Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters

Publication year range
1.
Phys Rev E ; 107(1-1): 014133, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36797890

ABSTRACT

Monte Carlo simulations and finite-size scaling theory have been carried out to study the critical behavior and universality for the isotropic-nematic (IN) phase transition in a system of straight rigid pentamers adsorbed on a triangular lattice with polarized nonhomogeneous intermolecular interactions. The model was inspired by the deposition of 2-thiophene molecules over the Au(111) surface, which was previously characterized by experimental techniques and density functional theory. A nematic phase, observed experimentally by the formation of a self-assembled monolayer of parallel molecules, is separated from the isotropic state by a continuous transition occurring at a finite density. The precise determination of the critical exponents indicates that the transition belongs to the three-state Potts universality class. The finite-size scaling analysis includes the study of mutability and diversity. These two quantities are derived from information theory and they have not previously been considered as part of the conventional treatment of critical phenomena for the determination of critical exponents. The results obtained here contribute to the understanding of formation processes of self-assembled monolayers, phase transitions, and critical phenomena from novel compression algorithms for studying mutual information in sequences of data.

2.
Phys Rev E ; 107(6-1): 064126, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37464669

ABSTRACT

Combining Monte Carlo simulations and thermodynamic integration method, we study the configurational entropy per site of straight rigid rods of length k (k-mers) adsorbed on three-dimensional (3D) simple cubic lattices. The process is monitored by following the dependence of the lattice coverage θ on the chemical potential µ (adsorption isotherm). Then, we perform the integration of µ(θ) over θ to calculate the configurational entropy per site of the adsorbed phase s(k,θ) as a function of the coverage. Based on the behavior of the function s(k,θ), different phase diagrams are obtained according to the k values: k≤4, disordered phase; k=5,6, disordered and layered-disordered phases; and k≥7, disordered, nematic and layered-disordered phases. In the limit of θ→1 (full coverage), the configurational entropy per site is determined for values of k ranging between 2 and 8. For k≥6, MC data coincide (within the statistical uncertainty) with recent analytical predictions [D. Dhar and R. Rajesh, Phys. Rev. E 103, 042130 (2021)2470-004510.1103/PhysRevE.103.042130] for very large rods. This finding represents the first numerical validation of the expression obtained by Dhar and Rajesh for d-dimensional lattices with d>2. In addition, for k≥5, the values of s(k,θ→1) for simple cubic lattices are coincident with those values reported in [P. M. Pasinetti et al., Phys. Rev. E 104, 054136 (2021)2470-004510.1103/PhysRevE.104.054136] for two-dimensional (2D) square lattices. This is consistent with the picture that at high densities and k≥5, the layered-disordered phase is formed on the lattice. Under these conditions, the system breaks to 2D layers, and the adsorbed phase becomes essentially 2D. The 2D behavior of the fully covered lattice reinforces the conjecture that the large-k behavior of entropy per site is superuniversal, and holds on d-dimensional hypercubical lattices for all d≥2.

3.
Phys Rev E ; 104(5-1): 054136, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34942833

ABSTRACT

Polymers are frequently deposited on different surfaces, which has attracted the attention of scientists from different viewpoints. In the present approach polymers are represented by rigid rods of length k (k-mers), and the substrate takes the form of an L×L square lattice whose lattice constant matches exactly the interspacing between consecutive elements of the k-mer chain. We briefly review the classical description of the nematic transition presented by this system for k≥7 observing that the high-coverage (θ) transition deserves a more careful analysis from the entropy point of view. We present a possible viewpoint for this analysis that justifies the phase transitions. Moreover, we perform Monte Carlo (MC) simulations in the grand canonical ensemble, supplemented by thermodynamic integration, to first calculate the configurational entropy of the adsorbed phase as a function of the coverage, and then to explore the different phases (and orientational transitions) that appear on the surface with increasing the density of adsorbed k-mers. In the limit of θ→1 (full coverage) the configurational entropy is obtained for values of k ranging between 2 and 10. MC data are discussed in comparison with recent analytical results [D. Dhar and R. Rajesh, Phys. Rev. E 103, 042130 (2021)2470-004510.1103/PhysRevE.103.042130]. The comparative study allows us to establish the applicability range of the theoretical predictions. Finally, the structure of the high-coverage phase is characterized in terms of the statistics of k×l domains (domains of l parallel k-mers adsorbed on the surface). A distribution of finite values of l (l≪L) is found with a predominance of k×1 (single k-mers) and k×k domains. The distribution is the same in each lattice direction, confirming that at high density the adsorbed phase goes to a state with mixed orientations and no orientational preference. An order parameter measuring the number of k×k domains in the adsorbed layer is introduced.

4.
Phys Rev E ; 101(2-1): 022104, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32168581

ABSTRACT

We revisit the problem of excluded volume deposition of rigid rods of length k unit cells over square lattices. Two new features are introduced: (a) two new short-distance complementary order parameters, called Π and Σ, are defined, calculated, and discussed to deal with the phases present as coverage increases; (b) the interpretation is now done beginning at the high-coverage ordered phase which allows us to interpret the low-coverage nematic phase as an ergodicity breakdown present only when k≥7. In addition the data analysis invokes both mutability (dynamical information theory method) and Shannon entropy (static distribution analysis) to further characterize the phases of the system. Moreover, mutability and Shannon entropy are compared, and we report the advantages and disadvantages they present for their use in this problem.

5.
Phys Rev E ; 102(1-1): 012106, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32795054

ABSTRACT

Irreversible multilayer adsorption of semirigid k-mers on one-dimensional lattices of size L is studied by numerical simulations complemented by exhaustive enumeration of configurations for small lattices. The deposition process is modeled by using a random sequential adsorption algorithm, generalized to the case of multilayer adsorption. The paper concentrates on measuring the jamming coverage for different values of k-mer size and number of layers n. The bilayer problem (n≤2) is exhaustively analyzed, and the resulting tendencies are validated by the exact enumeration techniques. Then, the study is extended to an increasing number of layers, which is one of the noteworthy parts of this work. The obtained results allow the following: (i) to characterize the structure of the adsorbed phase for the multilayer problem. As n increases, the (1+1)-dimensional adsorbed phase tends to be a "partial wall" consisting of "towers" (or columns) of width k, separated by valleys of empty sites. The length of these valleys diminishes with increasing k; (ii) to establish that this is an in-registry adsorption process, where each incoming k-mer is likely to be adsorbed exactly onto an already adsorbed one. With respect to percolation, our calculations show that the percolation probability vanishes as L increases, being zero in the limit L→∞. Finally, the value of the jamming critical exponent ν_{j} is reported here for multilayer adsorption: ν_{j} remains close to 2 regardless of the considered values of k and n. This finding is discussed in terms of the lattice dimensionality.

6.
Phys Rev E ; 99(4-1): 042131, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31108638

ABSTRACT

Percolation and jamming of k×k square tiles (k^{2}-mers) deposited on square lattices have been studied by numerical simulations complemented with finite-size scaling theory and exact enumeration of configurations for small systems. The k^{2}-mers were irreversibly deposited into square lattices of sizes L×L with L/k ranging between 128 and 448 (64 and 224) for jamming (percolation) calculations. Jamming coverage θ_{j,k} was determined for a wide range of k values (2≤k≤100 with many intermediate k values to allow a fine scaling analysis). θ_{j,k} exhibits a decreasing behavior with increasing k, being θ_{j,k=∞}=0.5623(3) the limit value for large k^{2}-mer sizes. In addition, a finite-size scaling analysis of the jamming transition was carried out, and the corresponding spatial correlation length critical exponent ν_{j} was measured, being ν_{j}≈1. On the other hand, the obtained results for the percolation threshold θ_{c,k} showed that θ_{c,k} is an increasing function of k in the range 1≤k≤3. For k≥4, all jammed configurations are nonpercolating states and, consequently, the percolation phase transition disappears. An explanation for this phenomenon is offered in terms of the rapid increase with k of the number of surrounding occupied sites needed to reach percolation, which gets larger than the sufficient number of occupied sites to define jamming. In the case of k=2 and 3, the percolation thresholds are θ_{c,k=2}(∞)=0.60355(8) and θ_{c,k=3}=0.63110(9). Our results significantly improve the previously reported values of θ_{c,k=2}^{Naka}=0.601(7) and θ_{c,k=3}^{Naka}=0.621(6) [Nakamura, Phys. Rev. A 36, 2384 (1987)0556-279110.1103/PhysRevA.36.2384]. In parallel, a comparison with previous results for jamming on these systems is also done. Finally, a complete analysis of critical exponents and universality has been done, showing that the percolation phase transition involved in the system has the same universality class as the ordinary random percolation, regardless of the size k considered.

7.
Phys Rev E ; 96(6-1): 062133, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29347362

ABSTRACT

The orientational phase transitions that occur in the deposition of longitudinal polymers of length k (in terms of lattice units) are characterized by information theory techniques. We calculate the absolute value of an order parameter δ, which weights the relative orientations of the deposited rods, which varies between 0.0 (random orientation) and 1.0 (fully oriented in either of the two equivalent directions in an L×L square lattice). A Monte Carlo (MC) algorithm is implemented to induce a dynamics allowing for accommodation of the rods for any given density or coverage θ (ratio of the occupied sites over all the sites in the lattice). The files storing δ(t) (with time t measured in MC steps) are then treated by data recognizer wlzip based on data compressor techniques yielding the information content measured by a parameter η(θ). This allows us to recognize two maxima separated by a well-defined minimum for η(θ) provided k≥7. The first maximum is associated with an isotropic-nematic (I-N) phase transition occurring at intermediate density, while the second maximum is associated with some kind of nematic-isotropic transition at high coverage. In the cases of k<7, the curves for η(θ) are almost constant, presenting a very broad maximum which can hardly be associated with a phase transition. The study varies L and k, allowing for a basic scaling of the found critical densities towards the thermodynamic limit. These calculations confirm the tendency obtained by different methods in the case of the intermediate-density I-N phase transition, while this tendency is established here in the case of the high-density phase transition.

8.
Phys Rev E ; 95(2-1): 022120, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28297993

ABSTRACT

The deposition of one-dimensional objects (such as polymers) on a one-dimensional lattice with the presence of impurities is studied in order to find saturation conditions in what is known as jamming. Over a critical concentration of k-mers (polymers of length k), no further depositions are possible. Five different nematic (directional) depositions are considered: baseline, irreversible, configurational, loose-packing, and close-packing. Correspondingly, five jamming functions are found, and their dependencies on the length of the lattice, L, the concentration of impurities, p=M/L (where M is the number of one-dimensional impurities), and the length of the k-mer (k) are established. In parallel, numeric simulations are performed to compare with the theoretical results. The emphasis is on trimers (k=3) and p in the range [0.01,0.15], however other related cases are also considered and reported.

9.
Article in English | MEDLINE | ID: mdl-26274146

ABSTRACT

Percolation of site trimers (k-mers with k=3) is investigated in a detailed way making use of an analytical model based on renormalization techniques in this problem. Results are compared to those obtained here by means of extensive computer simulations. Five different deposition possibilities for site trimers are included according to shape and orientation of the depositing objects. Analytical results for the percolation threshold p(c) are all close to 0.55, while numerical results show a slight dispersion around this value. A comparison with p(c) values previously reported for monomers and dimers establishes the tendency of p(c) to decrease as k increases. Critical exponent ν was also obtained both by analytical and numerical methods. Results for the latter give values very close to the expected value 4/3 showing that this percolation case corresponds to the universality class of random percolation.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 64(3 Pt 1): 032101, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11580369

ABSTRACT

Free energy for random energy model is obtained for different values of parameter q defined in nonextensive statistical mechanics. System is found either in paramagnetic or spin-glass phases depending on the value of q.

SELECTION OF CITATIONS
SEARCH DETAIL