Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
BMC Bioinformatics ; 22(1): 66, 2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33579190

ABSTRACT

BACKGROUND: Conformational transitions are implicated in the biological function of many proteins. Structural changes in proteins can be described approximately as the relative movement of rigid domains against each other. Despite previous efforts, there is a need to develop new domain segmentation algorithms that are capable of analysing the entire structure database efficiently and do not require the choice of protein-dependent tuning parameters such as the number of rigid domains. RESULTS: We develop a graph-based method for detecting rigid domains in proteins. Structural information from multiple conformational states is represented by a graph whose nodes correspond to amino acids. Graph clustering algorithms allow us to reduce the graph and run the Viterbi algorithm on the associated line graph to obtain a segmentation of the input structures into rigid domains. In contrast to many alternative methods, our approach does not require knowledge about the number of rigid domains. Moreover, we identified default values for the algorithmic parameters that are suitable for a large number of conformational ensembles. We test our algorithm on examples from the DynDom database and illustrate our method on various challenging systems whose structural transitions have been studied extensively. CONCLUSIONS: The results strongly suggest that our graph-based algorithm forms a novel framework to characterize structural transitions in proteins via detecting their rigid domains. The web server is available at http://azifi.tz.agrar.uni-goettingen.de/webservice/ .


Subject(s)
Algorithms , Chemistry Techniques, Analytical , Proteins , Chemistry Techniques, Analytical/methods , Cluster Analysis , Proteins/chemistry
2.
BMC Bioinformatics ; 16: 400, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26627005

ABSTRACT

BACKGROUND: Transcription factors (TFs) are important regulatory proteins that govern transcriptional regulation. Today, it is known that in higher organisms different TFs have to cooperate rather than acting individually in order to control complex genetic programs. The identification of these interactions is an important challenge for understanding the molecular mechanisms of regulating biological processes. In this study, we present a new method based on pointwise mutual information, PC-TraFF, which considers the genome as a document, the sequences as sentences, and TF binding sites (TFBSs) as words to identify interacting TFs in a set of sequences. RESULTS: To demonstrate the effectiveness of PC-TraFF, we performed a genome-wide analysis and a breast cancer-associated sequence set analysis for protein coding and miRNA genes. Our results show that in any of these sequence sets, PC-TraFF is able to identify important interacting TF pairs, for most of which we found support by previously published experimental results. Further, we made a pairwise comparison between PC-TraFF and three conventional methods. The outcome of this comparison study strongly suggests that all these methods focus on different important aspects of interaction between TFs and thus the pairwise overlap between any of them is only marginal. CONCLUSIONS: In this study, adopting the idea from the field of linguistics in the field of bioinformatics, we develop a new information theoretic method, PC-TraFF, for the identification of potentially collaborating transcription factors based on the idiosyncrasy of their binding site distributions on the genome. The results of our study show that PC-TraFF can succesfully identify known interacting TF pairs and thus its currently biologically uncorfirmed predictions could provide new hypotheses for further experimental validation. Additionally, the comparison of the results of PC-TraFF with the results of previous methods demonstrates that different methods with their specific scopes can perfectly supplement each other. Overall, our analyses indicate that PC-TraFF is a time-efficient method where its algorithm has a tractable computational time and memory consumption. The PC-TraFF server is freely accessible at http://pctraff.bioinf.med.uni-goettingen.de/.


Subject(s)
Algorithms , Breast Neoplasms/metabolism , Computational Biology/methods , Gene Expression Regulation, Neoplastic , Genome, Human , Transcription Factors/metabolism , Binding Sites , Breast Neoplasms/classification , Breast Neoplasms/genetics , Female , Humans , MicroRNAs/genetics , Promoter Regions, Genetic/genetics , Protein Binding
3.
Proteins ; 83(5): 844-52, 2015 May.
Article in English | MEDLINE | ID: mdl-25663045

ABSTRACT

Large efforts have been made in classifying residues as binding sites in proteins using machine learning methods. The prediction task can be translated into the computational challenge of assigning each residue the label binding site or non-binding site. Observational data comes from various possibly highly correlated sources. It includes the structure of the protein but not the structure of the complex. The model class of conditional random fields (CRFs) has previously successfully been used for protein binding site prediction. Here, a new CRF-approach is presented that models the dependencies of residues using a general graphical structure defined as a neighborhood graph and thus our model makes fewer independence assumptions on the labels than sequential labeling approaches. A novel node feature "change in free energy" is introduced into the model, which is then denoted by ΔF-CRF. Parameters are trained with an online large-margin algorithm. Using the standard feature class relative accessible surface area alone, the general graph-structure CRF already achieves higher prediction accuracy than the linear chain CRF of Li et al. ΔF-CRF performs significantly better on a large range of false positive rates than the support-vector-machine-based program PresCont of Zellner et al. on a homodimer set containing 128 chains. ΔF-CRF has a broader scope than PresCont since it is not constrained to protein subgroups and requires no multiple sequence alignment. The improvement is attributed to the advantageous combination of the novel node feature with the standard feature and to the adopted parameter training method.


Subject(s)
Software , Binding Sites , Computer Simulation , Models, Molecular , Protein Interaction Domains and Motifs , Proteins/chemistry , ROC Curve , Support Vector Machine , Thermodynamics
4.
BMC Bioinformatics ; 15: 96, 2014 Apr 03.
Article in English | MEDLINE | ID: mdl-24694117

ABSTRACT

BACKGROUND: The identification of functionally or structurally important non-conserved residue sites in protein MSAs is an important challenge for understanding the structural basis and molecular mechanism of protein functions. Despite the rich literature on compensatory mutations as well as sequence conservation analysis for the detection of those important residues, previous methods often rely on classical information-theoretic measures. However, these measures usually do not take into account dis/similarities of amino acids which are likely to be crucial for those residues. In this study, we present a new method, the Quantum Coupled Mutation Finder (QCMF) that incorporates significant dis/similar amino acid pair signals in the prediction of functionally or structurally important sites. RESULTS: The result of this study is twofold. First, using the essential sites of two human proteins, namely epidermal growth factor receptor (EGFR) and glucokinase (GCK), we tested the QCMF-method. The QCMF includes two metrics based on quantum Jensen-Shannon divergence to measure both sequence conservation and compensatory mutations. We found that the QCMF reaches an improved performance in identifying essential sites from MSAs of both proteins with a significantly higher Matthews correlation coefficient (MCC) value in comparison to previous methods. Second, using a data set of 153 proteins, we made a pairwise comparison between QCMF and three conventional methods. This comparison study strongly suggests that QCMF complements the conventional methods for the identification of correlated mutations in MSAs. CONCLUSIONS: QCMF utilizes the notion of entanglement, which is a major resource of quantum information, to model significant dissimilar and similar amino acid pair signals in the detection of functionally or structurally important sites. Our results suggest that on the one hand QCMF significantly outperforms the previous method, which mainly focuses on dissimilar amino acid signals, to detect essential sites in proteins. On the other hand, it is complementary to the existing methods for the identification of correlated mutations. The method of QCMF is computationally intensive. To ensure a feasible computation time of the QCMF's algorithm, we leveraged Compute Unified Device Architecture (CUDA).The QCMF server is freely accessible at http://qcmf.informatik.uni-goettingen.de/.


Subject(s)
Algorithms , Mutation , Proteins/chemistry , Proteins/genetics , Amino Acid Sequence , Amino Acids/chemistry , Conserved Sequence , ErbB Receptors/chemistry , ErbB Receptors/genetics , Glucokinase/chemistry , Glucokinase/genetics , Humans , Protein Conformation , Quantum Theory , Sequence Alignment
5.
BMC Bioinformatics ; 15: 277, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-25124108

ABSTRACT

BACKGROUND: The identification of protein-protein interaction sites is a computationally challenging task and important for understanding the biology of protein complexes. There is a rich literature in this field. A broad class of approaches assign to each candidate residue a real-valued score that measures how likely it is that the residue belongs to the interface. The prediction is obtained by thresholding this score.Some probabilistic models classify the residues on the basis of the posterior probabilities. In this paper, we introduce pairwise conditional random fields (pCRFs) in which edges are not restricted to the backbone as in the case of linear-chain CRFs utilized by Li et al. (2007). In fact, any 3D-neighborhood relation can be modeled. On grounds of a generalized Viterbi inference algorithm and a piecewise training process for pCRFs, we demonstrate how to utilize pCRFs to enhance a given residue-wise score-based protein-protein interface predictor on the surface of the protein under study. The features of the pCRF are solely based on the interface predictions scores of the predictor the performance of which shall be improved. RESULTS: We performed three sets of experiments with synthetic scores assigned to the surface residues of proteins taken from the data set PlaneDimers compiled by Zellner et al. (2011), from the list published by Keskin et al. (2004) and from the very recent data set due to Cukuroglu et al. (2014). That way we demonstrated that our pCRF-based enhancer is effective given the interface residue score distribution and the non-interface residue score are unimodal.Moreover, the pCRF-based enhancer is also successfully applicable, if the distributions are only unimodal over a certain sub-domain. The improvement is then restricted to that domain. Thus we were able to improve the prediction of the PresCont server devised by Zellner et al. (2011) on PlaneDimers. CONCLUSIONS: Our results strongly suggest that pCRFs form a methodological framework to improve residue-wise score-based protein-protein interface predictors given the scores are appropriately distributed. A prototypical implementation of our method is accessible at http://ppicrf.informatik.uni-goettingen.de/index.html.


Subject(s)
Computational Biology/methods , Models, Statistical , Proteins/chemistry , Proteins/metabolism , Algorithms , Binding Sites , Protein Binding , Software , Surface Properties
6.
BMC Bioinformatics ; 14: 77, 2013 Mar 04.
Article in English | MEDLINE | ID: mdl-23496949

ABSTRACT

BACKGROUND: All sequenced eukaryotic genomes have been shown to possess at least a few introns. This includes those unicellular organisms, which were previously suspected to be intron-less. Therefore, gene splicing must have been present at least in the last common ancestor of the eukaryotes. To explain the evolution of introns, basically two mutually exclusive concepts have been developed. The introns-early hypothesis says that already the very first protein-coding genes contained introns while the introns-late concept asserts that eukaryotic genes gained introns only after the emergence of the eukaryotic lineage. A very important aspect in this respect is the conservation of intron positions within homologous genes of different taxa. RESULTS: GenePainter is a standalone application for mapping gene structure information onto protein multiple sequence alignments. Based on the multiple sequence alignments the gene structures are aligned down to single nucleotides. GenePainter accounts for variable lengths in exons and introns, respects split codons at intron junctions and is able to handle sequencing and assembly errors, which are possible reasons for frame-shifts in exons and gaps in genome assemblies. Thus, even gene structures of considerably divergent proteins can properly be compared, as it is needed in phylogenetic analyses. Conserved intron positions can also be mapped to user-provided protein structures. For their visualization GenePainter provides scripts for the molecular graphics system PyMol. CONCLUSIONS: GenePainter is a tool to analyse gene structure conservation providing various visualization options. A stable version of GenePainter for all operating systems as well as documentation and example data are available at http://www.motorprotein.de/genepainter.html.


Subject(s)
Exons , Introns , Proteins/genetics , Sequence Alignment/methods , Software , Chromosome Mapping/methods , Computer Graphics , Eukaryota/genetics , Evolution, Molecular , Models, Molecular , Sequence Analysis, Protein
7.
BMC Bioinformatics ; 13: 225, 2012 Sep 11.
Article in English | MEDLINE | ID: mdl-22963049

ABSTRACT

BACKGROUND: The detection of significant compensatory mutation signals in multiple sequence alignments (MSAs) is often complicated by noise. A challenging problem in bioinformatics is remains the separation of significant signals between two or more non-conserved residue sites from the phylogenetic noise and unrelated pair signals. Determination of these non-conserved residue sites is as important as the recognition of strictly conserved positions for understanding of the structural basis of protein functions and identification of functionally important residue regions. In this study, we developed a new method, the Coupled Mutation Finder (CMF) quantifying the phylogenetic noise for the detection of compensatory mutations. RESULTS: To demonstrate the effectiveness of this method, we analyzed essential sites of two human proteins: epidermal growth factor receptor (EGFR) and glucokinase (GCK). Our results suggest that the CMF is able to separate significant compensatory mutation signals from the phylogenetic noise and unrelated pair signals. The vast majority of compensatory mutation sites found by the CMF are related to essential sites of both proteins and they are likely to affect protein stability or functionality. CONCLUSIONS: The CMF is a new method, which includes an MSA-specific statistical model based on multiple testing procedures that quantify the error made in terms of the false discovery rate and a novel entropy-based metric to upscale BLOSUM62 dissimilar compensatory mutations. Therefore, it is a helpful tool to predict and investigate compensatory mutation sites of structural or functional importance in proteins. We suggest that the CMF could be used as a novel automated function prediction tool that is required for a better understanding of the structural basis of proteins. The CMF server is freely accessible at http://cmf.bioinf.med.uni-goettingen.de.


Subject(s)
Computational Biology/methods , Mutation , Phylogeny , Proteins/classification , Proteins/genetics , Sequence Analysis, Protein/methods , Amino Acid Sequence , Entropy , ErbB Receptors/chemistry , ErbB Receptors/genetics , Glucokinase/chemistry , Glucokinase/genetics , Humans , Proteins/chemistry , Sequence Alignment
8.
Bioinformatics ; 27(6): 757-63, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21216780

ABSTRACT

MOTIVATION: As improved DNA sequencing techniques have increased enormously the speed of producing new eukaryotic genome assemblies, the further development of automated gene prediction methods continues to be essential. While the classification of proteins into families is a task heavily relying on correct gene predictions, it can at the same time provide a source of additional information for the prediction, complementary to those presently used. RESULTS: We extended the gene prediction software AUGUSTUS by a method that employs block profiles generated from multiple sequence alignments as a protein signature to improve the accuracy of the prediction. Equipped with profiles modelling human dynein heavy chain (DHC) proteins and other families, AUGUSTUS was run on the genomic sequences known to contain members of these families. Compared with AUGUSTUS' ab initio version, the rate of genes predicted with high accuracy showed a dramatic increase. AVAILABILITY: The AUGUSTUS project web page is located at http://augustus.gobics.de, with the executable program as well as the source code available for download.


Subject(s)
Electronic Data Processing/methods , Sequence Alignment , Sequence Analysis, Protein/methods , Software , Algorithms , Amino Acid Sequence , Animals , Computational Biology/methods , Dyneins/genetics , Exons , Humans , Models, Genetic , Multigene Family
9.
Sci Rep ; 12(1): 9625, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35688911

ABSTRACT

Heterologous protein expression is an important method for analysing cellular functions of proteins, in genetic circuit engineering and in overexpressing proteins for biopharmaceutical applications and structural biology research. The degeneracy of the genetic code, which enables a single protein to be encoded by a multitude of synonymous gene sequences, plays an important role in regulating protein expression, but substantial uncertainty exists concerning the details of this phenomenon. Here we analyse the influence of a profiled codon usage adaptation approach on protein expression levels in the eukaryotic model organism Saccharomyces cerevisiae. We selected green fluorescent protein (GFP) and human α-synuclein (αSyn) as representatives for stable and intrinsically disordered proteins and representing a benchmark and a challenging test case. A new approach was implemented to design typical genes resembling the codon usage of any subset of endogenous genes. Using this approach, synthetic genes for GFP and αSyn were generated, heterologously expressed and evaluated in yeast. We demonstrate that GFP is expressed at high levels, and that the toxic αSyn can be adapted to endogenous, low-level expression. The new software is publicly available as a web-application for performing host-specific protein adaptations to a set of the most commonly used model organisms ( https://odysseus.motorprotein.de ).


Subject(s)
Saccharomyces cerevisiae , Software , Codon/genetics , Gene Expression , Green Fluorescent Proteins/genetics , Humans , Saccharomyces cerevisiae/genetics
10.
Sci Rep ; 11(1): 12439, 2021 06 14.
Article in English | MEDLINE | ID: mdl-34127723

ABSTRACT

Coiled-coil regions were among the first protein motifs described structurally and theoretically. The simplicity of the motif promises that coiled-coil regions can be detected with reasonable accuracy and precision in any protein sequence. Here, we re-evaluated the most commonly used coiled-coil prediction tools with respect to the most comprehensive reference data set available, the entire Protein Data Bank, down to each amino acid and its secondary structure. Apart from the 30-fold difference in minimum and maximum number of coiled coils predicted the tools strongly vary in where they predict coiled-coil regions. Accordingly, there is a high number of false predictions and missed, true coiled-coil regions. The evaluation of the binary classification metrics in comparison with naïve coin-flip models and the calculation of the Matthews correlation coefficient, the most reliable performance metric for imbalanced data sets, suggests that the tested tools' performance is close to random. This implicates that the tools' predictions have only limited informative value. Coiled-coil predictions are often used to interpret biochemical data and are part of in-silico functional genome annotation. Our results indicate that these predictions should be treated very cautiously and need to be supported and validated by experimental evidence.


Subject(s)
Amino Acid Motifs , Models, Molecular , Protein Structure, Secondary , Amino Acid Sequence , Databases, Protein/statistics & numerical data , Software
11.
BMC Bioinformatics ; 9: 278, 2008 Jun 13.
Article in English | MEDLINE | ID: mdl-18554390

ABSTRACT

BACKGROUND: For many types of analyses, data about gene structure and locations of non-coding regions of genes are required. Although a vast amount of genomic sequence data is available, precise annotation of genes is lacking behind. Finding the corresponding gene of a given protein sequence by means of conventional tools is error prone, and cannot be completed without manual inspection, which is time consuming and requires considerable experience. RESULTS: Scipio is a tool based on the alignment program BLAT to determine the precise gene structure given a protein sequence and a genome sequence. It identifies intron-exon borders and splice sites and is able to cope with sequencing errors and genes spanning several contigs in genomes that have not yet been assembled to supercontigs or chromosomes. Instead of producing a set of hits with varying confidence, Scipio gives the user a coherent summary of locations on the genome that code for the query protein. The output contains information about discrepancies that may result from sequencing errors. Scipio has also successfully been used to find homologous genes in closely related species. Scipio was tested with 979 protein queries against 16 arthropod genomes (intra species search). For cross-species annotation, Scipio was used to annotate 40 genes from Homo sapiens in the primates Pongo pygmaeus abelii and Callithrix jacchus. The prediction quality of Scipio was tested in a comparative study against that of BLAT and the well established program Exonerate. CONCLUSION: Scipio is able to precisely map a protein query onto a genome. Even in cases when there are many sequencing errors, or when incomplete genome assemblies lead to hits that stretch across multiple target sequences, it very often provides the user with the correct determination of intron-exon borders and splice sites, showing an improved prediction accuracy compared to BLAT and Exonerate. Apart from being able to find genes in the genome that encode the query protein, Scipio can also be used to annotate genes in closely related species.


Subject(s)
Algorithms , Exons/genetics , Introns/genetics , Proteins/genetics , Sequence Analysis, DNA/methods , Software , Base Sequence , Molecular Sequence Data , Sequence Alignment/methods , Sequence Homology, Nucleic Acid , Species Specificity
12.
BMC Genomics ; 9: 422, 2008 Sep 18.
Article in English | MEDLINE | ID: mdl-18801164

ABSTRACT

BACKGROUND: Obtaining the gene structure for a given protein encoding gene is an important step in many analyses. A software suited for this task should be readily accessible, accurate, easy to handle and should provide the user with a coherent representation of the most probable gene structure. It should be rigorous enough to optimise features on the level of single bases and at the same time flexible enough to allow for cross-species searches. RESULTS: WebScipio, a web interface to the Scipio software, allows a user to obtain the corresponding coding sequence structure of a here given a query protein sequence that belongs to an already assembled eukaryotic genome. The resulting gene structure is presented in various human readable formats like a schematic representation, and a detailed alignment of the query and the target sequence highlighting any discrepancies. WebScipio can also be used to identify and characterise the gene structures of homologs in related organisms. In addition, it offers a web service for integration with other programs. CONCLUSION: WebScipio is a tool that allows users to get a high-quality gene structure prediction from a protein query. It offers more than 250 eukaryotic genomes that can be searched and produces predictions that are close to what can be achieved by manual annotation, for in-species and cross-species searches alike. WebScipio is freely accessible at http://www.webscipio.org.


Subject(s)
Sequence Analysis, Protein/methods , Software , User-Computer Interface , Algorithms , Amino Acid Sequence , Animals , Databases, Genetic , Genomics , Humans , Sequence Alignment , Sequence Analysis, DNA/methods , Species Specificity
13.
Nucleic Acids Res ; 34(Web Server issue): W435-9, 2006 Jul 01.
Article in English | MEDLINE | ID: mdl-16845043

ABSTRACT

AUGUSTUS is a software tool for gene prediction in eukaryotes based on a Generalized Hidden Markov Model, a probabilistic model of a sequence and its gene structure. Like most existing gene finders, the first version of AUGUSTUS returned one transcript per predicted gene and ignored the phenomenon of alternative splicing. Herein, we present a WWW server for an extended version of AUGUSTUS that is able to predict multiple splice variants. To our knowledge, this is the first ab initio gene finder that can predict multiple transcripts. In addition, we offer a motif searching facility, where user-defined regular expressions can be searched against putative proteins encoded by the predicted genes. The AUGUSTUS web interface and the downloadable open-source stand-alone program are freely available from http://augustus.gobics.de.


Subject(s)
Alternative Splicing , Proteins/genetics , Software , Animals , Exons , Gene Expression , Genes , Humans , Internet , Introns , Markov Chains , Proteins/metabolism , User-Computer Interface
14.
BMC Bioinformatics ; 7: 62, 2006 Feb 09.
Article in English | MEDLINE | ID: mdl-16469098

ABSTRACT

BACKGROUND: In order to improve gene prediction, extrinsic evidence on the gene structure can be collected from various sources of information such as genome-genome comparisons and EST and protein alignments. However, such evidence is often incomplete and usually uncertain. The extrinsic evidence is usually not sufficient to recover the complete gene structure of all genes completely and the available evidence is often unreliable. Therefore extrinsic evidence is most valuable when it is balanced with sequence-intrinsic evidence. RESULTS: We present a fairly general method for integration of external information. Our method is based on the evaluation of hints to potentially protein-coding regions by means of a Generalized Hidden Markov Model (GHMM) that takes both intrinsic and extrinsic information into account. We used this method to extend the ab initio gene prediction program AUGUSTUS to a versatile tool that we call AUGUSTUS+. In this study, we focus on hints derived from matches to an EST or protein database, but our approach can be used to include arbitrary user-defined hints. Our method is only moderately effected by the length of a database match. Further, it exploits the information that can be derived from the absence of such matches. As a special case, AUGUSTUS+ can predict genes under user-defined constraints, e.g. if the positions of certain exons are known. With hints from EST and protein databases, our new approach was able to predict 89% of the exons in human chromosome 22 correctly. CONCLUSION: Sensitive probabilistic modeling of extrinsic evidence such as sequence database matches can increase gene prediction accuracy. When a match of a sequence interval to an EST or protein sequence is used it should be treated as compound information rather than as information about individual positions.


Subject(s)
Algorithms , Chromosome Mapping/methods , Databases, Genetic , Models, Genetic , Sequence Alignment/methods , Sequence Analysis, DNA/methods , Animals , Artificial Intelligence , Base Sequence , Computer Simulation , Genetic Variation/genetics , Humans , Information Storage and Retrieval/methods , Markov Chains , Models, Statistical , Molecular Sequence Data , Pattern Recognition, Automated , Stochastic Processes
15.
BMC Bioinformatics ; 7: 142, 2006 Mar 16.
Article in English | MEDLINE | ID: mdl-16542435

ABSTRACT

BACKGROUND: Horizontal gene transfer (HGT) is considered a strong evolutionary force shaping the content of microbial genomes in a substantial manner. It is the difference in speed enabling the rapid adaptation to changing environmental demands that distinguishes HGT from gene genesis, duplications or mutations. For a precise characterization, algorithms are needed that identify transfer events with high reliability. Frequently, the transferred pieces of DNA have a considerable length, comprise several genes and are called genomic islands (GIs) or more specifically pathogenicity or symbiotic islands. RESULTS: We have implemented the program SIGI-HMM that predicts GIs and the putative donor of each individual alien gene. It is based on the analysis of codon usage (CU) of each individual gene of a genome under study. CU of each gene is compared against a carefully selected set of CU tables representing microbial donors or highly expressed genes. Multiple tests are used to identify putatively alien genes, to predict putative donors and to mask putatively highly expressed genes. Thus, we determine the states and emission probabilities of an inhomogeneous hidden Markov model working on gene level. For the transition probabilities, we draw upon classical test theory with the intention of integrating a sensitivity controller in a consistent manner. SIGI-HMM was written in JAVA and is publicly available. It accepts as input any file created according to the EMBL-format.It generates output in the common GFF format readable for genome browsers. Benchmark tests showed that the output of SIGI-HMM is in agreement with known findings. Its predictions were both consistent with annotated GIs and with predictions generated by different methods. CONCLUSION: SIGI-HMM is a sensitive tool for the identification of GIs in microbial genomes. It allows to interactively analyze genomes in detail and to generate or to test hypotheses about the origin of acquired genes.


Subject(s)
DNA, Bacterial/genetics , Genome, Bacterial , Genomic Islands , Markov Chains , Models, Genetic , Algorithms , Bacillus subtilis/genetics , Base Composition , Codon , Computational Biology , Escherichia coli K12/genetics , Gene Transfer, Horizontal , Software , Vibrio cholerae/genetics
16.
Nucleic Acids Res ; 32(Web Server issue): W309-12, 2004 Jul 01.
Article in English | MEDLINE | ID: mdl-15215400

ABSTRACT

We present a www server for AUGUSTUS, a novel software program for ab initio gene prediction in eukaryotic genomic sequences. Our method is based on a generalized Hidden Markov Model with a new method for modeling the intron length distribution. This method allows approximation of the true intron length distribution more accurately than do existing programs. For genomic sequence data from human and Drosophila melanogaster, the accuracy of AUGUSTUS is superior to existing gene-finding approaches. The advantage of our program becomes apparent especially for larger input sequences containing more than one gene. The server is available at http://augustus.gobics.de.


Subject(s)
Genes , Genomics , Software , Animals , Drosophila melanogaster/genetics , Genome, Human , Humans , Internet , Introns , Markov Chains , User-Computer Interface
17.
Bioinformatics ; 19 Suppl 2: ii215-25, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14534192

ABSTRACT

MOTIVATION: The problem of finding the genes in eukaryotic DNA sequences by computational methods is still not satisfactorily solved. Gene finding programs have achieved relatively high accuracy on short genomic sequences but do not perform well on longer sequences with an unknown number of genes in them. Here existing programs tend to predict many false exons. RESULTS: We have developed a new program, AUGUSTUS, for the ab initio prediction of protein coding genes in eukaryotic genomes. The program is based on a Hidden Markov Model and integrates a number of known methods and submodels. It employs a new way of modeling intron lengths. We use a new donor splice site model, a new model for a short region directly upstream of the donor splice site model that takes the reading frame into account and apply a method that allows better GC-content dependent parameter estimation. AUGUSTUS predicts on longer sequences far more human and drosophila genes accurately than the ab initio gene prediction programs we compared it with, while at the same time being more specific. AVAILABILITY: A web interface for AUGUSTUS and the executable program are located at http://augustus.gobics.de.


Subject(s)
Algorithms , Introns/genetics , Models, Genetic , Pattern Recognition, Automated/methods , RNA Splice Sites/genetics , Sequence Analysis, DNA/methods , Animals , Artificial Intelligence , Base Sequence , Computer Simulation , Humans , Markov Chains , Molecular Sequence Data
18.
BMC Res Notes ; 4: 265, 2011 Jul 28.
Article in English | MEDLINE | ID: mdl-21798037

ABSTRACT

BACKGROUND: Obtaining transcripts of homologs of closely related organisms and retrieving the reconstructed exon-intron patterns of the genes is a very important process during the analysis of the evolution of a protein family and the comparative analysis of the exon-intron structure of a certain gene from different species. Due to the ever-increasing speed of genome sequencing, the gap to genome annotation is growing. Thus, tools for the correct prediction and reconstruction of genes in related organisms become more and more important. The tool Scipio, which can also be used via the graphical interface WebScipio, performs significant hit processing of the output of the Blat program to account for sequencing errors, missing sequence, and fragmented genome assemblies. However, Scipio has so far been limited to high sequence similarity and unable to reconstruct short exons. RESULTS: Scipio and WebScipio have fundamentally been extended to better reconstruct very short exons and intron splice sites and to be better suited for cross-species gene structure predictions. The Needleman-Wunsch algorithm has been implemented for the search for short parts of the query sequence that were not recognized by Blat. Those regions might either be short exons, divergent sequence at intron splice sites, or very divergent exons. We have shown the benefit and use of new parameters with several protein examples from completely different protein families in searches against species from several kingdoms of the eukaryotes. The performance of the new Scipio version has been tested in comparison with several similar tools. CONCLUSIONS: With the new version of Scipio very short exons, terminal and internal, of even just one amino acid can correctly be reconstructed. Scipio is also able to correctly predict almost all genes in cross-species searches even if the ancestors of the species separated more than 100 Myr ago and if the protein sequence identity is below 80%. For our test cases Scipio outperforms all other software tested. WebScipio has been restructured and provides easy access to the genome assemblies of about 640 eukaryotic species. Scipio and WebScipio are freely accessible at http://www.webscipio.org.

19.
Algorithms Mol Biol ; 1(1): 10, 2006 Jun 29.
Article in English | MEDLINE | ID: mdl-16808834

ABSTRACT

Two important and not yet solved problems in bacterial genome research are the identification of horizontally transferred genes and the prediction of gene expression levels. Both problems can be addressed by multivariate analysis of codon usage data. In particular dimensionality reduction methods for visualization of multivariate data have shown to be effective tools for codon usage analysis. We here propose a multidimensional scaling approach using a novel similarity measure for codon usage tables. Our probabilistic similarity measure is based on P-values derived from the well-known chi-square test for comparison of two distributions. Experimental results on four microbial genomes indicate that the new method is well-suited for the analysis of horizontal gene transfer and translational selection. As compared with the widely-used correspondence analysis, our method did not suffer from outlier sensitivity and showed a better clustering of putative alien genes in most cases.

SELECTION OF CITATIONS
SEARCH DETAIL