Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters

Publication year range
1.
Nature ; 624(7992): 593-601, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38093005

ABSTRACT

The Indigenous peoples of Australia have a rich linguistic and cultural history. How this relates to genetic diversity remains largely unknown because of their limited engagement with genomic studies. Here we analyse the genomes of 159 individuals from four remote Indigenous communities, including people who speak a language (Tiwi) not from the most widespread family (Pama-Nyungan). This large collection of Indigenous Australian genomes was made possible by careful community engagement and consultation. We observe exceptionally strong population structure across Australia, driven by divergence times between communities of 26,000-35,000 years ago and long-term low but stable effective population sizes. This demographic history, including early divergence from Papua New Guinean (47,000 years ago) and Eurasian groups1, has generated the highest proportion of previously undescribed genetic variation seen outside Africa and the most extended homozygosity compared with global samples. A substantial proportion of this variation is not observed in global reference panels or clinical datasets, and variation with predicted functional consequence is more likely to be homozygous than in other populations, with consequent implications for medical genomics2. Our results show that Indigenous Australians are not a single homogeneous genetic group and their genetic relationship with the peoples of New Guinea is not uniform. These patterns imply that the full breadth of Indigenous Australian genetic diversity remains uncharacterized, potentially limiting genomic medicine and equitable healthcare for Indigenous Australians.


Subject(s)
Australian Aboriginal and Torres Strait Islander Peoples , Genome, Human , Genomic Structural Variation , Humans , Australia/ethnology , Australian Aboriginal and Torres Strait Islander Peoples/genetics , Australian Aboriginal and Torres Strait Islander Peoples/history , Datasets as Topic , Genetics, Medical , Genome, Human/genetics , Genomic Structural Variation/genetics , Genomics , History, Ancient , Homozygote , Language , New Guinea/ethnology , Population Density , Population Dynamics
2.
Nature ; 562(7726): 203-209, 2018 10.
Article in English | MEDLINE | ID: mdl-30305743

ABSTRACT

The UK Biobank project is a prospective cohort study with deep genetic and phenotypic data collected on approximately 500,000 individuals from across the United Kingdom, aged between 40 and 69 at recruitment. The open resource is unique in its size and scope. A rich variety of phenotypic and health-related information is available on each participant, including biological measurements, lifestyle indicators, biomarkers in blood and urine, and imaging of the body and brain. Follow-up information is provided by linking health and medical records. Genome-wide genotype data have been collected on all participants, providing many opportunities for the discovery of new genetic associations and the genetic bases of complex traits. Here we describe the centralized analysis of the genetic data, including genotype quality, properties of population structure and relatedness of the genetic data, and efficient phasing and genotype imputation that increases the number of testable variants to around 96 million. Classical allelic variation at 11 human leukocyte antigen genes was imputed, resulting in the recovery of signals with known associations between human leukocyte antigen alleles and many diseases.


Subject(s)
Databases, Factual , Genomics , Phenotype , Adult , Aged , Alleles , Biomarkers/blood , Biomarkers/urine , Body Height/genetics , Brain/diagnostic imaging , Cohort Studies , Databases, Genetic , Electronic Health Records , Family , Female , Genome-Wide Association Study , Haplotypes/genetics , Humans , Life Style , Major Histocompatibility Complex/genetics , Male , Middle Aged , Quality Control , Racial Groups/genetics , United Kingdom
3.
PLoS Comput Biol ; 18(2): e1009059, 2022 02.
Article in English | MEDLINE | ID: mdl-35192601

ABSTRACT

Highly polymorphic interaction of KIR3DL1 and KIR3DS1 with HLA class I ligands modulates the effector functions of natural killer (NK) cells and some T cells. This genetically determined diversity affects severity of infections, immune-mediated diseases, and some cancers, and impacts the course of immunotherapies, including transplantation. KIR3DL1 is an inhibitory receptor, and KIR3DS1 is an activating receptor encoded by the KIR3DL1/S1 gene that has more than 200 diverse and divergent alleles. Determination of KIR3DL1/S1 genotypes for medical application is hampered by complex sequence and structural variation, requiring targeted approaches to generate and analyze high-resolution allele data. To overcome these obstacles, we developed and optimized a model for imputing KIR3DL1/S1 alleles at high-resolution from whole-genome SNP data. We designed the model to represent a substantial component of human genetic diversity. Our Global imputation model is effective at genotyping KIR3DL1/S1 alleles with an accuracy ranging from 88% in Africans to 97% in East Asians, with mean specificity of 99% and sensitivity of 95% for alleles >1% frequency. We used the established algorithm of the HIBAG program, in a modification named Pulling Out Natural killer cell Genomics (PONG). Because HIBAG was designed to impute HLA alleles also from whole-genome SNP data, PONG allows combinatorial diversity of KIR3DL1/S1 with HLA-A and -B to be analyzed using complementary techniques on a single data source. The use of PONG thus negates the need for targeted sequencing data in very large-scale association studies where such methods might not be tractable.


Subject(s)
Receptors, KIR3DL1 , Receptors, KIR3DS1 , Alleles , Genotype , HLA-B Antigens/genetics , Humans , Receptors, KIR/genetics , Receptors, KIR3DL1/genetics , Receptors, KIR3DS1/genetics
4.
PLoS Genet ; 16(8): e1008906, 2020 08.
Article in English | MEDLINE | ID: mdl-32804949

ABSTRACT

The killer immunoglobulin-like receptors (KIRs), found predominantly on the surface of natural killer (NK) cells and some T-cells, are a collection of highly polymorphic activating and inhibitory receptors with variable specificity for class I human leukocyte antigen (HLA) ligands. Fifteen KIR genes are inherited in haplotypes of diverse gene content across the human population, and the repertoire of independently inherited KIR and HLA alleles is known to alter risk for immune-mediated and infectious disease by shifting the threshold of lymphocyte activation. We have conducted the largest disease-association study of KIR-HLA epistasis to date, enabled by the imputation of KIR gene and HLA allele dosages from genotype data for 12,214 healthy controls and 8,107 individuals with the HLA-B*27-associated immune-mediated arthritis, ankylosing spondylitis (AS). We identified epistatic interactions between KIR genes and their ligands (at both HLA subtype and allele resolution) that increase risk of disease, replicating analyses in a semi-independent cohort of 3,497 cases and 14,844 controls. We further confirmed that the strong AS-association with a pathogenic variant in the endoplasmic reticulum aminopeptidase gene ERAP1, known to alter the HLA-B*27 presented peptidome, is not modified by carriage of the canonical HLA-B receptor KIR3DL1/S1. Overall, our data suggests that AS risk is modified by the complement of KIRs and HLA ligands inherited, beyond the influence of HLA-B*27 alone, which collectively alter the proinflammatory capacity of KIR-expressing lymphocytes to contribute to disease immunopathogenesis.


Subject(s)
Epistasis, Genetic , HLA Antigens/genetics , Receptors, KIR/genetics , Spondylitis, Ankylosing/genetics , Alleles , Aminopeptidases/genetics , Humans , Minor Histocompatibility Antigens/genetics , Polymorphism, Single Nucleotide
5.
Am J Hum Genet ; 102(5): 845-857, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29706347

ABSTRACT

Loss of expression of ACTN3, due to homozygosity of the common null polymorphism (p.Arg577X), is underrepresented in elite sprint/power athletes and has been associated with reduced muscle mass and strength in humans and mice. To investigate ACTN3 gene dosage in performance and whether expression could enhance muscle force, we performed meta-analysis and expression studies. Our general meta-analysis using a Bayesian random effects model in elite sprint/power athlete cohorts demonstrated a consistent homozygous-group effect across studies (per allele OR = 1.4, 95% CI 1.3-1.6) but substantial heterogeneity in heterozygotes. In mouse muscle, rAAV-mediated gene transfer overexpressed and rescued α-actinin-3 expression. Contrary to expectation, in vivo "doping" of ACTN3 at low to moderate doses demonstrated an absence of any change in function. At high doses, ACTN3 is toxic and detrimental to force generation, to demonstrate gene doping with supposedly performance-enhancing isoforms of sarcomeric proteins can be detrimental for muscle function. Restoration of α-actinin-3 did not enhance muscle mass but highlighted the primary role of α-actinin-3 in modulating muscle metabolism with altered fatiguability. This is the first study to express a Z-disk protein in healthy skeletal muscle and measure the in vivo effect. The sensitive balance of the sarcomeric proteins and muscle function has relevant implications in areas of gene doping in performance and therapy for neuromuscular disease.


Subject(s)
Actinin/genetics , Muscle, Skeletal/physiology , Anaerobiosis , Animals , Animals, Newborn , Athletes , Calcineurin/metabolism , Dependovirus/metabolism , Down-Regulation/genetics , Genome-Wide Association Study , Heterozygote , Homozygote , Humans , Mice, Inbred C57BL , Muscle Fatigue , Muscle Fibers, Skeletal/metabolism , Organ Size , Oxidation-Reduction
6.
Am J Hum Genet ; 98(6): 1092-1100, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27236921

ABSTRACT

Bacteremia (bacterial bloodstream infection) is a major cause of illness and death in sub-Saharan Africa but little is known about the role of human genetics in susceptibility. We conducted a genome-wide association study of bacteremia susceptibility in more than 5,000 Kenyan children as part of the Wellcome Trust Case Control Consortium 2 (WTCCC2). Both the blood-culture-proven bacteremia case subjects and healthy infants as controls were recruited from Kilifi, on the east coast of Kenya. Streptococcus pneumoniae is the most common cause of bacteremia in Kilifi and was thus the focus of this study. We identified an association between polymorphisms in a long intergenic non-coding RNA (lincRNA) gene (AC011288.2) and pneumococcal bacteremia and replicated the results in the same population (p combined = 1.69 × 10(-9); OR = 2.47, 95% CI = 1.84-3.31). The susceptibility allele is African specific, derived rather than ancestral, and occurs at low frequency (2.7% in control subjects and 6.4% in case subjects). Our further studies showed AC011288.2 expression only in neutrophils, a cell type that is known to play a major role in pneumococcal clearance. Identification of this novel association will further focus research on the role of lincRNAs in human infectious disease.


Subject(s)
Bacteremia/genetics , Pneumonia, Pneumococcal/genetics , Polymorphism, Genetic/genetics , RNA, Long Noncoding/genetics , Streptococcus pneumoniae/genetics , Adolescent , Bacteremia/microbiology , Bacteremia/pathology , Case-Control Studies , Child , Child, Preschool , Genome-Wide Association Study , Humans , Infant , Infant, Newborn , Kenya/epidemiology , Pneumonia, Pneumococcal/microbiology , Pneumonia, Pneumococcal/pathology , Risk Factors
7.
Am J Hum Genet ; 97(4): 593-607, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26430804

ABSTRACT

Large population studies of immune system genes are essential for characterizing their role in diseases, including autoimmune conditions. Of key interest are a group of genes encoding the killer cell immunoglobulin-like receptors (KIRs), which have known and hypothesized roles in autoimmune diseases, resistance to viruses, reproductive conditions, and cancer. These genes are highly polymorphic, which makes typing expensive and time consuming. Consequently, despite their importance, KIRs have been little studied in large cohorts. Statistical imputation methods developed for other complex loci (e.g., human leukocyte antigen [HLA]) on the basis of SNP data provide an inexpensive high-throughput alternative to direct laboratory typing of these loci and have enabled important findings and insights for many diseases. We present KIR∗IMP, a method for imputation of KIR copy number. We show that KIR∗IMP is highly accurate and thus allows the study of KIRs in large cohorts and enables detailed investigation of the role of KIRs in human disease.


Subject(s)
Asthma/genetics , DNA Copy Number Variations/genetics , Dermatitis, Atopic/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide/genetics , Receptors, KIR/classification , Receptors, KIR/genetics , Case-Control Studies , Cohort Studies , Europe , Family , Female , Genotype , High-Throughput Nucleotide Sequencing , Humans , Male , Sequence Analysis, DNA
8.
Stat Med ; 37(12): 2016-2033, 2018 05 30.
Article in English | MEDLINE | ID: mdl-29582453

ABSTRACT

Paediatric respiratory researchers have widely adopted the multiple-breath washout (MBW) test because it allows assessment of lung function in unsedated infants and is well suited to longitudinal studies of lung development and disease. However, a substantial proportion of MBW tests in infants fail current acceptability criteria. We hypothesised that a model-based approach to analysing the data, in place of traditional simple empirical summaries, would enable more efficient use of these tests. We therefore developed a novel statistical model for infant MBW data and applied it to 1197 tests from 432 individuals from a large birth cohort study. We focus on Bayesian estimation of the lung clearance index, the most commonly used summary of lung function from MBW tests. Our results show that the model provides an excellent fit to the data and shed further light on statistical properties of the standard empirical approach. Furthermore, the modelling approach enables the lung clearance index to be estimated by using tests with different degrees of completeness, something not possible with the standard approach. Our model therefore allows previously unused data to be used rather than discarded, as well as routine use of shorter tests without significant loss of precision. Beyond our specific application, our work illustrates a number of important aspects of Bayesian modelling in practice, such as the importance of hierarchical specifications to account for repeated measurements and the value of model checking via posterior predictive distributions.


Subject(s)
Bayes Theorem , Respiratory Function Tests , Data Interpretation, Statistical , Humans , Infant , Models, Statistical , Respiration , Respiratory Function Tests/methods , Respiratory Function Tests/statistics & numerical data , Time Factors
9.
PLoS Genet ; 10(5): e1004383, 2014 May.
Article in English | MEDLINE | ID: mdl-24830394

ABSTRACT

Genetic association studies, in particular the genome-wide association study (GWAS) design, have provided a wealth of novel insights into the aetiology of a wide range of human diseases and traits, in particular cardiovascular diseases and lipid biomarkers. The next challenge consists of understanding the molecular basis of these associations. The integration of multiple association datasets, including gene expression datasets, can contribute to this goal. We have developed a novel statistical methodology to assess whether two association signals are consistent with a shared causal variant. An application is the integration of disease scans with expression quantitative trait locus (eQTL) studies, but any pair of GWAS datasets can be integrated in this framework. We demonstrate the value of the approach by re-analysing a gene expression dataset in 966 liver samples with a published meta-analysis of lipid traits including >100,000 individuals of European ancestry. Combining all lipid biomarkers, our re-analysis supported 26 out of 38 reported colocalisation results with eQTLs and identified 14 new colocalisation results, hence highlighting the value of a formal statistical test. In three cases of reported eQTL-lipid pairs (SYPL2, IFT172, TBKBP1) for which our analysis suggests that the eQTL pattern is not consistent with the lipid association, we identify alternative colocalisation results with SORT1, GCKR, and KPNB1, indicating that these genes are more likely to be causal in these genomic intervals. A key feature of the method is the ability to derive the output statistics from single SNP summary statistics, hence making it possible to perform systematic meta-analysis type comparisons across multiple GWAS datasets (implemented online at http://coloc.cs.ucl.ac.uk/coloc/). Our methodology provides information about candidate causal genes in associated intervals and has direct implications for the understanding of complex diseases as well as the design of drugs to target disease pathways.


Subject(s)
Bayes Theorem , Genome-Wide Association Study , Humans , Sample Size
10.
Nature ; 464(7289): 713-20, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20360734

ABSTRACT

Copy number variants (CNVs) account for a major proportion of human genetic polymorphism and have been predicted to have an important role in genetic susceptibility to common disease. To address this we undertook a large, direct genome-wide study of association between CNVs and eight common human diseases. Using a purpose-designed array we typed approximately 19,000 individuals into distinct copy-number classes at 3,432 polymorphic CNVs, including an estimated approximately 50% of all common CNVs larger than 500 base pairs. We identified several biological artefacts that lead to false-positive associations, including systematic CNV differences between DNAs derived from blood and cell lines. Association testing and follow-up replication analyses confirmed three loci where CNVs were associated with disease-IRGM for Crohn's disease, HLA for Crohn's disease, rheumatoid arthritis and type 1 diabetes, and TSPAN8 for type 2 diabetes-although in each case the locus had previously been identified in single nucleotide polymorphism (SNP)-based studies, reflecting our observation that most common CNVs that are well-typed on our array are well tagged by SNPs and so have been indirectly explored through SNP studies. We conclude that common CNVs that can be typed on existing platforms are unlikely to contribute greatly to the genetic basis of common human diseases.


Subject(s)
DNA Copy Number Variations/genetics , Disease , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Arthritis, Rheumatoid/genetics , Case-Control Studies , Crohn Disease/genetics , Diabetes Mellitus/genetics , Gene Frequency/genetics , Humans , Nucleic Acid Hybridization , Oligonucleotide Array Sequence Analysis , Pilot Projects , Polymorphism, Single Nucleotide/genetics , Quality Control
11.
PLoS Genet ; 7(3): e1001337, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21437273

ABSTRACT

Genome-wide association studies (GWAS) have identified hundreds of associated loci across many common diseases. Most risk variants identified by GWAS will merely be tags for as-yet-unknown causal variants. It is therefore possible that identification of the causal variant, by fine mapping, will identify alleles with larger effects on genetic risk than those currently estimated from GWAS replication studies. We show that under plausible assumptions, whilst the majority of the per-allele relative risks (RR) estimated from GWAS data will be close to the true risk at the causal variant, some could be considerable underestimates. For example, for an estimated RR in the range 1.2-1.3, there is approximately a 38% chance that it exceeds 1.4 and a 10% chance that it is over 2. We show how these probabilities can vary depending on the true effects associated with low-frequency variants and on the minor allele frequency (MAF) of the most associated SNP. We investigate the consequences of the underestimation of effect sizes for predictions of an individual's disease risk and interpret our results for the design of fine mapping experiments. Although these effects mean that the amount of heritability explained by known GWAS loci is expected to be larger than current projections, this increase is likely to explain a relatively small amount of the so-called "missing" heritability.


Subject(s)
Genome-Wide Association Study , Risk , Algorithms , Breast Neoplasms/genetics , Crohn Disease/genetics , Diabetes Mellitus, Type 2/genetics , Gene Frequency , Genetic Predisposition to Disease , Humans , Linkage Disequilibrium , Polymorphism, Single Nucleotide
12.
N Engl J Med ; 362(22): 2092-101, 2010 Jun 03.
Article in English | MEDLINE | ID: mdl-20484391

ABSTRACT

BACKGROUND: The interleukin-2-mediated immune response is critical for host defense against infectious pathogens. Cytokine-inducible SRC homology 2 (SH2) domain protein (CISH), a suppressor of cytokine signaling, controls interleukin-2 signaling. METHODS: Using a case-control design, we tested for an association between CISH polymorphisms and susceptibility to major infectious diseases (bacteremia, tuberculosis, and severe malaria) in blood samples from 8402 persons in Gambia, Hong Kong, Kenya, Malawi, and Vietnam. We had previously tested 20 other immune-related genes in one or more of these sample collections. RESULTS: We observed associations between variant alleles of multiple CISH polymorphisms and increased susceptibility to each infectious disease in each of the study populations. When all five single-nucleotide polymorphisms (SNPs) (at positions -639, -292, -163, +1320, and +3415 [all relative to CISH]) within the CISH-associated locus were considered together in a multiple-SNP score, we found an association between CISH genetic variants and susceptibility to bacteremia, malaria, and tuberculosis (P=3.8x10(-11) for all comparisons), with -292 accounting for most of the association signal (P=4.58x10(-7)). Peripheral-blood mononuclear cells obtained from adult subjects carrying the -292 variant, as compared with wild-type cells, showed a muted response to the stimulation of interleukin-2 production--that is, 25 to 40% less CISH expression. CONCLUSIONS: Variants of CISH are associated with susceptibility to diseases caused by diverse infectious pathogens, suggesting that negative regulators of cytokine signaling have a role in immunity against various infectious diseases. The overall risk of one of these infectious diseases was increased by at least 18% among persons carrying the variant CISH alleles.


Subject(s)
Bacteremia/genetics , Genetic Predisposition to Disease , Malaria/genetics , Polymorphism, Single Nucleotide , Suppressor of Cytokine Signaling Proteins/genetics , Tuberculosis/genetics , Adult , Case-Control Studies , Child , Gene Expression , Genotype , Humans , Interleukin-2/physiology , Linkage Disequilibrium , Odds Ratio , Risk , Suppressor of Cytokine Signaling Proteins/metabolism
13.
Bioinform Adv ; 3(1): vbad163, 2023.
Article in English | MEDLINE | ID: mdl-38033661

ABSTRACT

Summary: It is challenging to simulate realistic tracts of genetic ancestry on a scale suitable for simulation-based inference. We present an algorithm that enables this information to be extracted efficiently from tree sequences produced by simulations run with msprime and SLiM. Availability and implementation: A C-based implementation of the link-ancestors algorithm is in tskit (https://tskit.dev/tskit/docs/stable/). We also provide a user-friendly wrapper for link-ancestors in tspop, a Python-based utility package.

14.
Genet Epidemiol ; 35(4): 278-90, 2011 May.
Article in English | MEDLINE | ID: mdl-21416505

ABSTRACT

Most findings from genome-wide association studies (GWAS) are consistent with a simple disease model at a single nucleotide polymorphism, in which each additional copy of the risk allele increases risk by the same multiplicative factor, in contrast to dominance or interaction effects. As others have noted, departures from this multiplicative model are difficult to detect. Here, we seek to quantify this both analytically and empirically. We show that imperfect linkage disequilibrium (LD) between causal and marker loci distorts disease models, with the power to detect such departures dropping off very quickly: decaying as a function of r4, where r2 is the usual correlation between the causal and marker loci, in contrast to the well-known result that power to detect a multiplicative effect decays as a function of r2. We perform a simulation study with empirical patterns of LD to assess how this disease model distortion is likely to impact GWAS results. Among loci where association is detected, we observe that there is reasonable power to detect substantial deviations from the multiplicative model, such as for dominant and recessive models. Thus, it is worth explicitly testing for such deviations routinely.


Subject(s)
Genome-Wide Association Study , Models, Genetic , Polymorphism, Single Nucleotide , Alleles , Case-Control Studies , Computer Simulation , Genetic Markers , Genetic Predisposition to Disease , Humans , Linkage Disequilibrium
15.
Front Immunol ; 12: 684326, 2021.
Article in English | MEDLINE | ID: mdl-34177931

ABSTRACT

Killer cell immunoglobulin-like receptors (KIR) regulate immune responses in NK and CD8+ T cells via interaction with HLA ligands. KIR genes, including KIR2DS1, KIR3DL1, and KIR3DS1 have previously been implicated in psoriasis susceptibility. However, these previous studies were constrained to small sample sizes, in part due to the time and expense required for direct genotyping of KIR genes. Here, we implemented KIR*IMP to impute KIR copy number from single-nucleotide polymorphisms (SNPs) on chromosome 19 in the discovery cohort (n=11,912) from the PAGE consortium, University of California San Francisco, and the University of Dundee, and in a replication cohort (n=66,357) from Kaiser Permanente Northern California. Stratified multivariate logistic regression that accounted for patient ancestry and high-risk HLA alleles revealed that KIR2DL2 copy number was significantly associated with psoriasis in the discovery cohort (p ≤ 0.05). The KIR2DL2 copy number association was replicated in the Kaiser Permanente replication cohort. This is the first reported association of KIR2DL2 copy number with psoriasis and highlights the importance of KIR genetics in the pathogenesis of psoriasis.


Subject(s)
Alleles , DNA Copy Number Variations , Psoriasis/genetics , Receptors, KIR2DL2/genetics , Case-Control Studies , Europe , Genetic Predisposition to Disease , HLA-A Antigens , HLA-B Antigens , Humans , Logistic Models , North America , Polymorphism, Single Nucleotide
16.
Nat Commun ; 10(1): 5120, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31719529

ABSTRACT

Eosinophilic granulomatosis with polyangiitis (EGPA) is a rare inflammatory disease of unknown cause. 30% of patients have anti-neutrophil cytoplasmic antibodies (ANCA) specific for myeloperoxidase (MPO). Here, we describe a genome-wide association study in 676 EGPA cases and 6809 controls, that identifies 4 EGPA-associated loci through conventional case-control analysis, and 4 additional associations through a conditional false discovery rate approach. Many variants are also associated with asthma and six are associated with eosinophil count in the general population. Through Mendelian randomisation, we show that a primary tendency to eosinophilia contributes to EGPA susceptibility. Stratification by ANCA reveals that EGPA comprises two genetically and clinically distinct syndromes. MPO+ ANCA EGPA is an eosinophilic autoimmune disease sharing certain clinical features and an HLA-DQ association with MPO+ ANCA-associated vasculitis, while ANCA-negative EGPA may instead have a mucosal/barrier dysfunction origin. Four candidate genes are targets of therapies in development, supporting their exploration in EGPA.


Subject(s)
Antibodies, Antineutrophil Cytoplasmic/metabolism , Genetic Loci , Genetic Predisposition to Disease , Genome-Wide Association Study , Granulomatosis with Polyangiitis/genetics , Granulomatosis with Polyangiitis/immunology , Eosinophils/pathology , Genetic Association Studies , Humans , Mendelian Randomization Analysis
17.
Nat Genet ; 49(9): 1311-1318, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28759005

ABSTRACT

Genetic discovery from the multitude of phenotypes extractable from routine healthcare data can transform understanding of the human phenome and accelerate progress toward precision medicine. However, a critical question when analyzing high-dimensional and heterogeneous data is how best to interrogate increasingly specific subphenotypes while retaining statistical power to detect genetic associations. Here we develop and employ a new Bayesian analysis framework that exploits the hierarchical structure of diagnosis classifications to analyze genetic variants against UK Biobank disease phenotypes derived from self-reporting and hospital episode statistics. Our method displays a more than 20% increase in power to detect genetic effects over other approaches and identifies new associations between classical human leukocyte antigen (HLA) alleles and common immune-mediated diseases (IMDs). By applying the approach to genetic risk scores (GRSs), we show the extent of genetic sharing among IMDs and expose differences in disease perception or diagnosis with potential clinical implications.


Subject(s)
Bayes Theorem , Delivery of Health Care/statistics & numerical data , Genetic Association Studies/statistics & numerical data , Health Information Systems/statistics & numerical data , Adult , Aged , Alleles , Cluster Analysis , Delivery of Health Care/classification , Female , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/statistics & numerical data , HLA Antigens/genetics , Humans , International Classification of Diseases/classification , International Classification of Diseases/statistics & numerical data , Logistic Models , Male , Middle Aged , Polymorphism, Single Nucleotide , United Kingdom
18.
Physiol Rep ; 3(4)2015 Apr.
Article in English | MEDLINE | ID: mdl-25847916

ABSTRACT

There is substantial interest in studying lung function in infants, to better understand the early life origins of chronic lung diseases such as asthma. Multiple breath washout (MBW) is a technique for measuring lung function that has been adapted for use in infants. Respiratory sighs occur frequently in young infants during natural sleep, and in accordance with current MBW guidelines, result in exclusion of data from a substantial proportion of testing cycles. We assessed how sighs during MBW influenced the measurements obtained using data from 767 tests conducted on 246 infants (50% male; mean age 43 days) as part of a large cohort study. Sighs occurred in 119 (15%) tests. Sighs during the main part of the wash-in phase (before the last 5 breaths) were not associated with differences in standard MBW measurements compared with tests without sighs. In contrast, sighs that occurred during the washout were associated with a small but discernible increase in magnitude and variability. For example, the mean lung clearance index increased by 0.36 (95% CI: 0.11-0.62) and variance increased by a multiplicative factor of 2 (95% CI: 1.6-2.5). The results suggest it is reasonable to include MBW data from testing cycles where a sigh occurs during the wash-in phase, but not during washout, of MBW. By recovering data that would otherwise have been excluded, we estimate a boost of about 10% to the final number of acceptable tests and 6% to the number of individuals successfully tested.

19.
Biol Psychiatry ; 75(5): 386-97, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-23871474

ABSTRACT

BACKGROUND: Genome-wide association studies (GWAS) have identified several loci associated with schizophrenia and/or bipolar disorder. We performed a GWAS of psychosis as a broad syndrome rather than within specific diagnostic categories. METHODS: 1239 cases with schizophrenia, schizoaffective disorder, or psychotic bipolar disorder; 857 of their unaffected relatives, and 2739 healthy controls were genotyped with the Affymetrix 6.0 single nucleotide polymorphism (SNP) array. Analyses of 695,193 SNPs were conducted using UNPHASED, which combines information across families and unrelated individuals. We attempted to replicate signals found in 23 genomic regions using existing data on nonoverlapping samples from the Psychiatric GWAS Consortium and Schizophrenia-GENE-plus cohorts (10,352 schizophrenia patients and 24,474 controls). RESULTS: No individual SNP showed compelling evidence for association with psychosis in our data. However, we observed a trend for association with same risk alleles at loci previously associated with schizophrenia (one-sided p = .003). A polygenic score analysis found that the Psychiatric GWAS Consortium's panel of SNPs associated with schizophrenia significantly predicted disease status in our sample (p = 5 × 10(-14)) and explained approximately 2% of the phenotypic variance. CONCLUSIONS: Although narrowly defined phenotypes have their advantages, we believe new loci may also be discovered through meta-analysis across broad phenotypes. The novel statistical methodology we introduced to model effect size heterogeneity between studies should help future GWAS that combine association evidence from related phenotypes. Applying these approaches, we highlight three loci that warrant further investigation. We found that SNPs conveying risk for schizophrenia are also predictive of disease status in our data.


Subject(s)
Polymorphism, Single Nucleotide/genetics , Psychotic Disorders/genetics , Schizophrenia/genetics , Female , Genetic Association Studies , Genotype , Humans , Male , Phenotype , Principal Component Analysis
20.
Nat Commun ; 5: 4204, 2014 Jul 08.
Article in English | MEDLINE | ID: mdl-25003214

ABSTRACT

Dissecting how genetic and environmental influences impact on learning is helpful for maximizing numeracy and literacy. Here we show, using twin and genome-wide analysis, that there is a substantial genetic component to children's ability in reading and mathematics, and estimate that around one half of the observed correlation in these traits is due to shared genetic effects (so-called Generalist Genes). Thus, our results highlight the potential role of the learning environment in contributing to differences in a child's cognitive abilities at age twelve.


Subject(s)
Dyslexia/genetics , Genetics, Population , Mathematics , Quantitative Trait, Heritable , Reading , Twins/genetics , Child , Dyslexia/psychology , Female , Genome-Wide Association Study , Humans , Learning , Male , Polymorphism, Single Nucleotide , Twins/psychology , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL