Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 177
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 119(44): e2208040119, 2022 11.
Article in English | MEDLINE | ID: mdl-36279452

ABSTRACT

Organoid technology has provided unique insights into human organ development, function, and diseases. Patient-derived organoids are increasingly used for drug screening, modeling rare disorders, designing regenerative therapies, and understanding disease pathogenesis. However, the use of Matrigel to grow organoids represents a major challenge in the clinical translation of organoid technology. Matrigel is a poorly defined mixture of extracellular matrix proteins and growth factors extracted from the Engelbreth-Holm-Swarm mouse tumor. The extracellular matrix is a major driver of multiple cellular processes and differs significantly between tissues as well as in healthy and disease states of the same tissue. Therefore, we envisioned that the extracellular matrix derived from a native healthy tissue would be able to support organoid growth akin to organogenesis in vivo. Here, we have developed hydrogels from decellularized human and bovine endometrium. These hydrogels supported the growth of mouse and human endometrial organoids, which was comparable to Matrigel. Organoids grown in endometrial hydrogels were proteomically more similar to the native tissue than those cultured in Matrigel. Proteomic and Raman microspectroscopy analyses showed that the method of decellularization affects the biochemical composition of hydrogels and, subsequently, their ability to support organoid growth. The amount of laminin in hydrogels correlated with the number and shape of organoids. We also demonstrated the utility of endometrial hydrogels in developing solid scaffolds for supporting high-throughput, cell culture-based applications. In summary, endometrial hydrogels overcome a major limitation of organoid technology and greatly expand the applicability of organoids to understand endometrial biology and associated pathologies.


Subject(s)
Neoplasms , Organoids , Female , Humans , Cattle , Animals , Organoids/metabolism , Hydrogels/chemistry , Laminin/pharmacology , Laminin/metabolism , Proteomics , Endometrium , Neoplasms/metabolism
2.
Small ; 20(39): e2307610, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38342695

ABSTRACT

Borophene, a 2D material exhibiting unique crystallographic phases like the anisotropic atomic lattices of ß12 and X3 phases, has attracted considerable attention due to its intriguing Dirac nature and metallic attributes. Despite surpassing graphene in electronic mobility, borophene's potential in energy storage and catalysis remains untapped due to its inherent electrochemical and catalytic limitations. Elemental doping emerges as a promising strategy to introduce charge carriers, enabling localized electrochemical and catalytic functionalities. However, effective doping of borophene has been a complex and underexplored challenge. Here, an innovative, one-pot microwave-assisted doping method, tailored for the ß12 phase of borophene is introduced. By subjecting dispersed ß12 borophene in dimethylformamide to controlled microwave exposure with sulfur powder and FeCl3 as doping precursors, S- and Fe doping in borophene can be controlled. Employing advanced techniques including high-resolution transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy, confirm successful sulfur and iron dopant incorporation onto ß12 borophene is confirmed, achieving doping levels of up to 11 % and 13 %, respectively. Remarkably, S- and Fe-doped borophene exhibit exceptional supercapacitive behavior, with specific capacitances of 202 and 120 F g-1, respectively, at a moderate current density of 0.25 A g-1.

3.
Small ; 20(13): e2308084, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38243883

ABSTRACT

Ammonia is an essential commodity in the food and chemical industry. Despite the energy-intensive nature, the Haber-Bosch process is the only player in ammonia production at large scales. Developing other strategies is highly desirable, as sustainable and decentralized ammonia production is crucial. Electrochemical ammonia production by directly reducing nitrogen and nitrogen-based moieties powered by renewable energy sources holds great potential. However, low ammonia production and selectivity rates hamper its utilization as a large-scale ammonia production process. Creating effective and selective catalysts for the electrochemical generation of ammonia is critical for long-term nitrogen fixation. Single-atom alloys (SAAs) have become a new class of materials with distinctive features that may be able to solve some of the problems with conventional heterogeneous catalysts. The design and optimization of SAAs for electrochemical ammonia generation have recently been significantly advanced. This comprehensive review discusses these advancements from theoretical and experimental research perspectives, offering a fundamental understanding of the development of SAAs for ammonia production.

4.
Small ; 20(44): e2404337, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38958089

ABSTRACT

Monoelemental atomic sheets (Xenes) and other 2D materials offer record electronic mobility, high thermal conductivity, excellent Young's moduli, optical transparency, and flexural capability, revolutionizing ultrasensitive devices and enhancing performance. The ideal synthesis of these quantum materials should be facile, fast, scalable, reproducible, and green. Microwave expansion followed by cryoquenching (MECQ) leverages thermal stress in graphite to produce high-purity graphene within minutes. MECQ synthesis of graphene is reported at 640 and 800 W for 10 min, followed by liquid nitrogen quenching for 5 and 90 min of sonication. Microscopic and spectroscopic analyses confirmed the chemical identity and phase purity of monolayers and few-layered graphene sheets (200-12 µm). Higher microwave power yields thinner layers with enhanced purity. Molecular dynamics simulations and DFT calculations support the exfoliation under these conditions. Electrostatic droplet switching is demonstrated using MECQ-synthesized graphene, observing electrorolling of a mercury droplet on a BN/graphene interface at voltages above 20 V. This technique can inspire the synthesis of other 2D materials with high purity and enable new applications.

5.
Small ; 20(25): e2311945, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38196051

ABSTRACT

Hybrid ion capacitors (HIC) are receiving a lot of attention due to their potential to achieve high energy and power densities, but they remain insufficient. It is imperative to explore outstanding and environmentally benign electrode materials to achieve high-performing HIC systems. Here, a unique boron carbon nitride (BCN)-based HIC system that comprises a microporous BCN structure and Fe1-xS nanoparticle incorporated BCN nanosheets (BNF) as cathode and anode, respectively is reported. The BNF is prepared through a facile one-pot calcination process using dithiooxamide (DTO), boric acid, and iron source. In situ, crystal growth of Fe1-xS facilitates the formation of BCN structure through the creation of holes/defects in the polymeric structure. The first principle density functional (DFT) theory simulations demonstrate the structural and electronic properties of the hybrid of BCN and Fe1-xS as compelling anode materials for HIC applications. The DFT calculations reveal that both BCN and BNF structures have excellent metallic characters with Li+ storage capacities of 128.4 and 1021.38 mAh g-1 respectively. These findings are confirmed experimentally where the BCN-based HIC system delivers exceptional energy and power densities of 267.5 Wh kg-1/749.5 W kg-1 toward Li+ storage, which outweighs previous HIC performances and demonstrates favorable performance for Li+ and Na+ storages.

6.
Small ; : e2407160, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39390843

ABSTRACT

Water polluted by toxic chemicals due to waste from chemical/pharmaceuticals and harmful microbes such as E. Coli bacteria causes several fatal diseases; and therefore, water filtration is crucial for accessing clean and safe water necessary for good health. Conventional water filtration technologies include activated carbon filters, reverse osmosis, and ultrafiltration. However, they face several challenges, including high energy consumption, fouling, limited selectivity, inefficiencies in removing certain contaminants, dimensional control of pores, and structural/chemical changes at higher thermal conditions and upon prolonged usage of water filter. Recently, the advent of 2D materials such as graphene, BN, MoS2, MXenes, and so on opens new avenues for advanced water filtration systems. This review delves into the nanoarchitectonics of 2D materials for water filtration applications. The current state of water filtration technologies is explored, the inherent challenges they face are outlines, and the unique properties and advantages of 2D materials are highlighted. Furthermore, the scope of this review is discussed, which encompasses the synthesis, characterization, and application of various 2D materials in water filtration, providing insights into future research directions and potential industrial applications.

7.
Small ; : e2407763, 2024 Oct 31.
Article in English | MEDLINE | ID: mdl-39479754

ABSTRACT

Borophene, an anisotropic metallic Dirac material exhibits superlative physical and chemical properties. While the lack of bandgap restricts its electronic chip applications, insufficient charge carrier density and electrochemical/catalytically active sites, restricts its energy storage and catalysis applications. Fluorination of borophene can induce bandgap and yield local electron injection within its crystallographic lattice. Herein, a facile synthesis of fluoroborophene with tunable fluorine content through potassium fluoride-assisted solvothermal-sonochemical combinatorial approach is reported. Fluoroborophene monolayers with lateral dimension 50 nm-5 µm are synthesized having controlled fluorine content (12-35%). Fluoroborophene exhibits inter-twinned crystallographic structure, with fluorination-tunable visible-range bandgap ≈1.5-2.5 eV, and density functional theory calculations also corroborate it. Fluoroborophene is explored for electrocatalytic oxygen evolution reaction in an alkaline medium and bestow a good stability. Tunable bandgap, electrophilicity and molecular anchoring capability of fluoroborophene will open opportunities for novel electronic/optoelectronic/spintronic chips, energy storage devices, and in numerous catalytic applications.

8.
Sci Technol Adv Mater ; 25(1): 2393568, 2024.
Article in English | MEDLINE | ID: mdl-39238510

ABSTRACT

Sugarcane-based products are inherently rich in elements such as silicon, carbon and nitrogen. As such, these become ideal precursors for utilization in a wide array of application fields. One of the appealing areas is to transform them into nanomaterials of high interest that can be employed in several prominent applications. Among nanomaterials, sugarcane products based on silica nanoparticles (SNPs), carbon dots (CDs), metal/metal oxide-based NPs, nanocellulose, cellulose nanofibers (CNFs), and nano biochar are becoming increasingly reported. Through manipulation of the experimental conditions and choosing suitable starting precursors and elements, it is possible to devise these nanomaterials with highly desired properties suited for specific applications. The current review presents the findings from the recent literature wherein an effort has been made to convey new development in the field of sugarcane-based products for the synthesis of the above-mentioned nanomaterials. Various nanomaterials were systematically discussed in terms of their synthesis and application perspectives. Wherever possible, a comparative analysis was carried out to highlight the potential of sugarcane products for the intended purpose as compared to other biomass-based materials. This review is expected to stand out in delivering an up-to-date survey of the literature and provide readers with necessary directions for future research.


This review focuses on sugarcane-derived nanomaterials such as silica, nano cellulose, nanofibers, nanocrystals and metal/nonmetal nanoparticles and their application in various energy and environmental fields.

9.
Sci Technol Adv Mater ; 25(1): 2357062, 2024.
Article in English | MEDLINE | ID: mdl-38835629

ABSTRACT

Affordable and environmentally friendly electrochemically active raw energy storage materials are in high demand to switch to mass-scale renewable energy. One particularly promising avenue is the feasibility of utilizing food waste-derived nanoporous carbon. This material holds significance due to its widespread availability, affordability, ease of processing, and, notably, its cost-free nature. Over the years, various strategies have been developed to convert different food wastes into nanoporous carbon materials with enhanced electrochemical properties. The electrochemical performance of these materials is influenced by both intrinsic factors, such as the composition of elements derived from the original food sources and recipes, and extrinsic factors, including the conditions during pyrolysis and activation. While current efforts are dedicated to optimizing process parameters to achieve superior performance in electrochemical energy storage devices, it is timely to take stock of the current state of research in this emerging field. This review provides a comprehensive overview of recent developments in the fabrication and surface characterisation of porous carbons from different food wastes. A special focus is given on the applications of these food waste derived porous carbons for energy storage applications including batteries and supercapacitors.


This review compiles very recent literature on the synthesis of porous carbon from food waste biomass and their efficient utilisation as electrode material for energy storage applications in supercapacitor devices.

10.
Chem Soc Rev ; 52(21): 7602-7664, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37830178

ABSTRACT

Catalysis is at the heart of modern-day chemical and pharmaceutical industries, and there is an urgent demand to develop metal-free, high surface area, and efficient catalysts in a scalable, reproducible and economic manner. Amongst the ever-expanding two-dimensional materials family, carbon nitride (CN) has emerged as the most researched material for catalytic applications due to its unique molecular structure with tunable visible range band gap, surface defects, basic sites, and nitrogen functionalities. These properties also endow it with anchoring capability with a large number of catalytically active sites and provide opportunities for doping, hybridization, sensitization, etc. To make considerable progress in the use of CN as a highly effective catalyst for various applications, it is critical to have an in-depth understanding of its synthesis, structure and surface sites. The present review provides an overview of the recent advances in synthetic approaches of CN, its physicochemical properties, and band gap engineering, with a focus on its exclusive usage in a variety of catalytic reactions, including hydrogen evolution reactions, overall water splitting, water oxidation, CO2 reduction, nitrogen reduction reactions, pollutant degradation, and organocatalysis. While the structural design and band gap engineering of catalysts are elaborated, the surface chemistry is dealt with in detail to demonstrate efficient catalytic performances. Burning challenges in catalytic design and future outlook are elucidated.

11.
Small ; : e2301113, 2023 Mar 26.
Article in English | MEDLINE | ID: mdl-36967548

ABSTRACT

The design of novel drug delivery systems is exceptionally critical in disease treatments. Among the existing drug delivery systems, mesoporous silica nanoparticles (MSNs) have shown profuse promise owing to their structural stability, tunable morphologies/sizes, and ability to load different payload chemistry. Significantly, the presence of surface silanol groups enables functionalization with relevant drugs, imaging, and targeting agents, promoting their utility and popularity among researchers. Stimuli-responsive silanol conjugates have been developed as a novel, more effective way to conjugate, deliver, and release therapeutic drugs on demand and precisely to the selected location. Therefore, it is urgent to summarize the current understanding and the surface silanols' role in making MSN a versatile drug delivery platform. This review provides an analytical understanding of the surface silanols, chemistry, identification methods, and their property-performance correlation. The chemistry involved in converting surface silanols to a stimuli-responsive silica delivery system by endogenous/exogenous stimuli, including pH, redox potential, temperature, and hypoxia, is discussed in depth. Different chemistries for converting surface silanols to stimuli-responsive bonds are discussed in the context of drug delivery. The critical discussion is culminated by outlining the challenges in identifying silanols' role and overcoming the limitations in synthesizing stimuli-responsive mesoporous silica-based drug delivery systems.

12.
Small ; : e2303269, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37386787

ABSTRACT

In this work, the synthesis of core-shell ordered mesoporous silica nanoparticles (CSMS) with tunable particle size and shape through a dual surfactant-assisted approach is demonstrated. By varying the synthesis conditions, including the type of the solvent and the concentration of the surfactant, monodispersed and ordered mesoporous silica nanoparticles with tunable particle size (140-600 nm) and morphologies (hexagonal prism (HP), oblong, spherical, and hollow-core) can be realized. Comparative studies of the Cabazitaxel (CBZ)-loaded HP and spherical-shaped CSMS are conducted to evaluate their drug delivery efficiency to PC3 (prostate cancer) cell lines. These nanoparticles showed good biocompatibility and displayed a faster drug release at acidic pH than at basic pH. The cellular uptake of CSMS measured using confocal microscopy, flow cytometry, microplate reader, and ICP-MS (inductively coupled plasma mass spectrometry) techniques in PC3 cell lines revealed a better uptake of CSMS with HP morphology than its spherical counterparts. Cytotoxicity study showed that the anticancer activity of CBZ is improved with a higher free radical production when loaded onto CSMS. These unique materials with tunable morphology can serve as an excellent drug delivery system and will have potential applications for treating various cancers.

13.
Small ; 19(17): e2207181, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36693792

ABSTRACT

Carbon-based quantum dots (QDs) have emerged as a fascinating class of advanced materials with a unique combination of optoelectronic, biocompatible, and catalytic characteristics, apt for a plethora of applications ranging from electronic to photoelectrochemical devices. Recent research works have established carbon-based QDs for those frontline applications through improvements in materials design, processing, and device stability. This review broadly presents the recent progress in the synthesis of carbon-based QDs, including carbon QDs, graphene QDs, graphitic carbon nitride QDs and their heterostructures, as well as their salient applications. The synthesis methods of carbon-based QDs are first introduced, followed by an extensive discussion of the dependence of the device performance on the intrinsic properties and nanostructures of carbon-based QDs, aiming to present the general strategies for device designing with optimal performance. Furthermore, diverse applications of carbon-based QDs are presented, with an emphasis on the relationship between band alignment, charge transfer, and performance improvement. Among the applications discussed in this review, much focus is given to photo and electrocatalytic, energy storage and conversion, and bioapplications, which pose a grand challenge for rational materials and device designs. Finally, a summary is presented, and existing challenges and future directions are elaborated.

14.
Small ; 19(41): e2302875, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37309270

ABSTRACT

Due to the depletion of fossil fuels and their-related environmental issues, sustainable, clean, and renewable energy is urgently needed to replace fossil fuel as the primary energy resource. Hydrogen is considered as one of the cleanest energies. Among the approaches to hydrogen production, photocatalysis is the most sustainable and renewable solar energy technique. Considering the low cost of fabrication, earth abundance, appropriate bandgap, and high performance, carbon nitride has attracted extensive attention as the catalyst for photocatalytic hydrogen production in the last two decades. In this review, the carbon nitride-based photocatalytic hydrogen production system, including the catalytic mechanism and the strategies for improving the photocatalytic performance is discussed. According to the photocatalytic processes, the strengthened mechanism of carbon nitride-based catalysts is particularly described in terms of boosting the excitation of electrons and holes, suppressing carriers recombination, and enhancing the utilization efficiency of photon-excited electron-hole. Finally, the current trends related to the screening design of superior photocatalytic hydrogen production systems are outlined, and the development direction of carbon nitride for hydrogen production is clarified.

15.
Small ; : e2304587, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38072818

ABSTRACT

Sodium-ion batteries (SIBs) have received tremendous attention owing to their low cost, high working voltages, and energy density. However, the design and development of highly efficient SIBs represent a great challenge. Here, a unique and reliable approach is reported to prepare carbon nitride (CN) hybridized with nickel iron sulfide (NFCN) using simple reaction between Ni-Fe layered double hydroxide and dithiooxamide. The characterization results demonstrate that the hybridization with optimal amount of CN induces local distortion in the crystal structure of the hybrid, which would benefit SIB performance. Systematic electrochemical studies with a half-cell configuration show that the present hybrid structure exhibits a promising reversible specific capacity of 348 mAh g-1 at 0.1 A g-1 after 100 cycles with good rate capability. Simulation result reveals that the iron atoms in nickel iron sulfide act as a primary active site to accommodate Na+ ions. At last, with a full cell configuration using NFCN and Na3 V2 (PO4 )2 O2 F as the anode and cathode, respectively, the specific capacity appears to be ≈95 mAh g-1 after 50 cycles at 0.1 A g-1 condition. This excellent performance of these hybrids can be attributed to the synergistic effect of the incorporated CN species and the high conductivity of nickel-iron sulfide.

16.
Small ; : e2304369, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37715070

ABSTRACT

High-magnetization materials play crucial roles in various applications. However, the past few decades have witnessed a stagnation in the discovery of new materials with high magnetization. In this work, Ni/NiO nanocomposites are fabricated by depositing Ni and NiO thin layers alternately, followed by annealing at specific temperatures. Both the as-deposited samples and those annealed at 373 K exhibit low magnetization. However, the samples annealed at 473 K exhibit a significantly enhanced saturation magnetization exceeding 607 emu cm-3 at room temperature, surpassing that of pure Ni (480 emu cm-3 ). Material characterizations indicate that the composite comprises NiO nanoclusters of size 1-2 nm embedded in the Ni matrix. This nanoclustered NiO is primarily responsible for the high magnetization, as confirmed by density functional theory calculations. The calculations also indicate that the NiO clusters are ferromagnetically coupled with Ni, resulting in enhanced magnetization. This work demonstrates a new route toward developing artificial high-magnetization materials using the high magnetic moments of nanoclustered antiferromagnetic materials.

17.
Chemistry ; 29(69): e202302723, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37673789

ABSTRACT

Designing unique nanomaterials for the selective sensing of biomolecules is of significant interest in the field of nanobiotechnology. In this work, we demonstrated the synthesis of ordered Cu nanoparticle-functionalised mesoporous C3 N5 that has unique peroxidase-like nanozymatic activity for the ultrasensitive and selective detection of glucose and glutathione. A nano hard-templating technique together with the in-situ polymerisation and self-assembly of Cu and high N-containing CN precursor was adopted to introduce mesoporosity as well as high N and Cu content in mesoporous C3 N5 . Due to the ordered structure and highly dispersed Cu in the mesoporous C3 N5 , a large enhancement of the peroxidase mimetic activity in the oxidation of a redox dye in the presence of hydrogen peroxide could be obtained. Additionally, the optimised Cu-functionalised mesoporous C3 N5 exhibited excellent sensitivity to glutathione with a low detection limit of 2.0 ppm. The strong peroxidase activity of the Cu-functionalised mesoporous C3 N5 was also effectively used for the sensing of glucose with a detection limit of 0.4 mM through glucose oxidation with glucose oxidase. This unique Cu-functionalised mesoporous C3 N5 has the potential for detecting various molecules in the environment as well as for next-generation glucose and glutathione diagnostic devices.


Subject(s)
Copper , Nanoparticles , Copper/chemistry , Glucose/chemistry , Nanoparticles/chemistry , Hydrogen Peroxide/chemistry , Peroxidases , Glutathione , Colorimetry
18.
Sci Technol Adv Mater ; 24(1): 2188879, 2023.
Article in English | MEDLINE | ID: mdl-37007670

ABSTRACT

Carbon nitrides, a distinguished class of metal-free catalytic materials, have presented a good potential for chemical transformations and are expected to become prominent materials for organocatalysis. This is largely possible due to their low cost, exceptional thermal and chemical stability, non-toxicity, ease of functionalization, porosity development, etc. Especially, the carbon nitrides with increased porosity and nitrogen contents are more versatile than their bulk counterparts for catalysis. These N-rich carbon nitrides are discussed in the earlier parts of the review. Later, the review highlights the role of such carbon nitride materials for the various organic catalytic reactions including Knoevenagel condensation, oxidation, hydrogenation, esterification, transesterification, cycloaddition, and hydrolysis. The recently emerging concepts in carbon nitride-based organocatalysis have been given special attention. In each of the sections, the structure-property relationship of the materials was discussed and related to their catalysis action. Relevant comparisons with other catalytic materials are also discussed to realize their real potential value. The perspective, challenges, and future directions are also discussed. The overall objective of this review is to provide up-to-date information on new developments in carbon nitride-based organic catalysis reactions that could see them rising as prominent catalytic materials in the future.

19.
Small ; 18(11): e2104855, 2022 03.
Article in English | MEDLINE | ID: mdl-34874618

ABSTRACT

Superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively investigated during the last couple of decades because of their potential applications across various disciplines ranging from spintronics to nanotheranostics. However, pure iron oxide nanoparticles cannot meet the requirement for practical applications. Doping is considered as one of the most prominent and simplest techniques to achieve optimized multifunctional properties in nanomaterials. Doped iron oxides, particularly, rare-earth (RE) doped nanostructures have shown much-improved performance for a wide range of biomedical applications, including magnetic hyperthermia and magnetic resonance imaging (MRI), compared to pure iron oxide. Extensive investigations have revealed that bigger-sized RE ions possessing high magnetic moment and strong spin-orbit coupling can serve as promising dopants to significantly regulate the properties of iron oxides for advanced biomedical applications. This review provides a detailed investigation on the role of RE ions as primary dopants for engineering the structural and magnetic properties of Fe3 O4 nanoparticles to carefully introspect and correlate their impact on cancer theranostics with a special focus on magnetic hyperthermia and MRI. In addition, prospects for achieving high-performance magnetic hyperthermia and MRI are thoroughly discussed. Finally, suggestions on future work in these two areas are also proposed.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Neoplasms , Ferric Compounds , Humans , Hyperthermia, Induced/methods , Magnetic Resonance Imaging/methods , Nanoparticles/chemistry , Neoplasms/diagnostic imaging , Neoplasms/therapy , Precision Medicine
20.
Small ; 18(21): e2107572, 2022 05.
Article in English | MEDLINE | ID: mdl-35285140

ABSTRACT

Amongst various futuristic renewable energy sources, hydrogen fuel is deemed to be clean and sustainable. Electrochemical water splitting (EWS) is an advanced technology to produce pure hydrogen in a cost-efficient manner. The electrocatalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are the vital steps of EWS and have been at the forefront of research over the past decades. The low-cost nanostructured metal phosphide (MP)-based electrocatalysts exhibit unconventional physicochemical properties and offer very high turnover frequency (TOF), low over potential, high mass activity with improved efficiency, and long-term stability. Therefore, they are deemed to be potential electrocatalysts to meet practical challenges for supporting the future hydrogen economy. This review discusses the recent research progress in nanostructured MP-based catalysts with an emphasis given on in-depth understanding of catalytic activity and innovative synthetic strategies for MP-based catalysts through combined experimental (in situ/operando techniques) and theoretical investigations. Finally, the challenges, critical issues, and future outlook in the field of MP-based catalysts for water electrolysis are addressed.


Subject(s)
Nanostructures , Water , Catalysis , Hydrogen/chemistry , Metals , Nanostructures/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL