Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Bioorg Med Chem ; 27(8): 1449-1455, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30528164

ABSTRACT

Extracellular adenosine 5'-triphosphate (ATP) triggers the P2X7 receptor (P2X7R) ionic channel to stimulate the release of the interleukin-IL-1ß cytokine into macrophages. The current study explored the reaction of six structurally diverse triazole derivatives on P2X7-mediated dye uptake into murine peritoneal macrophages. P2X7R activity determined by ATP-evoked fluorescent dye uptake. Triazole derivatives toxicity measured using dextran rhodamine exclusion based colorimetric assay. A740004 and BBG, both P2X7R antagonist, inhibited ATP-induced dye uptake. In contrast, the derivatives 5a, 5b, 5e, and 5f did not diminish P2X7R activity in concentrations until 100 µM. 5c and 5d analogs caused a potent inhibitory activity on P2X7-induced dye uptake. Dextran Rhodamine exclusion measurements after 24 h of continuous treatment with triazole derivatives indicated a moderated toxicity for all molecules. In conclusion, this study showed that a series of new hybrid 1,2,3-triazolic naphthoquinones reduces P2X7R-induced dye uptake into murine macrophages. In silico analysis indicates a good pharmacokinetic profile and molecular docking results of these analogs indicate the potential to bind into an allosteric site located into the P2X7R pore and juxtaposed with the ATP binding pocket. In this manner, the compounds 5c and 5d may be used as a scaffold for new P2X7R inhibitors with reduced toxicity, and good anti-inflammatory activity.


Subject(s)
Naphthoquinones/chemistry , Purinergic P2X Receptor Antagonists/chemistry , Receptors, Purinergic P2X7/metabolism , Triazoles/chemistry , Allosteric Site , Animals , Binding Sites , Caco-2 Cells , Cell Line , Coloring Agents/metabolism , Humans , Macrophages/cytology , Macrophages/metabolism , Mice , Microsomes, Liver/metabolism , Molecular Docking Simulation , Permeability/drug effects , Protein Structure, Tertiary , Purinergic P2X Receptor Antagonists/metabolism , Purinergic P2X Receptor Antagonists/pharmacology , Receptors, Purinergic P2X7/chemistry , Triazoles/metabolism , Triazoles/pharmacology
2.
Front Chem ; 7: 261, 2019.
Article in English | MEDLINE | ID: mdl-31134177

ABSTRACT

Twenty new 2-(1H-pyrazol-1-yl)-1,3,4-thiadiazole analogs were synthetized to develop P2X7 receptor (P2X7R) inhibitors. P2X7R inhibition in vitro was evaluated in mouse peritoneal macrophages, HEK-293 cells transfected with hP2X7R (dye uptake assay), and THP-1 cells (IL-1ß release assay). The 1-(5-phenyl-1,3,4-thiadiazol-2-yl)-1H-pyrazol-5-amine derivatives 9b, 9c, and 9f, and 2-(3,5-dimethyl-1H-pyrazol-1-yl)-5-(4-fluorophenyl)-1,3,4-thiadiazole (11c) showed inhibitory effects with IC50 values ranging from 16 to 122 nM for reduced P2X7R-mediated dye uptake and 20 to 300 nM for IL-1ß release. In addition, the in vitro ADMET profile of the four most potent derivatives was determined to be in acceptable ranges concerning metabolic stability and cytotoxicity. Molecular docking and molecular dynamics simulation studies of the molecular complexes human P2X7R/9f and murine P2X7R/9f indicated the putative intermolecular interactions. Compound 9f showed affinity mainly for the Arg268, Lys377, and Asn266 residues. These results suggest that 2-(1H-pyrazol-1-yl)-1,3,4-thiadiazole analogs may be promising novel P2X7R inhibitors with therapeutic potential.

3.
Eur J Med Chem ; 143: 1361-1372, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29133043

ABSTRACT

P2X7 receptor (P2X7R) is an ATP-gated ion-channel with potential therapeutic applications. In this study, we prepared and searched a series of 1,4-naphthoquinones derivatives to evaluate their antagonistic effect on both human and murine P2X7 receptors. We explored the structure-activity relationship and binding mode of the most active compounds using a molecular modeling approach. Biological analysis of this series (eight analogues and two compounds) revealed significant in vitro inhibition against both human and murine P2X7R. Further characterization revealed that AN-03 and AN-04 had greater potency than BBG and A740003 in inhibiting dye uptake, IL-1ß release, and carrageenan-induced paw edema in vivo. Moreover, we used electrophysiology and molecular docking analysis for characterizing AN-03 and AN-04 action mechanism. These results suggest 1,4-napthoquinones, mainly AN-04, as potential leads to design new P2X7R blockers and anti-inflammatory drugs.


Subject(s)
Naphthoquinones/pharmacology , Purinergic P2X Receptor Antagonists/pharmacology , Receptors, Purinergic P2X7/metabolism , Animals , Drug Design , HEK293 Cells , Humans , Mice , Molecular Docking Simulation , Naphthoquinones/chemistry , Naphthoquinones/metabolism , Protein Conformation , Purinergic P2X Receptor Antagonists/chemistry , Purinergic P2X Receptor Antagonists/metabolism , Receptors, Purinergic P2X7/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL