Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 22(4)2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33670365

ABSTRACT

MicroRNAs (miRNAs) are attractive therapeutic targets and promising candidates as molecular biomarkers for various therapy-resistant tumors. However, the association between miRNAs and drug resistance in melanoma remains to be elucidated. We used an integrative genomic analysis to comprehensively study the miRNA expression profiles of drug-resistant melanoma patients and cell lines. MicroRNA-181a and -181b (miR181a/b) were identified as the most significantly down-regulated miRNAs in resistant melanoma patients and cell lines. Re-establishment of miR-181a/b expression reverses the resistance of melanoma cells to the BRAF inhibitor dabrafenib. Introduction of miR-181 mimics markedly decreases the expression of TFAM in A375 melanoma cells resistant to BRAF inhibitors. Furthermore, melanoma growth was inhibited in A375 and M14 resistant melanoma cells transfected with miR-181a/b mimics, while miR-181a/b depletion enhanced resistance in sensitive cell lines. Collectively, our study demonstrated that miR-181a/b could reverse the resistance to BRAF inhibitors in dabrafenib resistant melanoma cell lines. In addition, miR-181a and -181b are strongly down-regulated in tumor samples from patients before and after the development of resistance to targeted therapies. Finally, melanoma tissues with high miR-181a and -181b expression presented favorable outcomes in terms of Progression Free Survival, suggesting that miR-181 is a clinically relevant candidate for therapeutic development or biomarker-based therapy selection.


Subject(s)
DNA-Binding Proteins/biosynthesis , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Melanoma/metabolism , MicroRNAs/biosynthesis , Mitochondrial Proteins/biosynthesis , Neoplasm Proteins/biosynthesis , RNA, Neoplasm/biosynthesis , Transcription Factors/biosynthesis , Cell Line, Tumor , DNA-Binding Proteins/genetics , Female , Genomics , Humans , Male , Melanoma/genetics , Melanoma/pathology , MicroRNAs/genetics , Mitochondrial Proteins/genetics , Neoplasm Proteins/genetics , RNA, Neoplasm/genetics , Transcription Factors/genetics
2.
Cell Rep ; 41(6): 111601, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36351409

ABSTRACT

Melanoma is a deadly form of cancer characterized by remarkable therapy resistance. Analyzing the transcriptome of MAPK inhibitor sensitive- and resistant-melanoma, we discovered that APAF-1 is negatively regulated by MITF in resistant tumors. This study identifies the MITF/APAF-1 axis as a molecular driver of MAPK inhibitor resistance. A drug-repositioning screen identified quinacrine and methylbenzethonium as potent activators of apoptosis in a context that mimics drug resistance mediated by APAF-1 inactivation. The compounds showed anti-tumor activity in in vitro and in vivo models, linked to suppression of MITF function. Both drugs profoundly sensitize melanoma cells to MAPK inhibitors, regulating key signaling networks in melanoma, including the MITF/APAF-1 axis. Significant activity of the two compounds in inhibiting specific epigenetic modulators of MITF/APAF-1 expression, such as histone deacetylases, was observed. In summary, we demonstrate that targeting the MITF/APAF-1 axis may overcome resistance and could be exploited as a potential therapeutic approach to treat resistant melanoma.


Subject(s)
Melanoma , Salvage Therapy , Humans , Apoptosis , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Melanoma/pathology , Microphthalmia-Associated Transcription Factor/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL