Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
BMC Plant Biol ; 24(1): 537, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867157

ABSTRACT

BACKGROUND: Avena fatua and A. sterilis are challenging to distinguish due to their strong similarities. However, Artificial Neural Networks (ANN) can effectively extract patterns and identify these species. We measured seed traits of Avena species from 122 locations across the Balkans and from some populations from southern, western, and central Europe (total over 22 000 seeds). The inputs for the ANN model included seed mass, size, color, hairiness, and placement of the awn attachment on the lemma. RESULTS: The ANN model achieved high classification accuracy for A. fatua and A. sterilis (R2 > 0.99, RASE < 0.0003) with no misclassification. Incorporating geographic coordinates as inputs also resulted in successful classification (R2 > 0.99, RASE < 0.000001) with no misclassification. This highlights the significant influence of geographic coordinates on the occurrence of Avena species. The models revealed hidden relationships between morphological traits that are not easily detectable through traditional statistical methods. For example, seed color can be partially predicted by other seed traits combined with geographic coordinates. When comparing the two species, A. fatua predominantly had the lemma attachment point in the upper half, while A. sterilis had it in the lower half. A. sterilis exhibited slightly longer seeds and hairs than A. fatua, while seed hairiness and mass were similar in both species. A. fatua populations primarily had brown, light brown, and black colors, while A. sterilis populations had black, brown, and yellow colors. CONCLUSIONS: Distinguishing A. fatua from A. sterilis based solely on individual characteristics is challenging due to their shared traits and considerable variability of traits within each species. However, it is possible to classify these species by combining multiple seed traits. This approach also has significant potential for exploring relationships among different traits that are typically difficult to assess using conventional methods.


Subject(s)
Neural Networks, Computer , Seeds , Seeds/anatomy & histology , Avena/genetics , Avena/anatomy & histology , Balkan Peninsula , Europe
2.
Chem Biodivers ; 20(7): e202300270, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37183783

ABSTRACT

This study focused on characterizing chemically and evaluating in vitro allelopathic and bioherbicidal potential of secondary metabolites extracted from the stem of Cuscuta campestris in seed germination, early seedling growth and early plant growth of Amaranthus retroflexus and Portulaca oleracea. The combined effects of stem extract and a reduced dose of herbicide metribuzin were also examined. Plant extract contained 17 phenolic compounds and the most abundant phenols were flavonoids: quercetin, (+)-catechin, daidzin, luteolin, and rutin. The seeds of P. oleracea were less sensitive than the seeds of A. retroflexus. The seed bioassay confirmed the inhibitory effect of stem extract on germination and early growth of both weed seedlings at concentrations of 0.75 % and 1 %, and a minor inhibitory effect in the plant bioassay. On the other hand, a synergy of C. campestris stem extract and metribuzin was revealed, as their combination achieved better results in the control of both weed species. Based on obtained data C. campestris stem extract could be a potential source of natural-based weed control molecules.


Subject(s)
Amaranthus , Cuscuta , Portulaca , Cuscuta/chemistry , Seedlings , Plants , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry
3.
J Environ Sci Health B ; 58(5): 436-447, 2023.
Article in English | MEDLINE | ID: mdl-37291878

ABSTRACT

The aim of our study was to evaluate the use of Raman spectroscopy for pre-diagnostic estimation of weed response to bleaching herbicides. Model plants were Chenopodium album and Abutilon theophrasti treated with mesotrione (120 g a.i. ha-1). Raman single-point measurements were taken 1, 2, 3, and 7 days after herbicide application from different points on the leaves. Principal component analysis (PCA) was carried out on data normalized by the highest intensity band at 1522 cm-1 and using spectral region from 950 to 1650 cm-1 comprising mainly contributions of carotenoids. The carotenoids by intensive band at ∼1522 cm-1 and bands with lower intensity at ∼1155 and 1007 cm-1 in treated plants were confirmed. According to PC1 (the first principal component) and PC2 (the second principal component), the highest intensity bands responsible for treatment differentiation in C. album could be assigned to chlorophyll, lignin, and carotenes. According to PC1 in A. theophrasti leaves the treatment differences could be observed 7 days after mesotrione treatment and PC2 gave a clear separation between all control and treated leaf samples. Raman spectroscopy may be a good complement to invasive analytical methods, in assessing the plant abiotic stress induced by bleaching herbicides.


Subject(s)
Herbicides , Herbicides/toxicity , Spectrum Analysis, Raman , Cyclohexanones/pharmacology , Carotenoids , Weed Control
4.
J Environ Sci Health B ; 54(7): 615-621, 2019.
Article in English | MEDLINE | ID: mdl-31116075

ABSTRACT

The application of minimal doses of herbicides is very popular due to concerns about the negative impacts of herbicides on the environment and public health. Studies were conducted to estimate the possibility of using quick and non- destructive methods to investigate Chenopodium album L. and Abutilon theophrasti Medik. response to mesotrione. The studies were conducted in a controlled environment to determine the response of C. album and A. theophrasti to mesotrione using dose-response curves created based on plant dry weight, chlorophyll fluorescence parameters and chlorophyll content. The obtained effective dose values showed that the studied weeds were susceptible to reduced doses of mesotrione. ED95 values estimated for both species for dry weight and chlorophyll fluorescence parameters were lower than the recommended dose rate (120 g a.i. ha-1), with less than 85 g a.i. ha-1 needed to achieve a reduction of 95%, compared with untreated plants, while ED95 value (A. theophrasti: 182 g a.i. ha-1 and C. album: 180 g a.i. ha-1) for chlorophyll content for both species was above the recommended dose rates. Consequently, dry weight and the chlorophyll fluorescence parameters are suitable for estimating the plant response to mesotrione, while chlorophyll content is not.


Subject(s)
Chenopodium album/drug effects , Cyclohexanones/pharmacology , Herbicides/pharmacology , Malvaceae/drug effects , Chenopodium album/metabolism , Chlorophyll/metabolism , Cyclohexanones/administration & dosage , Dose-Response Relationship, Drug , Herbicides/administration & dosage , Malvaceae/metabolism , Plant Weeds/drug effects
5.
Chem Biodivers ; 15(8): e1800174, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29874415

ABSTRACT

This work was conceptualized with the goal to investigate the phytochemical, free radical scavenging and antifungal profile of Cuscuta campestrisYunck. seeds. Total phenolics, amino acid and carbohydrate contents were evaluated in ethanolic, acetone and chloroform extract. Effective antioxidant activity was evaluated throughout seven antioxidant methods. The antifungal activity was assessed against eight fungal strains and Candida albicans. The results showed total phenol, flavonoid, flavonols and phenolic acids contents in amount of 1.51 - 6.35 mg GAE/mL, 78 - 425 µg RU/mL, 1.04 - 2.98 mg QU/g and 12.01 - 30.58 µg CAE/mL, respectively. The total amino acids and carbohydrates content ranged from 8.29 to 185.45 µg Gly/mL and from 0.05 to 0.12 µg Glu/mL. The ethanolic extract showed the best antioxidant activity in phosphomolybdenum, DPPH free radical scavenging, ferric reducing power and lipid peroxidation assays. The best activity in ferrous ion chelating and H2 O2 assays had the acetone extract, whereas the best hydroxyl radical scavenging activity was observed with the chloroform extract. The ethanolic extract at a concentration of 6 mg/mL proved to be the most effective antimycotic, since it inhibited the growth of all tested fungi except Penicillium verrucosum. The obtained results indicate that C. campestris seeds could be attributed to a potential source of natural antioxidants in food and pharmaceutical products.


Subject(s)
Antifungal Agents/pharmacology , Cuscuta/chemistry , Free Radical Scavengers/pharmacology , Phytochemicals/pharmacology , Seeds/chemistry , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Dose-Response Relationship, Drug , Free Radical Scavengers/chemistry , Free Radical Scavengers/isolation & purification , Fungi/drug effects , Microbial Sensitivity Tests , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Structure-Activity Relationship
6.
J Environ Sci Health B ; 52(11): 812-816, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-28857671

ABSTRACT

The effects of field dodder on physiological and anatomical processes in untreated sugar beet plants and the effects of propyzamide on field dodder were examined under controlled conditions. The experiment included the following variants: N-noninfested sugar beet plants (control); I - infested sugar beet plants (untreated), and infested plants treated with propyzamide (1500 g a.i. ha-1 (T1) and 2000 g a.i. ha-1(T2)). The following parameters were checked: physiological-pigment contents (chlorophyll a, chlorophyll b, total carotenoids); anatomical -leaf parameters: thickness of epidermis, parenchyma and spongy tissue, mesophyll and underside leaf epidermis, and diameter of bundle sheath cells; petiole parameters: diameter of tracheid, petiole hydraulic conductance, xylem surface, phloem cell diameter and phloem area in sugar beet plants. A conventional paraffin wax method was used to prepare the samples for microscopy. Pigment contents were measured spectrophotometrically after methanol extraction. All parameters were measured: prior to herbicide application (0 assessment), then 7, 14, 21, 28 and 35 days after application (DAA). Field dodder was found to affect the pigment contents in untreated sugar beet plants, causing significant reductions. Conversely, reduction in the treated plants decreased 27% to 4% for chlorophyll a, from 21% to 5% for chlorophyll b, and from 28% to 5% for carotenoids (T1). Also, in treatment T2, reduction decreased in infested and treated plants from 19% to 2% for chlorophyll a, from 21% to 2% for chlorophyll b, from 23% to 3% for carotenoids and stimulation of 1% and 2% was observed 28 and 35 DAA, respectively. Plants infested (untreated) by field dodder had lower values of most anatomical parameters, compared to noninfested plants. The measured anatomical parameters of sugar beet leaves and petiole had significantly higher values in noninfested plants and plants treated with propyzamide than in untreated plants. Also, the results showed that propyzamide is an adequate herbicide for control of field dodder at the stage of early infestation.


Subject(s)
Benzamides/pharmacology , Beta vulgaris/physiology , Beta vulgaris/parasitology , Cuscuta , Herbicides/pharmacology , Animals , Beta vulgaris/anatomy & histology , Beta vulgaris/drug effects , Chlorophyll/analogs & derivatives , Chlorophyll/metabolism , Chlorophyll A , Photosynthesis , Plant Leaves/metabolism
7.
Pest Manag Sci ; 64(2): 101-7, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18022828

ABSTRACT

BACKGROUND: A Chenopodium album L. biotype surviving in atrazine-treated Serbian corn fields (VC) was compared against atrazine-susceptible (S) and atrazine-resistant (R) standards. RESULTS: Atrazine (2 kg ha(-1)) killed S and VC shoot biomass 15 days after treatment (DAT), but R was only suppressed by 42% and survived 8 kg ha(-1). Atrazine at 2 kg ha(-1) only inhibited VC height by 60% as against 100 and 0% for S and R respectively. Chlorophyll fluorescence (Fv/Fm) and transpiration were insensitive to atrazine in R, but were inhibited by 90 and 100% in S and by 50 and 60% in VC respectively. Decline of Fv/Fm after 2 kg ha(-1) atrazine was stabilized at 3 DAT for the VC biotype. CONCLUSION: A toxicity mitigation mechanism could have facilitated VC survival in an atrazine-treated field. Further knowledge on this mechanism is needed to establish if surviving VC plants are indicators of atrazine resistance evolution in these Serbian corn fields. Variables related to foliar function provided better detection of weed mechanisms to survive herbicide action than the usual shoot biomass measurements.


Subject(s)
Atrazine/pharmacology , Chenopodium album/drug effects , Chenopodium album/physiology , Herbicide Resistance/physiology , Herbicides/pharmacology , Dose-Response Relationship, Drug , Plant Shoots/drug effects , Plant Shoots/growth & development , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL