Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Mar Drugs ; 21(3)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36976198

ABSTRACT

Excisional wounds are considered one of the most common physical injuries. This study aims to test the effect of a nanophytosomal formulation loaded with a dried hydroalcoholic extract of S. platensis on promoting excisional wound healing. The Spirulina platensis nanophytosomal formulation (SPNP) containing 100 mg PC and 50 mg CH exhibited optimum physicochemical characteristics regarding particle size (598.40 ± 9.68 nm), zeta potential (-19.8 ± 0.49 mV), entrapment efficiency (62.76 ± 1.75%), and Q6h (74.00 ± 1.90%). It was selected to prepare an HPMC gel (SPNP-gel). Through metabolomic profiling of the algal extract, thirteen compounds were identified. Molecular docking of the identified compounds on the active site of the HMGB-1 protein revealed that 12,13-DiHome had the highest docking score of -7.130 kcal/mol. SPNP-gel showed higher wound closure potential and enhanced histopathological alterations as compared to standard (MEBO® ointment) and S. platensis gel in wounded Sprague-Dawley rats. Collectively, NPS promoted the wound healing process by enhancing the autophagy process (LC3B/Beclin-1) and the NRF-2/HO-1antioxidant pathway and halting the inflammatory (TNF-, NF-κB, TlR-4 and VEGF), apoptotic processes (AIF, Caspase-3), and the downregulation of HGMB-1 protein expression. The present study's findings suggest that the topical application of SPNP-gel possesses a potential therapeutic effect in excisional wound healing, chiefly by downregulating HGMB-1 protein expression.


Subject(s)
HMGB Proteins , Wound Healing , Rats , Animals , Rats, Sprague-Dawley , Molecular Docking Simulation , HMGB Proteins/pharmacology
2.
J Sci Food Agric ; 103(5): 2295-2303, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36636878

ABSTRACT

BACKGROUND: The accurate characterization of grapevine cultivars (Vitis vinifera) is crucial for grape growers, winemakers, wine sellers, consumers and authorities, considering that mistakes could involve significant damage to the wine economic system. To avoid any misunderstanding, morphological, molecular and chemical tools are developed to positively identify grape varieties. RESULTS: E-ε-viniferin is a stilbene dimer mainly present in the woody part of grapevine and present as a mixture of two enantiomers: (7aR, 8aR)-(-)-E-ε-viniferin (1) and (7aS, 8aS)-(+)-E-ε-viniferin (2). In addition to phenotypic and genotypic approaches, a chemotaxonomic method using E-ε-viniferin enantiomers as chemical markers of grapevine cultivars was investigated. The isolation and purification of E-ε-viniferin enantiomers by preparative high-performance liquid chromatography (HPLC) and chiral HPLC from 14 red and eight white grapevine cane cultivars enabled us to determine the proportion of each enantiomer and therefore to calculate the enantiomeric excess for each variety. The relative abundance of each E-ε-viniferin enantiomer permitted us to distinguish grape varieties, as well as to establish cultivar relationships and patterns through statistical analysis. CONCLUSION: This pioneering work highlighting the enantiomeric excess of E-ε-viniferin as a chemical marker of grapevine paves the way for further studies to understand what mechanisms are involved in the production of these enantiomers in grapevine. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Benzofurans , Stilbenes , Vitis , Wine , Stilbenes/analysis , Vitis/chemistry , Wine/analysis , Benzofurans/analysis
3.
Compr Rev Food Sci Food Saf ; 21(2): 1161-1197, 2022 03.
Article in English | MEDLINE | ID: mdl-35092346

ABSTRACT

Mycotoxins are metabolites produced by molds that contaminate food commodities, are harmful to both humans and animals, as well as cause economic losses. Many countries have set regulatory limits and strict thresholds to control the level of mycotoxins in food and feedstuffs. New technologies and strategies have been developed to inhibit toxigenic fungal invasion and to decontaminate mycotoxins. However, many of these strategies do not sufficiently detoxify mycotoxins and leave residual toxic by-products. This review focuses on the use of phenolic compounds obtained from botanical extracts as promising bioagents to inhibit fungal growth and/or to limit mycotoxin yields. The mechanism of these botanicals, legislation concerning their use, and their safety are also discussed. In addition, recent strategies to overcome stability and solubility constraints of phenolic compounds to be used in food and feed stuffs are also mentioned.


Subject(s)
Food Contamination , Mycotoxins , Animals , Food Contamination/analysis , Food Contamination/prevention & control , Fungi , Mycotoxins/analysis
4.
Molecules ; 26(2)2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33466739

ABSTRACT

Fusarium graminearum is a fungal pathogen that can colonize small-grain cereals and maize and secrete type B trichothecene (TCTB) mycotoxins. The development of environmental-friendly strategies guaranteeing the safety of food and feed is a key challenge facing agriculture today. One of these strategies lies on the promising capacity of products issued from natural sources to counteract crop pests. In this work, the in vitro efficiency of sixteen extracts obtained from eight natural sources using subcritical water extraction at two temperatures was assessed against fungal growth and TCTB production by F. graminearum. Maritime pine sawdust extract was shown to be extremely efficient, leading to a significant inhibition of up to 89% of the fungal growth and up to 65% reduction of the mycotoxin production by F. graminearum. Liquid chromatography/mass spectrometry analysis of this active extract revealed the presence of three families of phenolics with a predominance of methylated compounds and suggested that the abundance of methylated structures, and therefore of hydrophobic compounds, could be a primary factor underpinning the activity of the maritime pine sawdust extract. Altogether, our data support that wood/forest by-products could be promising sources of bioactive compounds for controlling F. graminearum and its production of mycotoxins.


Subject(s)
Forests , Fusarium/metabolism , Mycotoxins/biosynthesis , Pharmaceutical Preparations/administration & dosage , Plant Extracts/pharmacology , Wine/analysis , Wood/chemistry , Fusarium/drug effects , Fusarium/growth & development , Pharmaceutical Preparations/metabolism , Vitis/chemistry
5.
J Nat Prod ; 83(5): 1611-1622, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32343138

ABSTRACT

Six new triterpenoids (1-6), two known genins (7 and 8), and five known functionalized triterpenoids (9-13) were isolated from a Quercus robur heartwood extract. The purification protocol was guided by LC-HRMS by searching for structural analogues of bartogenic acid on the basis of their putative empirical formula. The structures of the new compounds were unequivocally elucidated using HRESIMS and 1D/2D NMR experiments. Sensory analyses were performed in water and in a non-oaked white wine on the pure compounds 1-13 at 5 mg/L. All molecules were perceived as bitter in water and wine, but they were mostly reported as modifying the wine taste balance. Using LC-HRMS, compounds 1-13 were observed in oaked red wine and cognac and were semiquantified in oak wood extracts. The influence of two cooperage parameters, oak species and toasting process, on compounds 1-13 content was studied. All compounds were found in quantities significantly higher in pedunculate than in sessile oak wood. Toasting is a key step in barrel manufacture and modulates the concentration of the discussed compounds. Significantly higher quantities were observed in untoasted wood compared to medium or highly toasted wood. These findings provide new insights into the molecular origin of taste changes due to oak aging.


Subject(s)
Quercus/chemistry , Triterpenes/chemistry , Wine/analysis , Magnetic Resonance Spectroscopy , Molecular Structure , Taste , Wood/chemistry
6.
Bioorg Chem ; 102: 104093, 2020 09.
Article in English | MEDLINE | ID: mdl-32717693

ABSTRACT

Previously phytochemical investigations carried out on the flowers and trunk bark extracts of Citharexylum spinosum L. tree, allowed the isolation of twenty molecules belonging to several families of natural substances [triterpene acids, iridoid glycosides, phenylethanoid glycosides, 8,3'-neolignan glycosides, together with other phenolic compounds]. In the present work, a biological evaluation (anti-tyrosinase, anticholinesterase and cytotoxic activities) was performed on the prepared extracts and the isolated secondary metabolites. The results showed that the EtOAc extract of the trunk bark displayed the highest anti-tyrosinase effect with a percent inhibition of 55.0 ± 1.8% at a concentration of 100 µg/mL. The highest anticholinesterase activity was presented by the same extract with an IC50 value of 99.97 ± 3.01 µg/mL. The EtOAc extract of flowers and that of the trunk bark displayed the best cytotoxic property with IC50 values of 96.00 ± 2.85 and 88.75 ± 2.00 µg/mL, respectively, against the human cervical cancer cell line (HeLa), and IC50 values of 188.23 ± 3.88 and 197.00 ± 4.25 µg/mL, respectively, against the human lung cancer (A549) cell lines. Biological investigation of the pure compounds showed that the two 8,3'-neolignan glycosides, plucheosides D1-D2, generate the highest anti-tyrosinase potency with a percent inhibition of 61.4 ± 2.0 and 79.5 ± 2.3%, respectively, at a concentration of 100 µM. The iridoid glycosides exhibited a significant anticholinesterase activity with IC50 values ranging from 17.19 ± 1.02 to 52.24 ± 2.50 µM. Triterpene pentacyclic acids and iridoid glycosides exerted encouraging cytotoxic effects against HeLa with IC50 values ranging from 9.00 ± 1.10 to 25.00 ± 1.00 µM. The study of the structure-activity relationship (SAR) has been sufficiently and widely discussed. The natural compounds that exhibited the significant bioactivities were docked.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Enzyme Inhibitors/pharmacology , Molecular Docking Simulation , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Verbenaceae/chemistry , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line , Cell Proliferation/drug effects , Cholinesterases/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Humans , Mice , Molecular Structure , Monophenol Monooxygenase/antagonists & inhibitors , Monophenol Monooxygenase/metabolism , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Structure-Activity Relationship
7.
J Sep Sci ; 43(6): 1080-1088, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31970869

ABSTRACT

Pine knots are a rich source of lignans, flavonoids, and stilbenes. These bioactive compounds are widely known for their roles to combat human disorders but also to protect plants against pathogens. In order to gain knowledge inside their potential activities, a suitable isolation and purification of these high-added value compounds is required. To this end, centrifugal partition chromatography, as a rapid and useful methodology of separation, was employed and developed. The coefficient partition values (KD ) of six major compounds in nine biphasic solvent systems were determined to evaluate the most appropriate system. Two-step centrifugal partition chromatography was required to separate lignans using ARIZONA system K (n-heptane/ethyl acetate/methanol/water 1:2:1:2, v:v) and to isolate stilbenes and flavonoids using ARIZONA system P (n-heptane/ethyl acetate/methanol/water 6:5:6:5, v:v). Eight one-compound enriched-fractions were obtained as follows: nortrachelogenin (70.1%), secoisolariciresinol (53.7%), isolariciresinol (61.1%), taxifolin (48.4%), pinocembrin (91.3%), pinobanksin (91.1%), pinosylvin (91.4%), and pinosylvin monomethyl ether (91.1%). Additionally, the centrifugal partition chromatography allowed to unravel the composition of pine knot owing to the several fractions generated. Twenty-two compounds were characterized by liquid chromatography-mass spectrometry and NMR spectroscopy, some of which are described for the first time in literature.


Subject(s)
Centrifugation , Pinus/chemistry , Polyphenols/isolation & purification , Chromatography, Liquid , Magnetic Resonance Spectroscopy , Mass Spectrometry , Polyphenols/chemistry
8.
J Nat Prod ; 82(2): 265-275, 2019 02 22.
Article in English | MEDLINE | ID: mdl-30689385

ABSTRACT

Eight new triterpenoids (1-8), the known genin (9), and two known functionalized triterpenoids (10 and 11) were isolated from a Quercus petraea heartwood extract. The structures of the new compounds were unequivocally elucidated using HRESIMS and 1D/2D NMR experiments. Sensory analyses were performed in a non-oaked wine on the pure compounds 1-11. Except compounds 1 and 11, all molecules exhibited a sweet taste at 5 mg/L that was particularly intense for compounds 3 and 9. Using LC-HRMS, compounds 1-11 were observed in an oak wood extract and in oaked red wine and cognac. They were also semiquantified in several samples of sessile ( Q. petraea) and pedunculate ( Q. robur) oak wood extract. All compounds were found in quantities significantly higher in sessile than in pedunculate oak wood. These results support the hypothesis of their contribution to the increase in sweetness during oak aging and show that they can be used as chemical markers to identify the species of oak used for cooperage.


Subject(s)
Quercus/chemistry , Triterpenes/isolation & purification , Wine/analysis , Magnetic Resonance Spectroscopy , Plant Extracts/analysis , Taste , Triterpenes/analysis , Triterpenes/chemistry , Wood/chemistry
9.
Phytochem Anal ; 30(3): 320-331, 2019 May.
Article in English | MEDLINE | ID: mdl-30644147

ABSTRACT

INTRODUCTION: Grapevine wood and roots are by-products obtained during vineyard management. This plentiful biomass is known to be rich in stilbenes and can be used as a source of high-value compounds as well as active natural extracts. However, the stilbenes in grapevine wood and roots from different cultivars and rootstocks remain to be characterized. OBJECTIVE: The present study investigated the stilbene content of eight major Vitis vinifera cultivars and six different rootstocks. In addition, the distribution of stilbenes was established for each of seven parts into which the plants were sub-divided. METHODOLOGY: For stilbene characterization and quantification purposes, an ultra-high performance liquid chromatography-diode array detector-mass spectrometry (UHPLC-DAD-MS/MS) analysis of different samples was carried out. Moreover, structural data of stilbenes was unambiguously studied by nuclear magnetic resonance (NMR) spectra. RESULTS: Whatever the cultivar/rootstock combination, stilbenes were found to be oligomerized from the aerial part to the root system. Furthermore, stilbene content varied widely depending on the cultivars and rootstocks. For instance, the cultivars Merlot, Tannat and Gamay noir were the richest in stilbenes while the rootstocks Gravesac, Fercal and 3390C contained the highest amounts. CONCLUSION: These findings provide insight into the knowledge that major grapevine cultivars and rootstocks can be used as a potential source of complex stilbenes.


Subject(s)
Chromatography, High Pressure Liquid/methods , Plant Roots/chemistry , Proton Magnetic Resonance Spectroscopy/methods , Stilbenes/analysis , Tandem Mass Spectrometry/methods , Vitis/chemistry , Wood , Plant Extracts/analysis , Plant Extracts/chemistry , Polymerization
10.
Anal Chem ; 88(20): 9941-9948, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27602433

ABSTRACT

Centrifugal partition chromatography (CPC) and all countercurrent separation apparatus provide chemists with efficient ways to work with complex matrixes, especially in the domain of natural products. However, despite the great advances provided by these techniques, more efficient ways of analyzing the output flow would bring further enhancement. This study describe a hyphenated approach made by coupling NMR with CPC through a hybrid-indirect coupling made possible by using a solid phase extraction (SPE) apparatus intended for high-pressure liquid chromatography (HPLC)-NMR hyphenation. Some hardware changes were needed to adapt the incompatible flow-rates and a reverse-engineering approach that led to the specific software required to control the apparatus. 1D 1HNMR and 1H-1H correlation spectroscopy (COSY) spectra were acquired in reasonable time without the need for any solvent-suppression method thanks to the SPE nitrogen drying step. The reduced usage of expensive deuterated solvents from several hundreds of milliliters to the milliliter order is the major improvement of this approach compared to the previously published ones.

11.
J Nat Prod ; 79(10): 2432-2438, 2016 10 28.
Article in English | MEDLINE | ID: mdl-27684096

ABSTRACT

Quercoresinosides A and B (1 and 2), two new lignans, were isolated from a toasted Quercus petraea heartwood extract along with a known compound, 3-methoxy-4-hydroxyphenol 1-O-ß-d-(6'-O-galloyl)glucopyranoside (3). The purification protocol was based on a taste-guided approach that sought to reveal new bitter compounds released from oak wood into wines and spirits. HRMS and NMR data were used to establish that compounds 1 and 2 are lignan derivatives bearing a glucosyl unit and a galloyl unit at the same positions. Hydrolysis of these compounds showed that they could be distinguished by the absolute configuration of their respective lyoniresinol genin as determined by chiral LC-HRMS in comparison with (+)- and (-)-lyoniresinol standards. Sensory analyses were performed in a non-oaked wine on the pure compounds 1-3. The three molecules exhibited a bitter taste at 2 mg/L that was particularly intense for compounds 2 and 3. Finally, LC-HRMS demonstrated the occurrence of compounds 1-3 in oaked wine and brandy, which supports the hypothesis of their contributions to the increase in bitterness during oak aging.


Subject(s)
Lignans/isolation & purification , Quercus/chemistry , Wine , Anisoles , Chromatography, High Pressure Liquid/methods , Humans , Lignans/chemistry , Molecular Structure , Naphthalenes , Nuclear Magnetic Resonance, Biomolecular , Taste , Wood/chemistry
12.
Bioorg Med Chem Lett ; 25(18): 3825-30, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26248805

ABSTRACT

A phytochemical investigation of the roots of Ononis angustissima L. (Fabaceae) offered to the bio-guided isolation of new isoflavone 3-(4-(glucopyranosyloxy)-5-hydroxy-2-methoxyphenyl)-7-hydroxy-4H-chromen-4-one 1, together with nine known compounds, ononin 2, formononetin 3, (+)-puerol A-2'-O-ß-D-glucose 4, (-)-puerol B-2'-O-ß-D-glucopyranose ((-)-sophoraside A) 5, (+)-puerol A 6, (-)-trifolirhizin 7, (-)-trifolirhizin-6'-O-malonate 8, (-)-maackiain 9 and (-)-medicarpin 10. Compounds 2-10 were isolated and identified for the first time in Ononis angustissima. We investigated antioxidant capacities of isolated molecules and results showed that compound 6 exhibited the highest antioxidant activity with IC50 values of 19.53 µg/mL, 28.29 µg/mL and 38.53 µg/mL by DPPH radical, ABTS radical cation and reducing power assay, respectively, and an interesting IC50 (20.45 µg/mL) of 1 against DPPH. In addition, the neuroprotective activity of six isolated molecules (4-7, 9, 10) were evaluated. Following the exposure of PC12 cells to Aß25-35, compounds 9 and 10 triggered a significant increase of cell viability and in a dose dependent manner.


Subject(s)
Antioxidants/pharmacology , Ononis/chemistry , Plant Extracts/pharmacology , Plant Roots/chemistry , Animals , Antioxidants/chemistry , Antioxidants/isolation & purification , Benzothiazoles/antagonists & inhibitors , Biphenyl Compounds/antagonists & inhibitors , Cell Survival/drug effects , Dose-Response Relationship, Drug , Free Radicals/antagonists & inhibitors , Molecular Structure , PC12 Cells , Picrates/antagonists & inhibitors , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Rats , Structure-Activity Relationship , Sulfonic Acids/antagonists & inhibitors , Tunisia
13.
Biochim Biophys Acta ; 1830(11): 5068-74, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23830862

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disorder. There is a consensus that Aß is a pathologic agent and that its toxic effects, which are at present incompletely understood, may occur through several potential mechanisms. Polyphenols are known to have wide-ranging properties with regard to health and for helping to prevent various diseases like neurodegenerative disorders. Thus inhibiting the formation of toxic Aß assemblies is a reasonable hypothesis to prevent and perhaps treat AD METHODS: Solution NMR and molecular modeling were used to obtain more information about the interaction between the Aß1-40 and the polyphenol ε-viniferin glucoside (EVG) and particularly the Aß residues involved in the complex. RESULTS: The study demonstrates the formation of a complex between two EVG molecules and Aß1-40 in peptide characteristic regions that could be in agreement with the inhibition of aggregation. Indeed, in previous studies, we reported that EVG strongly inhibited in vitro the fibril formation of the full length peptides Aß1-40 and Aß1-42, and had a strong protective effect against PC12 cell death induced by these peptides. CONCLUSION: For the full length peptide Aß1-40, the binding sites observed could explain the EVG inhibitory effect on fibrillization and thus prevent amyloidogenic neurotoxicity. GENERAL SIGNIFICANCE: Even though this interaction might be important at the biological level to explain the protective effect of polyphenols in neurodegenerative diseases, caution is required when extrapolating this in vitro model to human physiology.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/chemistry , Benzofurans/chemistry , Glucosides/chemistry , Peptide Fragments/chemistry , Polyphenols/chemistry , Stilbenes/chemistry , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Benzofurans/metabolism , Binding Sites , Cell Line, Tumor , Glucosides/metabolism , Magnetic Resonance Spectroscopy/methods , Models, Molecular , PC12 Cells , Peptide Fragments/metabolism , Polyphenols/metabolism , Protein Conformation , Rats , Stilbenes/metabolism
14.
J Nat Prod ; 77(2): 213-7, 2014 Feb 28.
Article in English | MEDLINE | ID: mdl-24521157

ABSTRACT

Stilbenes have received much attention during the last two decades following the discovery of resveratrol in wine. Since then, there have been a growing number of papers reporting various biological activities of naturally occurring stilbenes. The aim of this study was to determine new minor stilbenes from Vitis vinifera stalks. Purification of these compounds was achieved by means of centrifugal partition chromatography, a versatile separation technique that does not require a solid stationary phase. Viniphenol A (1), a new resveratrol hexamer, was isolated along with five oligostilbenoids identified in V. vinifera for the first time, ampelopsin C, davidiol A, leachianol F, leachianol G, and E-maackin, a dimer with an unusual dioxane moiety, and 14 known hydroxystilbenes. The structure and stereochemistry of viniphenol A were determined on the basis of spectroscopic data analysis and molecular modeling under NMR constraints. Viniphenol A showed protective effects against amyloid-ß-induced toxicity in PC12 cell cultures.


Subject(s)
Stilbenes/isolation & purification , Stilbenes/pharmacology , Vitis/chemistry , Amyloid beta-Peptides/pharmacology , Animals , Antioxidants/pharmacology , Catechin/pharmacology , Dioxanes/chemistry , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , PC12 Cells , Rats , Resveratrol , Stilbenes/chemistry
15.
J Nat Prod ; 77(8): 1981-5, 2014 Aug 22.
Article in English | MEDLINE | ID: mdl-25093453

ABSTRACT

Dimeric stilbene glucosides 1-3 [two diastereomers of (-)-gnemonoside A (1a and 1b), (-)-gnemonoside C (2), and (-)-gnemonoside D (3)] as well as a mixture of the two enantiomers of gnetin C (4) were isolated from the rhizomes of Gnetum africanum. The two enantiomers of gnetin C, (+)-4 and (-)-4, were obtained from the aglycones of 1a and 1b, respectively. The configurations of these stilbenoids were investigated by NMR and vibrational circular dichroism (VCD) experiments. The absolute configurations of (-)-1a, (-)-2, (-)-3, and (-)-4 were established as 7aS,8aS by VCD spectroscopy in combination with density functional theory calculations. The antiamyloidogenic activity of the isolated stilbenes was also evaluated versus beta-amyloid fibrils. The four glucosides of gnetin C (1a, 1b, 2, and 3) were found to be the most active compounds, with inhibition percentages of 56, 56, 58, and 54 at 10 µM, respectively.


Subject(s)
Glucosides/chemistry , Gnetum/chemistry , Neuroprotective Agents/isolation & purification , Stilbenes/chemistry , Benzofurans/chemistry , Benzofurans/isolation & purification , Cameroon , Circular Dichroism , Glucosides/isolation & purification , Molecular Structure , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Nuclear Magnetic Resonance, Biomolecular , Rhizome/chemistry , Stereoisomerism , Stilbenes/isolation & purification
16.
J Agric Food Chem ; 72(17): 9621-9636, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38648422

ABSTRACT

This study focuses on countering Fusarium graminearum, a harmful fungal pathogen impacting cereal crops and human health through mycotoxin production. These mycotoxins, categorized as type B trichothecenes, pose significant health risks. Research explores natural alternatives to synthetic fungicides, particularly investigating phenolics in grapevine byproducts. Thirteen eco-extracts from five French grape varieties (Merlot, Cabernet Sauvignon, Sauvignon blanc, Tannat, and Artaban) exhibited substantial antifungal properties, with ten extracts displaying remarkable effects. Extracts from grapevine stems and roots notably reduced fungal growth by over 91% after five days. Through UHPLC-HRMS/MS analysis and metabolomics, the study identified potent antifungal compounds such as ampelopsin A and cyphostemmin B, among other oligomeric stilbenes. Interestingly, this approach showed that flavan-3-ols have been identified as markers for extracts that induce fungal growth. Root extracts from rootstocks, rich in oligostilbenes, demonstrated the highest antifungal activity. This research underscores grapevine byproducts' potential both as a sustainable approach to control F. graminearum and mycotoxin contamination in cereal crops and the presence of different metabolites from the cultivars of grapevine, suggesting different activities.


Subject(s)
Fusarium , Plant Extracts , Tandem Mass Spectrometry , Vitis , Vitis/chemistry , Vitis/microbiology , Fusarium/drug effects , Fusarium/growth & development , Chromatography, High Pressure Liquid , Plant Extracts/pharmacology , Plant Extracts/chemistry , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Plant Diseases/microbiology , Waste Products/analysis
17.
RSC Adv ; 14(7): 4654-4665, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38318626

ABSTRACT

Despite all the significant progresses made to enhance the efficacy of the existing bank of drugs used to manage and cure type II diabetes mellitus, there is still a need to search and develop novel bioactive compounds with superior efficacy and minimal adverse effects. This study describes the valorization of the natural bioactive sesquiterpene coumarin via the semi-synthesis of new analogs and the study of their α-amylase inhibition activity. The sesquiterpene coumarin named coladonin (1) was quantitatively isolated from the chloroform extract of endemic Ferula tunetana roots. Subsequently, the oxidation of 1via the Jones oxidation reaction, used as a key reaction, afforded precursor 2. The condensation of oxidized coladonin (2) with various aryl aldehydes provided a series of new arylidene-based sesquiterpene coumarin derivatives (3a-m), which were characterized by NMR and ESI-HRMS experiments. All derivatives evaluated in vitro for their α-amylase inhibitory potential showed interesting α-amylase inhibition with IC50 values ranging from 7.24 to 28.98 µM. Notably, compounds 3k and 3m exhibited lower IC50 values (7.24 µM and 8.38 µM, respectively) compared to the standard (acarbose: IC50 = 9.83 µM). In addition, the structure-activity relationship (SAR) for all the compounds was studied. The most active compounds were found to be mixed-type inhibitors, which was revealed by kinetic studies. Furthermore, molecular in silico docking studies were established for all synthesized analogs with the binding site for the α-amylase enzyme.

18.
Planta Med ; 79(11): 966-70, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23807809

ABSTRACT

Microglia-driven inflammatory processes are thought to play an important role in ageing and several neurological disorders. Since consumption of a diet rich in polyphenols has been associated with anti-inflammatory and neuroprotective effects, we studied the effects of twenty-five stilbenoids isolated from Milicia excelsa, Morus alba, Gnetum africanum, and Vitis vinifera. These compounds were tested at 5 and 10 µM on BV-2 microglial cells stimulated with bacterial lipopolysaccharide. Ten stilbenoids reduced lipopolysaccharide-induced nitric oxide production at 5 and/or 10 µM. Two tetramers, E-vitisin A and E-vitisin B, were the most effective molecules. Moreover, they attenuated the expression of the inducible NO synthase protein and gene.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Gnetum/chemistry , Moraceae/chemistry , Morus/chemistry , Neuroprotective Agents/pharmacology , Stilbenes/pharmacology , Vitis/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Benzofurans/chemistry , Benzofurans/isolation & purification , Benzofurans/pharmacology , Cell Line , Cell Survival/drug effects , Lipopolysaccharides/pharmacology , Microglia/drug effects , Microglia/metabolism , Neuroprotective Agents/chemistry , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/drug effects , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Phenols/chemistry , Phenols/isolation & purification , Phenols/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Plant Roots/chemistry , Plant Stems/chemistry , Polyphenols/pharmacology , Stilbenes/chemistry , Stilbenes/isolation & purification
19.
Phytochemistry ; 206: 113504, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36403669

ABSTRACT

Phytochemical investigation of the underground parts of Arundina graminifolia D.Don Hochr was conducted leading to the isolation of nine new glucosyloxybenzyl 2R-benzylmalate and two new glucosyloxybenzyl 2R-isobutylmalate derivatives. The compounds were purified using chromatographic techniques and their structures were deduced based on spectroscopic techniques including nuclear magnetic resonance and high-resolution mass spectrometry as well as comparing with previous literature. The antioxidant activities of the isolated compounds were also evaluated. The compounds showed potent antioxidant activities in the ABTS radical scavenging, DPPH radical scavenging and FRAP activities. Furthermore, the isolated compounds were observed to exert minimal cytotoxic effects against RAW 264.7 cell, suggesting biocompatibility as well as cytoprotective effects against hydrogen peroxide induced cell toxicity.


Subject(s)
Antineoplastic Agents , Orchidaceae , Antioxidants/pharmacology , Molecular Structure , Magnetic Resonance Spectroscopy , Orchidaceae/chemistry
20.
Food Chem ; 393: 133359, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35671662

ABSTRACT

Determination of stereochemistry and enantiomeric excess in chiral natural molecules is a research of great interest because enantiomers can exhibit different biological activities. Viniferin stilbene dimers are natural molecules present in grape berries and wine but also, in larger amount, in stalks of grapevine. Four stereoisomers of viniferin stilbene dimers (7aS,8aS)-E-ε-viniferin (1a), (7aR,8aR)-E-ε-viniferin (1b), (7aS,8aR)-E-ω-viniferin (2a), and (7aR,8aS)-E-ω-viniferin (2b) were isolated from grapevine stalks of Cabernet Sauvignon, Merlot and Sauvignon Blanc, using a combination of centrifugal partition chromatography (CPC), preparative and chiral HPLC. The structure elucidation of these molecules was achieved by NMR whereas the absolute configurations of the four stereoisomers were investigated by vibrational circular dichroism spectroscopy in combination with density functional theory (DFT) calculations. This study unambiguously established the (+)-(7aS,8aS) and (+)-(7aR,8aS) configurations for E-ε-viniferin and E-ω-viniferin, respectively. Finally, we show that Cabernet Sauvignon provided the quasi enantiopure (+)-(7aS,8aS)-E-ε-viniferin compound which presents the best anti-inflammatory and anti-oxidant activities.


Subject(s)
Stilbenes , Vitis , Wine , Anti-Inflammatory Agents/analysis , Anti-Inflammatory Agents/pharmacology , Stereoisomerism , Stilbenes/chemistry , Vitis/chemistry , Wine/analysis
SELECTION OF CITATIONS
SEARCH DETAIL