trypanosomatid cultures, which are available on request at www.colprot.fiocruz.br. OBJECTIVE: The main objective of this work was to use phylogenetic inferences, using the obtained DNA sequences and those from representatives of all Trypanosomatidae genera, to generate phylogenetic trees that can simplify new isolates screenings. FINDINGS: A DNA sequence is provided for the first time for several isolates, the phylogenetic analysis allowed the classification or reclassification of several specimens, identification of candidates for new genera and species, as well as the taxonomic validation of several deposits. MAIN CONCLUSIONS: This survey aimed at presenting a list of validated species and their associated DNA sequences combined with a short historical overview of each isolate, which can support taxonomic and biodiversity research and promote culture collections.


Subject(s)
Biodiversity , DNA Barcoding, Taxonomic , Trypanosomatina/classification , Trypanosomatina/genetics , Phylogeny
19.
Curr Opin Hematol ; 26(3): 185-192, 2019 05.
Article in English | MEDLINE | ID: mdl-30855337

ABSTRACT

PURPOSE OF REVIEW: The field of vascular anomalies has seen a fundamental change during the past 10 years. The identification of somatic genetic mutations as the explanation of sporadic vascular anomalies opened the doors to study prospectively and a posteriori the causes of various vascular malformations. This was helped by the rapidly evolving genetic techniques including the highly sensitive next generation sequencing. In parallel, knowledge on signaling alterations occurring in vascular endothelial cells because of the various mutations, development of in-vitro and especially the first in-vivo models, gave the possibility to test preclinically molecular therapies for vascular malformations. RECENT FINDINGS: One of the first molecules, rapamycin, showed clear evidence of interrupting lesion growth. As its safety profile had been established in other conditions, it was quickly accepted for clinical trials on vascular anomalies. Now, with a few trials published and others ongoing, it is establishing itself as a gold standard for molecular therapy for recalcitrant lesions. SUMMARY: Targeted molecular therapies are becoming interesting new additions to the management of vascular anomalies, and rapamycin is establishing itself as a gold standard for venous malformations.


Subject(s)
Endothelial Cells , Signal Transduction/drug effects , Sirolimus/therapeutic use , Vascular Malformations , Animals , Endothelial Cells/metabolism , Endothelial Cells/pathology , Humans , Vascular Malformations/drug therapy , Vascular Malformations/metabolism , Vascular Malformations/pathology
20.
Hum Mol Genet ; 26(21): 4095-4104, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28985353

ABSTRACT

Primary lymphedema is due to developmental and/or functional defects in the lymphatic system. It may affect any part of the body, with predominance for the lower extremities. Twenty-seven genes have already been linked to primary lymphedema, either isolated, or as part of a syndrome. The proteins that they encode are involved in VEGFR3 receptor signaling. They account for about one third of all primary lymphedema cases, underscoring the existence of additional genetic factors. We used whole-exome sequencing to investigate the underlying cause in a non-consanguineous family with two children affected by lymphedema, lymphangiectasia and distinct facial features. We discovered bi-allelic missense mutations in ADAMTS3. Both were predicted to be highly damaging. These amino acid substitutions affect well-conserved residues in the prodomain and in the peptidase domain of ADAMTS3. In vitro, the mutant proteins were abnormally processed and sequestered within cells, which abolished proteolytic activation of pro-VEGFC. VEGFC processing is also affected by CCBE1 mutations that cause the Hennekam lymphangiectasia-lymphedema syndrome syndrome type1. Our data identifies ADAMTS3 as a novel gene that can be mutated in individuals affected by the Hennekam syndrome. These patients have distinctive facial features similar to those with mutations in CCBE1. Our results corroborate the recent in vitro and murine data that suggest a close functional interaction between ADAMTS3 and CCBE1 in triggering VEGFR3 signaling, a cornerstone for the differentiation and function of lymphatic endothelial cells.


Subject(s)
ADAMTS Proteins/deficiency , ADAMTS Proteins/genetics , Craniofacial Abnormalities/genetics , Lymphangiectasis, Intestinal/genetics , Lymphedema/genetics , Procollagen N-Endopeptidase/deficiency , Procollagen N-Endopeptidase/genetics , ADAMTS Proteins/metabolism , Adult , Alleles , Amino Acid Sequence , Amino Acid Substitution , Child , Conserved Sequence , Craniofacial Abnormalities/metabolism , Endothelial Cells/metabolism , Female , HEK293 Cells , Humans , Lymphangiectasis, Intestinal/metabolism , Lymphedema/metabolism , Male , Mutation, Missense , Pedigree , Procollagen N-Endopeptidase/metabolism , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor C/metabolism , Vascular Endothelial Growth Factor Receptor-3/genetics , Vascular Endothelial Growth Factor Receptor-3/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL