Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 255
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Drug Resist Updat ; 73: 101061, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301486

ABSTRACT

AIMS: Antimicrobial resistance is a global threat to human health, and Acinetobacter baumannii is a paradigmatic example of how rapidly bacteria become resistant to clinically relevant antimicrobials. The emergence of multidrug-resistant A. baumannii strains has forced the revival of colistin as a last-resort drug, suddenly leading to the emergence of colistin resistance. We investigated the genetic and molecular basis of colistin resistance in A. baumannii, and the mechanisms implicated in its regulation and dissemination. METHODS: Comparative genomic analysis was combined with genetic, biochemical, and phenotypic assays to characterize Φ19606, an A. baumannii temperate bacteriophage that carries a colistin resistance gene. RESULTS: Ф19606 was detected in 41% of 523 A. baumannii complete genomes and demonstrated to act as a mobile vehicle of the colistin resistance gene eptA1, encoding a functional lipid A phosphoethanolamine transferase. The eptA1 gene is coregulated with its chromosomal homolog pmrC via the PmrAB two-component system and confers colistin resistance when induced by low calcium and magnesium levels. Resistance selection assays showed that the eptA1-harbouring phage Ф19606 promotes the emergence of spontaneous colistin-resistant mutants. CONCLUSIONS: Φ19606 is an unprecedented example of a self-transmissible phage vector implicated in the dissemination of colistin resistance.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Humans , Colistin/pharmacology , Colistin/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Acinetobacter baumannii/genetics , Bacterial Proteins/genetics , Drug Resistance, Bacterial/genetics , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/genetics
2.
Antimicrob Agents Chemother ; 68(4): e0007524, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38445869

ABSTRACT

Hydrogen sulfide (H2S) has been proposed to protect bacteria from antibiotics, pointing to H2S-producing enzymes as possible targets for the development of antibiotic adjuvants. Here, MIC assays performed with Pseudomonas aeruginosa mutants producing altered H2S levels demonstrate that H2S does not affect antibiotic resistance in this bacterium. Moreover, correlation analyses in a large collection of P. aeruginosa cystic fibrosis isolates argue against the protective role of H2S from antibiotic activity during chronic lung infection.


Subject(s)
Hydrogen Sulfide , Pseudomonas Infections , Humans , Pseudomonas aeruginosa , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Drug Resistance, Microbial , Sulfides
3.
EMBO Rep ; 21(11): e50078, 2020 11 05.
Article in English | MEDLINE | ID: mdl-32909687

ABSTRACT

The dynamic interplay between cancer cells and cancer-associated fibroblasts (CAFs) is regulated by multiple signaling pathways, which can lead to cancer progression and therapy resistance. We have previously demonstrated that hMENA, a member of the actin regulatory protein of Ena/VASP family, and its tissue-specific isoforms influence a number of intracellular signaling pathways related to cancer progression. Here, we report a novel function of hMENA/hMENAΔv6 isoforms in tumor-promoting CAFs and in the modulation of pro-tumoral cancer cell/CAF crosstalk via GAS6/AXL axis regulation. LC-MS/MS proteomic analysis reveals that CAFs that overexpress hMENAΔv6 secrete the AXL ligand GAS6, favoring the invasiveness of AXL-expressing pancreatic ductal adenocarcinoma (PDAC) and non-small cell lung cancer (NSCLC) cells. Reciprocally, hMENA/hMENAΔv6 regulates AXL expression in tumor cells, thus sustaining GAS6-AXL axis, reported as crucial in EMT, immune evasion, and drug resistance. Clinically, we found that a high hMENA/GAS6/AXL gene expression signature is associated with a poor prognosis in PDAC and NSCLC. We propose that hMENA contributes to cancer progression through paracrine tumor-stroma crosstalk, with far-reaching prognostic and therapeutic implications for NSCLC and PDAC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Pancreatic Neoplasms , Actins , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Chromatography, Liquid , Humans , Lung Neoplasms/genetics , Microfilament Proteins , Pancreatic Neoplasms/genetics , Proteomics , Stromal Cells , Tandem Mass Spectrometry
4.
Environ Microbiol ; 23(9): 5487-5504, 2021 09.
Article in English | MEDLINE | ID: mdl-34327807

ABSTRACT

The stringent response regulator DksA plays a key role in Gram negative bacteria adaptation to challenging environments. Intriguingly, the plant and human pathogen Pseudomonas aeruginosa is unique as it expresses two functional DksA paralogs: DksA1 and DksA2. However, the role of DksA2 in P. aeruginosa adaptive strategies has been poorly investigated so far. Here, RNA-Seq analysis and phenotypic assays showed that P. aeruginosa DksA1 and DksA2 proteins are largely interchangeable. Relative to wild type P. aeruginosa, transcription of 1779 genes was altered in a dksA1 dksA2 double mutant, and the wild type expression level of ≥90% of these genes was restored by in trans complementation with either dksA1 or dksA2. Interestingly, the expression of a small sub-set of genes seems to be preferentially or exclusively complemented by either dksA1 or dksA2. In addition, evidence has been provided that the DksA-dependent regulation of virulence genes expression is independent and hierarchically dominant over two major P. aeruginosa regulatory circuits, i.e., quorum sensing and cyclic-di-GMP signalling systems. Our findings support the prominent role of both DksA paralogs in P. aeruginosa environmental adaptation.


Subject(s)
Pseudomonas aeruginosa , Transcriptome , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Humans , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Transcriptome/genetics , Virulence/genetics
5.
Appl Environ Microbiol ; 87(10)2021 04 27.
Article in English | MEDLINE | ID: mdl-33608300

ABSTRACT

Key microbial processes in many bacterial species are heterogeneously expressed in single cells of bacterial populations. However, the paucity of adequate molecular tools for live, real-time monitoring of multiple-gene expression at the single-cell level has limited the understanding of phenotypic heterogeneity. To investigate phenotypic heterogeneity in the ubiquitous opportunistic pathogen Pseudomonas aeruginosa, a genetic tool that allows gauging multiple-gene expression at the single-cell level has been generated. This tool, named pRGC, consists of a promoter-probe vector for transcriptional fusions that carries three reporter genes coding for the fluorescent proteins mCherry, green fluorescent protein (GFP), and cyan fluorescent protein (CFP). The pRGC vector has been characterized and validated via single-cell gene expression analysis of both constitutive and iron-regulated promoters, showing clear discrimination of the three fluorescence signals in single cells of a P. aeruginosa population without the need for image processing for spectral cross talk correction. In addition, two pRGC variants have been generated for either (i) integration of the reporter gene cassette into a single neutral site of P. aeruginosa chromosome that is suitable for long-term experiments in the absence of antibiotic selection or (ii) replication in bacterial genera other than Pseudomonas The easy-to-use genetic tools generated in this study will allow rapid and cost-effective investigation of multiple-gene expression in populations of environmental and pathogenic bacteria, hopefully advancing the understanding of microbial phenotypic heterogeneity.IMPORTANCE Within a bacterial population, single cells can differently express some genes, even though they are genetically identical and experience the same chemical and physical stimuli. This phenomenon, known as phenotypic heterogeneity, is mainly driven by gene expression noise and results in the emergence of bacterial subpopulations with distinct phenotypes. The analysis of gene expression at the single-cell level has shown that phenotypic heterogeneity is associated with key bacterial processes, including competence, sporulation, and persistence. In this study, new genetic tools have been generated that allow easy cloning of up to three promoters upstream of distinct fluorescent genes, making it possible to gauge multiple-gene expression at the single-cell level by fluorescence microscopy without the need for advanced image-processing procedures. A proof of concept has been provided by investigating iron uptake and iron storage gene expression in response to iron availability in P. aeruginosa.


Subject(s)
Gene Expression Regulation, Bacterial , Pseudomonas aeruginosa/genetics , Single-Cell Analysis/methods , Genes, Reporter , Luminescent Proteins/genetics , Promoter Regions, Genetic
6.
Langmuir ; 37(3): 1110-1119, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33433226

ABSTRACT

Acinetobacter baumannii has emerged as a major bacterial pathogen during the past three decades. The majority of the A. baumannii infections occur in hospitals and are caused by strains endowed with high desiccation tolerance, which represents an essential feature for the adaptation to the nosocomial environment. This work aims at investigating the desiccation response of the multidrug-resistant A. baumannii strain ACICU as a function of the bacterial growth phase and oxygen availability, by correlating bacterial survival with shape alterations. The three-dimensional morphological analysis of bacteria was carried out by atomic force microscopy (AFM), following the evolution of bacterial shape descriptors, such as the area, volume, roughness of individual cell membranes, and the cell cluster roughness, which exhibited peculiar and distinctive behavior as a function of the growth conditions. AFM images of A. baumannii ACICU cells revealed the prevalence of the coccoid morphology at all growth stages, with a tendency to reduce their size in the stationary phase, accompanied by a higher survival rate to air-drying. Moreover, cells harvested from the logarithmic phase featured a larger volume and resulted to be more sensitive to desiccation compared to the cells harvested at later growth stages. In addition, oxygen deprivation caused a significant decrease in cellular size and was associated with the formation of pores in the cell membrane, accompanied by a relative reduction in culturability after desiccation. Morphological plasticity and multidrug resistance may contribute to desiccation tolerance and therefore to persistence in the hospital setting.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents/pharmacology , Cell Membrane , Desiccation , Drug Resistance, Multiple , Microscopy, Atomic Force
7.
Pharmacol Res ; 170: 105698, 2021 08.
Article in English | MEDLINE | ID: mdl-34058327

ABSTRACT

The emergence of pan-resistant strains in nosocomial settings underscores the urgent need of novel therapies targeting vital bacterial functions. Bacterial iron metabolism is a fascinating target for new antimicrobials. Iron mimetic metal Ga(III) has been repurposed as an antimicrobial drug, in pre-clinical studies and recent clinical studies have raised the possibility of using Ga(III) for the treatment of P. aeruginosa pulmonary infection. Ga(III) has been approved by FDA for the treatment of cancer, autoimmune and bone resorption disorders. However, some critical issues affect the therapeutic schedule of Ga(III), principally the intra-venous (i.v.) administration, and the nephrotoxicity caused by prolonged administration. Ga(III) aerosolization could represent a viable alternative for treatment of lung infections, since delivery of antimicrobial agents to the airways maximizes drug concentration at the site of infection, improves the therapeutic efficacy, and alleviates systemic toxic effects. We demonstrate the advantage of inhaled vs i.v. administered Ga(III), in terms of bio-distribution and lung acute toxicity, by using a rat model. In vivo results support the use of Ga(III) for inhalation since intra-tracheal Ga(III) delivery improved its persistence in the lung, while the i.v. administration caused rapid clearance and did not allow to attain a significant Ga(III) concentration in this organ. Moreover, local and systemic acute toxicity following intra-tracheal administration was not observed, since no significant signs of inflammation were found. At this stage of evidence, the direct administration of Ga(III) to the lung appears feasible and safe, boosting the development of Ga(III)-based drugs for inhalation therapy.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Gallium/administration & dosage , Lung/metabolism , Administration, Inhalation , Administration, Intravenous , Aerosols , Animals , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/toxicity , Biological Availability , Gallium/pharmacokinetics , Gallium/toxicity , Male , Rats, Wistar , Tissue Distribution
8.
J Cell Physiol ; 235(3): 1877-1887, 2020 03.
Article in English | MEDLINE | ID: mdl-31397494

ABSTRACT

Cancer stem cells (CSCs) are a subpopulation with the properties of extensive self-renewal, capability to generate differentiated cancer cells and resistance to therapies. We have previously shown that malignant pleural effusions (MPEs) from patients with non-small-cell lung cancer (NSCLC) represent a valuable source of cancer cells that can be grown as three-dimensional (3D) spheroids enriched for stem-like features, which depend on the activation of the Yes-associated protein-transcriptional coactivator with PDZ-binding motif (YAP-TAZ)/Wnt-ßcatenin/stearoyl-CoA desaturase 1 (SCD1) axis. Here, we describe a novel support, called CytoMatrix, for the characterization of limited amounts of cancer cells isolated from MPEs of patients with NSCLC. Our results show that this synthetic matrix allows an easy and fast characterization of several epithelial cellular markers. The use of CytoMatrix to study CSCs subpopulation confirms that SCD1 protein expression is enhanced in 3D spheroids when compared with 2D adherent cell cultures. YAP/TAZ nuclear-cytoplasmic distribution analysed by CytoMatrix in 3D spheroids is highly heterogeneous and faithfully reproduces what is observed in tumour biopsies. Our results confirm and extend the robustness of our workflow for the isolation and phenotypic characterization of primary cancer cells derived from the lung MPEs and underscore the role of SCD1.


Subject(s)
Cytodiagnosis/methods , Lung Neoplasms/pathology , Neoplastic Stem Cells/pathology , Pleural Effusion, Malignant/pathology , Aged , Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Culture Techniques/methods , Cell Nucleus/metabolism , Cytoplasm/metabolism , Female , Humans , Lung/metabolism , Lung/pathology , Lung Neoplasms/metabolism , Male , Middle Aged , Neoplastic Stem Cells/metabolism , Pleural Effusion, Malignant/metabolism , Spheroids, Cellular/metabolism , Spheroids, Cellular/pathology , Stearoyl-CoA Desaturase/metabolism , Transcription Factors/metabolism , Tumor Cells, Cultured
9.
Appl Environ Microbiol ; 86(13)2020 06 17.
Article in English | MEDLINE | ID: mdl-32358001

ABSTRACT

Livestock-associated methicillin-resistant Staphylococcus aureus sequence type (ST) 398 (LA-MRSA ST398) is a genetic lineage for which pigs are regarded as the main reservoir. An increasing prevalence of LA-MRSA ST398 has been reported in areas with high livestock density throughout Europe. In this study, we investigated the drivers contributing to the introduction and spread of LA-MRSA ST398 through the pig farming system in southern Italy. Whole-genome sequencing (WGS) of LA-MRSA ST398 isolates collected in 2018 from pigs (n = 53) and employees (n = 14) from 10 farms in the Calabria region of Italy were comparatively analyzed with previously published WGS data from Italian ST398 isolates (n = 45), an international ST398 reference collection (n = 89), and isolates from Danish pig farms (n = 283), which are the main suppliers of pigs imported to Italy. Single-nucleotide polymorphisms (SNP) were used to infer isolate relatedness, and these data were used together with data from animal trading to identify factors contributing to LA-MRSA ST398 dissemination. The analyses support the existence of two concurrent pathways for the spread of LA-MRSA ST398 in southern Italy: (i) multiple introductions of LA-MRSA ST398 through the import of colonized pigs from other European countries, including Denmark and France, and (ii) the spread of distinct clones dependent on local trading of pigs between farms. Phylogenetically related Italian and Danish LA-MRSA ST398 isolates shared extensive similarities, including carriage of antimicrobial resistance genes. Our findings highlight the potential risk of transboundary transmission of antimicrobial-resistant bacterial clones with a high zoonotic potential during import of pigs from countries with high LA-MRSA prevalence.IMPORTANCE Over the past decade, livestock-associated methicillin-resistant Staphylococcus aureus sequence type 398 (LA-MRSA ST398) has spread among pig holdings throughout Europe, in parallel with the increased incidence of infections among humans, especially in intensive pig farming regions. Despite the growing prevalence of LA-MRSA ST398 in Italian pig farms, the transmission dynamics of this clone in Italy remains unclear. This work provides genome-based evidence to suggest transboundary LA-MRSA ST398 transmission through trading of colonized pigs between European countries and Italy, as well as between farms in the same Italian region. Our findings show that both international trading and local trading of colonized pigs are important factors contributing to the global spread of LA-MRSA ST398 and underscore the need for control measures on and off the farm to reduce the dissemination of this zoonotic pathogen.


Subject(s)
Commerce , Staphylococcal Infections/veterinary , Swine Diseases/transmission , Animal Husbandry/economics , Animals , Italy , Methicillin-Resistant Staphylococcus aureus/physiology , Staphylococcal Infections/microbiology , Staphylococcal Infections/transmission , Sus scrofa , Swine , Swine Diseases/microbiology
10.
Eur J Clin Microbiol Infect Dis ; 39(2): 325-332, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31707506

ABSTRACT

Urinary tract infections (UTIs) are among the most common infections in all age groups. Fast and accurate diagnosis is essential to ensure a timely and effective therapy. Alongside with reference culture-based methods, several point-of-care tests (POCTs) for early detection of UTIs have been developed, but they have not been significantly implemented in current clinical practice. The Micro Biological Survey (MBS) POCT is a simple test developed by MBS Diagnostics Ltd. (London, UK) for the detection and management of UTIs. The present study has been undertaken to investigate the potentials and limits of the MBS POCT. A total of 349 patients were enrolled in two open-label, monocentric, non-interventional clinical trials in collaboration with an Emergency Medicine department and the outpatient clinic of two hospitals in Rome. Results of urine analysis using the MBS POCT were compared with those of the routine culture-based tests for UTI diagnosis performed by the hospital laboratory. The MBS POCT provided fast results revealing high bacterial count UTIs (≥ 105 CFU/ml) with 97% accuracy, 92% sensitivity, 100% specificity, 99% PPV, and 96% NPV within a 5-h analytical time threshold.


Subject(s)
Point-of-Care Testing , Urinalysis/methods , Urinary Tract Infections/diagnosis , Adult , Aged , Aged, 80 and over , Clinical Laboratory Techniques/methods , Clinical Laboratory Techniques/standards , Female , Humans , Male , Middle Aged , ROC Curve , Reproducibility of Results , Sensitivity and Specificity , Urinalysis/standards , Urinary Tract Infections/etiology
11.
Proc Natl Acad Sci U S A ; 114(30): 8071-8076, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28696308

ABSTRACT

Small, noncoding RNAs are short untranslated RNA molecules, some of which have been associated with cancer development. Recently we showed that a class of small RNAs generated during the maturation process of tRNAs (tRNA-derived small RNAs, hereafter "tsRNAs") is dysregulated in cancer. Specifically, we uncovered tsRNA signatures in chronic lymphocytic leukemia and lung cancer and demonstrated that the ts-4521/3676 cluster (now called "ts-101" and "ts-53," respectively), ts-46, and ts-47 are down-regulated in these malignancies. Furthermore, we showed that tsRNAs are similar to Piwi-interacting RNAs (piRNAs) and demonstrated that ts-101 and ts-53 can associate with PiwiL2, a protein involved in the silencing of transposons. In this study, we extended our investigation on tsRNA signatures to samples collected from patients with colon, breast, or ovarian cancer and cell lines harboring specific oncogenic mutations and representing different stages of cancer progression. We detected tsRNA signatures in all patient samples and determined that tsRNA expression is altered upon oncogene activation and during cancer staging. In addition, we generated a knocked-out cell model for ts-101 and ts-46 in HEK-293 cells and found significant differences in gene-expression patterns, with activation of genes involved in cell survival and down-regulation of genes involved in apoptosis and chromatin structure. Finally, we overexpressed ts-46 and ts-47 in two lung cancer cell lines and performed a clonogenic assay to examine their role in cell proliferation. We observed a strong inhibition of colony formation in cells overexpressing these tsRNAs compared with untreated cells, confirming that tsRNAs affect cell growth and survival.


Subject(s)
Neoplasms/metabolism , RNA, Small Untranslated/metabolism , A549 Cells , Case-Control Studies , HEK293 Cells , Humans , Oncogenes
12.
Clin Oral Investig ; 24(8): 2645-2652, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31734792

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate, ex vivo, the histological effects of 445-nm diode laser (Eltech K-Laser srl, Treviso, Italy), during an oral soft tissue biopsy. MATERIALS AND METHODS: Thirty samples from pig cadaver tongues were obtained, through five laser settings, in continuous and pulsed wave (CW and PW). Samples were divided into six groups of five pieces each. A control specimen was taken by a scalpel. All samples were examined with an optical microscope by a blinded pathologist. Thermal effects on epithelium and connective tissues were measured with LAS 4.8 software. Finally, a statistical evaluation was made using GraphPadPrism 7.0 software. RESULTS: All specimens, except one, showed a damage lower than 1 mm. Readability was always optimal; there was a different thermal effect between epithelial and connective tissue and in CW and PW samples, confirmed by statistical analysis too. CONCLUSIONS: A 445-nm diode laser creates a minimum thermal effect, that has no implications in the histological evaluation of benign lesions. In suspicious lesions, a safety margin of 1 mm, compared with a scalpel, is preferable. CLINICAL RELEVANCE: A 445-nm diode laser has excellent surgical properties and can manage many arduous clinical cases, such as vascularized lesions. In the excision of suspected lesions, it is necessary to compare, case by case, clinical advantages to possible histological implications.


Subject(s)
Lasers, Semiconductor , Animals , Biopsy , Laser Therapy , Surgical Instruments , Swine , Tongue
13.
Infect Immun ; 87(4)2019 04.
Article in English | MEDLINE | ID: mdl-30718286

ABSTRACT

Acinetobacter baumannii is an important nosocomial pathogen. Mechanisms that allow A. baumannii to cause human infection are still poorly understood. Iron is an essential nutrient for bacterial growth in vivo, and the multiplicity of iron uptake systems in A. baumannii suggests that iron acquisition contributes to the ability of A. baumannii to cause infection. In Gram-negative bacteria, active transport of ferrisiderophores and heme relies on the conserved TonB-ExbB-ExbD energy-transducing complex, while active uptake of ferrous iron is mediated by the Feo system. The A. baumannii genome invariably contains three tonB genes (tonB1, tonB2, and tonB3), whose role in iron uptake is poorly understood. Here, we generated A. baumannii mutants with knockout mutations in the feo and/or tonB gene. We report that tonB3 is essential for A. baumannii growth under iron-limiting conditions, whereas tonB1, tonB2, and feoB appear to be dispensable for ferric iron uptake. tonB3 deletion resulted in reduced intracellular iron content despite siderophore overproduction, supporting a key role of TonB3 in iron uptake. In contrast to the case for tonB1 and tonB2, the promoters of tonB3 and feo contain functional Fur boxes and are upregulated in iron-poor media. Both TonB3 and Feo systems are required for growth in complement-free human serum and contribute to resistance to the bactericidal activity of normal human serum, but only TonB3 appears to be essential for virulence in insect and mouse models of infection. Our findings highlight a central role of the TonB3 system for A. baumannii pathogenicity. Hence, TonB3 represents a promising target for novel antibacterial therapies and for the generation of attenuated vaccine strains.


Subject(s)
Acinetobacter Infections/microbiology , Acinetobacter baumannii/metabolism , Acinetobacter baumannii/pathogenicity , Cation Transport Proteins/metabolism , Iron/metabolism , Acinetobacter baumannii/genetics , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Transport, Active , Cation Transport Proteins/genetics , Female , Heme/metabolism , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred BALB C , Siderophores/metabolism , Virulence
14.
Appl Environ Microbiol ; 85(18)2019 09 15.
Article in English | MEDLINE | ID: mdl-31324623

ABSTRACT

The Acinetobacter genus includes species of opportunistic pathogens and harmless saprophytes. The type species, Acinetobacter baumannii, is a nosocomial pathogen renowned for being multidrug resistant (MDR). Despite the clinical relevance of infections caused by MDR A. baumannii and a few other Acinetobacter spp., the regulation of their pathogenicity remains elusive due to the scarcity of adequate genetic tools, including vectors for gene expression analysis. Here, we report the generation and testing of a series of Escherichia coli-Acinetobacter promoter-probe vectors suitable for gene expression analysis in Acinetobacter spp. These vectors, named pLPV1Z, pLPV2Z, and pLPV3Z, carry both gentamicin and zeocin resistance markers and contain lux, lacZ, and green fluorescent protein (GFP) reporter systems downstream of an extended polylinker, respectively. The presence of a toxin-antitoxin gene system and the high copy number allow pLPV plasmids to be stably maintained even without antibiotic selection. The pLPV plasmids can easily be introduced by electroporation into MDR A. baumannii belonging to the major international lineages as well as into species of the Acinetobacter calcoaceticus-A. baumannii complex. The pLPV vectors have successfully been employed to study the regulation of stress-responsive A. baumannii promoters, including the DNA damage-inducible uvrABC promoter, the ethanol-inducible adhP and yahK promoters, and the iron-repressible promoter of the acinetobactin siderophore biosynthesis gene basA A lux-tagged A. baumannii ATCC 19606T strain, carrying the iron-responsive pLPV1Z::PbasA promoter fusion, allowed in vivo and ex vivo monitoring of the bacterial burden in the Galleria mellonella infection model.IMPORTANCE The short-term adaptive response to environmental cues greatly contributes to the ecological success of bacteria, and profound alterations in bacterial gene expression occur in response to physical, chemical, and nutritional stresses. Bacteria belonging to the Acinetobacter genus are ubiquitous inhabitants of soil and water though some species, such as Acinetobacter baumannii, are pathogenic and cause serious concern due to antibiotic resistance. Understanding A. baumannii pathobiology requires adequate genetic tools for gene expression analysis, and to this end we developed user-friendly shuttle vectors to probe the transcriptional responses to different environmental stresses. Vectors were constructed to overcome the problem of antibiotic selection in multidrug-resistant strains and were equipped with suitable reporter systems to facilitate signal detection. By means of these vectors, the transcriptional response of A. baumannii to DNA damage, ethanol exposure, and iron starvation was investigated both in vitro and in vivo, providing insights into A. baumannii adaptation during stress and infection.


Subject(s)
Acinetobacter/genetics , Drug Resistance, Multiple, Bacterial/genetics , Gene Expression Profiling/methods , Genetic Vectors/pharmacology , Acinetobacter/drug effects , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics
15.
BMC Microbiol ; 19(1): 51, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30808302

ABSTRACT

BACKGROUND: Colonization by livestock-associated MRSA (LA-MRSA) has increasingly been reported in the swine population worldwide. The aim of this study was to assess the prevalence of MRSA nasal carriage in healthy pigs, including the black (Calabrese) breed, from farms in the Calabria Region (Southern Italy). Between January and March 2018, a total of 475 healthy pigs reared in 32 farms were sampled by nasal swabbing. MRSA isolates were characterized by spa, MLST and SCCmec typing, and susceptibility testing to 17 antimicrobials. RESULTS: 22 of 32 (66.8%) pig farms resulted positive for MRSA. The prevalence of MRSA was 46.1% (219 MRSA culture-positive out of 475 samples). MRSA colonization was significantly higher in intensive farms and in pigs with a recent or ongoing antimicrobial treatment. All 219 MRSA isolates were assigned to ST398. The most common spa types were t011 (37.0%), t034 (22.4%) and t899 (15.1%). A novel spa type (t18290) was detected in one isolate. An insertion of IS256 in the ST398-specific A07 fragment of the SAPIG2195 gene was detected in 10 out of 81 t011 isolates. Nearly all isolates carried the SCCmec type V element, except 11 isolates that carried the SCCmec type IVc. None of the isolates was positive for the Panton-Valentine leukocidin. All isolates were resistant to tetracycline. High resistance rates were also found for clindamycin (93.1%), trimethoprim/sulfamethoxazole (68.4%), fluoroquinolones (47.9-65.3%) and erythromycin (46.1%). None of the isolates was resistant to vancomycin and fusidic acid. Overall, a multidrug resistant phenotype was observed in 88.6% of isolates. CONCLUSIONS: We report a high prevalence of MRSA among healthy swine in Southern Italy farms, with higher isolation frequency associated with intensive farming. The epidemiological types identified in our study reflect those reported in other European countries. Our findings underscore the importance of monitoring the evolution of LA-MRSA in pig farms in order to implement control measures and reduce the risk of spread in the animal population.


Subject(s)
Anti-Bacterial Agents/pharmacology , Carrier State/veterinary , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Staphylococcal Infections/veterinary , Swine Diseases/epidemiology , Animals , Bacterial Typing Techniques , Carrier State/enzymology , Carrier State/microbiology , Cross-Sectional Studies , DNA, Bacterial/genetics , Drug Resistance, Bacterial , Farms , Italy/epidemiology , Livestock/microbiology , Methicillin/pharmacology , Microbial Sensitivity Tests , Multilocus Sequence Typing , Nose/microbiology , Prevalence , Staphylococcal Infections/epidemiology , Swine , Swine Diseases/microbiology , Tetracycline/pharmacology
16.
Med Mycol ; 57(Supplement_2): S228-S232, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30816973

ABSTRACT

In airways of immunocompromised patients and individuals with cystic fibrosis, Pseudomonas aeruginosa and Aspergillus fumigatus are the most common opportunistic bacterial and fungal pathogens. Both pathogens form biofilms and cause acute and chronic illnesses. Previous studies revealed that P. aeruginosa is able to inhibit A. fumigatus biofilms in vitro. While numerous P. aeruginosa molecules have been shown to affect A. fumigatus, there never has been a systematic approach to define the principal causative agent. We studied 24 P. aeruginosa mutants, with deletions in genes important for virulence, iron acquisition, or quorum sensing, for their ability to interfere with A. fumigatus biofilms. Cells, planktonic or biofilm culture filtrates of four P. aeruginosa mutants, pvdD-pchE-, pvdD-, lasR-rhlR-, and lasR-, inhibited A. fumigatus biofilm metabolism or planktonic A. fumigatus growth significantly less than P. aeruginosa wild type. The common defect of these four mutants was a lack in the production of the P. aeruginosa siderophore pyoverdine. Pure pyoverdine affected A. fumigatus biofilm metabolism, and restored inhibition by the above mutants. In lungs from cystic fibrosis patients, pyoverdine production and antifungal activity correlated. The key inhibitory mechanism for pyoverdine was iron-chelation and denial of iron to A. fumigatus. Further experiments revealed a counteracting, self-protective mechanism by A. fumigatus, based on A. fumigatus siderophore production.


Subject(s)
Aspergillosis/microbiology , Aspergillus fumigatus/growth & development , Microbial Interactions , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/growth & development , Respiratory Tract Infections/microbiology , Aspergillosis/pathology , Humans , Mutation , Oligopeptides/genetics , Oligopeptides/metabolism , Pseudomonas Infections/pathology , Pseudomonas aeruginosa/genetics , Respiratory Tract Infections/pathology , Virulence Factors/genetics , Virulence Factors/metabolism
17.
Inorg Chem ; 58(8): 4935-4944, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30920816

ABSTRACT

Iron is an essential nutrient for nearly all forms of life, although scarcely available due to its poor solubility in nature and complex formation in higher eukaryotes. Microorganisms have evolved a vast array of strategies to acquire iron, the most common being the production of high-affinity iron chelators, termed siderophores. The opportunistic bacterial pathogen Pseudomonas aeruginosa synthesizes and secretes two siderophores, pyoverdine (PVD) and pyochelin (PCH), characterized by very different structural and functional properties. Due to its chemical similarity with Fe(III), Ga(III) interferes with several iron-dependent biological pathways. Both PVD and PCH bind Fe(III) and Ga(III). However, while the Ga-PCH complex is more effective than Ga(III) in inhibiting P. aeruginosa growth, PVD acts as a Ga(III) scavenger and protects bacteria from Ga(III) toxicity. To gain more insight into the different outcomes of the biological paths observed for the Fe(III) and Ga(III)-siderophore complexes, better knowledge is needed of their coordination geometries that directly influence the metal complexes chemical stability. The valence state and coordination geometry of the Ga-PCH and Fe-PCH complexes has recently been investigated in detail; as for PVD complexes, several NMR structural studies of Ga(III)-PVD are reported in the literature, using Ga(III) as a diamagnetic isosteric substitute for Fe(III). In this work, we applied up-to-date spectroscopic techniques as synchrotron-radiation-induced X-ray photoelectron spectroscopy (SR-XPS) and X-ray absorption fine structure (XAFS) spectroscopy coupled with molecular modeling to describe the electronic structure and coordination chemistry of Fe and Ga coordinative sites in PVD metal complexes. These techniques allowed us to unambiguously determine the oxidation state of the coordinative ions and to gather interesting information about the similarities and differences between the two coordination compounds as induced by the different metal.

18.
J Bacteriol ; 200(1)2018 01 01.
Article in English | MEDLINE | ID: mdl-29038255

ABSTRACT

Pseudomonas aeruginosa and Aspergillus fumigatus are common opportunistic bacterial and fungal pathogens, respectively. They often coexist in airways of immunocompromised patients and individuals with cystic fibrosis, where they form biofilms and cause acute and chronic illnesses. Hence, the interactions between them have long been of interest and it is known that P. aeruginosa can inhibit A. fumigatusin vitro We have approached the definition of the inhibitory P. aeruginosa molecules by studying 24 P. aeruginosa mutants with various virulence genes deleted for the ability to inhibit A. fumigatus biofilms. The ability of P. aeruginosa cells or their extracellular products produced during planktonic or biofilm growth to affect A. fumigatus biofilm metabolism or planktonic A. fumigatus growth was studied in agar and liquid assays using conidia or hyphae. Four mutants, the pvdD pchE, pvdD, lasR rhlR, and lasR mutants, were shown to be defective in various assays. This suggested the P. aeruginosa siderophore pyoverdine as the key inhibitory molecule, although additional quorum sensing-regulated factors likely contribute to the deficiency of the latter two mutants. Studies of pure pyoverdine substantiated these conclusions and included the restoration of inhibition by the pyoverdine deletion mutants. A correlation between the concentration of pyoverdine produced and antifungal activity was also observed in clinical P. aeruginosa isolates derived from lungs of cystic fibrosis patients. The key inhibitory mechanism of pyoverdine was chelation of iron and denial of iron to A. fumigatusIMPORTANCE Interactions between human pathogens found in the same body locale are of vast interest. These interactions could result in exacerbation or amelioration of diseases. The bacterium Pseudomonas aeruginosa affects the growth of the fungus Aspergillus fumigatus Both pathogens form biofilms that are resistant to therapeutic drugs and host immunity. P. aeruginosa and A. fumigatus biofilms are found in vivo, e.g., in the lungs of cystic fibrosis patients. Studying 24 P. aeruginosa mutants, we identified pyoverdine as the major anti-A. fumigatus compound produced by P. aeruginosa Pyoverdine captures iron from the environment, thus depriving A. fumigatus of a nutrient essential for its growth and metabolism. We show how microbes of different kingdoms compete for essential resources. Iron deprivation could be a therapeutic approach to the control of pathogen growth.


Subject(s)
Antibiosis , Aspergillus fumigatus/physiology , Biofilms/growth & development , Mutation , Oligopeptides/metabolism , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cystic Fibrosis/microbiology , Humans , Iron/metabolism , Oligopeptides/genetics , Peptide Synthases/genetics , Peptide Synthases/metabolism , Pseudomonas aeruginosa/pathogenicity , Trans-Activators/genetics , Trans-Activators/metabolism , Virulence/genetics
19.
Article in English | MEDLINE | ID: mdl-29339383

ABSTRACT

Understanding bacterial pathogenesis requires adequate genetic tools to assess the role of individual virulence determinants by mutagenesis and complementation assays, as well as for homologous and heterologous expression of cloned genes. Our knowledge of Acinetobacter baumannii pathogenesis has so far been limited by the scarcity of genetic tools to manipulate multidrug-resistant (MDR) epidemic strains, which are responsible for most infections. Here, we report on the construction of new multipurpose shuttle plasmids, namely, pVRL1 and pVRL2, which can efficiently replicate in Acinetobacter spp. and in Escherichia coli The pVRL1 plasmid has been constructed by combining (i) the cryptic plasmid pWH1277 from Acinetobacter calcoaceticus, which provides an origin of replication for Acinetobacter spp.; (ii) a ColE1-like origin of replication; (iii) the gentamicin or zeocin resistance cassette for antibiotic selection; and (iv) a multilinker containing several unique restriction sites. Modification of pVRL1 led to the generation of the pVRL2 plasmid, which allows arabinose-inducible gene transcription with an undetectable basal expression level of cloned genes under uninduced conditions and a high dynamic range of responsiveness to the inducer. Both pVRL1 and pVRL2 can easily be selected in MDR A. baumannii, have a narrow host range and a high copy number, are stably maintained in Acinetobacter spp., and appear to be compatible with indigenous plasmids carried by epidemic strains. Plasmid maintenance is guaranteed by the presence of a toxin-antitoxin system, providing more insights into the mechanism of plasmid stability in Acinetobacter spp.


Subject(s)
Acinetobacter/genetics , Genetic Vectors/genetics , Acinetobacter/drug effects , Anti-Bacterial Agents/pharmacology , Bleomycin/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Gentamicins/pharmacology , Plasmids/genetics
20.
Article in English | MEDLINE | ID: mdl-30201815

ABSTRACT

The long-term use of antibiotics has led to the emergence of multidrug-resistant bacteria. A promising strategy to combat bacterial infections aims at hampering their adaptability to the host environment without affecting growth. In this context, the intercellular communication system quorum sensing (QS), which controls virulence factor production and biofilm formation in diverse human pathogens, is considered an ideal target. Here, we describe the identification of new inhibitors of the pqs QS system of the human pathogen Pseudomonas aeruginosa by screening a library of 1,600 U.S. Food and Drug Administration-approved drugs. Phenotypic characterization of ad hoc engineered strains and in silico molecular docking demonstrated that the antifungal drugs clotrimazole and miconazole, as well as an antibacterial compound active against Gram-positive pathogens, clofoctol, inhibit the pqs system, probably by targeting the transcriptional regulator PqsR. The most active inhibitor, clofoctol, specifically inhibited the expression of pqs-controlled virulence traits in P. aeruginosa, such as pyocyanin production, swarming motility, biofilm formation, and expression of genes involved in siderophore production. Moreover, clofoctol protected Galleria mellonella larvae from P. aeruginosa infection and inhibited the pqs QS system in P. aeruginosa isolates from cystic fibrosis patients. Notably, clofoctol is already approved for clinical treatment of pulmonary infections caused by Gram-positive bacterial pathogens; hence, this drug has considerable clinical potential as an antivirulence agent for the treatment of P. aeruginosa lung infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Quorum Sensing/drug effects , Virulence Factors/antagonists & inhibitors , Virulence/drug effects , Bacterial Proteins/genetics , Biofilms/drug effects , Humans , Molecular Docking Simulation , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/genetics , United States , United States Food and Drug Administration
SELECTION OF CITATIONS
SEARCH DETAIL