ABSTRACT
BACKGROUND: Changes in epithelial cell shape reflects optimal cell packing and the minimization of surface free energy, but also cell-cell interactions, cell proliferation, and cytoskeletal rearrangements. RESULTS: Here, we studied the structure of the rat pleura in the first 15 days after birth. After pleural isolation and image segmentation, the analysis demonstrated a progression of epithelial order from postnatal day 1 (P1) to P15. The cells with the largest surface area and greatest shape variability were observed at P1. In contrast, the cells with the smallest surface area and most shape consistency were observed at P15. A comparison of polygonal cell geometries demonstrated progressive optimization with an increase in the number of hexagons (six-sided) as well as five-sided and seven-sided polygons. Analysis of the epithelial organization with Voronoi tessellations and graphlet motif frequencies demonstrated a developmental path strikingly distinct from mathematical and natural reference paths. Graph Theory analysis of cell connectivity demonstrated a progressive decrease in network heterogeneity and clustering coefficient from P1 to P15. CONCLUSIONS: We conclude that the rat pleura undergoes a striking change in pleural structure from P1 to P15. Further, a geometric and network-based approach can provide a quantitative characterization of these developmental changes.
Subject(s)
Pleura , Animals , Rats , Pleura/cytology , Epithelial Cells/cytology , Cell Shape/physiology , Animals, Newborn , Rats, Sprague-DawleyABSTRACT
OBJECTIVES: Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease which is usually diagnosed late in advanced stages. Little is known about the subclinical development of IPF. We previously generated a mouse model with conditional Nedd4-2 deficiency (Nedd4-2-/-) that develops IPF-like lung disease. The aim of this study was to characterize the onset and progression of IPF-like lung disease in conditional Nedd4-2-/- mice by longitudinal micro-computed tomography (CT). METHODS: In vivo micro-CT was performed longitudinally in control and conditional Nedd4-2-/- mice at 1, 2, 3, 4 and 5 months after doxycycline induction. Further, terminal in vivo micro-CT followed by pulmonary function testing and post mortem micro-CT was performed in age-matched mice. Micro-CT images were evaluated for pulmonary fibrosis using an adapted fibrosis scoring system. Histological assessment of lung collagen content was conducted as well. RESULTS: Micro-CT is sensitive to detect onset and progression of pulmonary fibrosis in vivo and to quantify distinct radiological IPF-like features along disease development in conditional Nedd4-2-/- mice. Nonspecific interstitial alterations were detected from 3 months, whereas key features such as honeycombing-like lesions were detected from 4 months onwards. Pulmonary function correlated well with in vivo (r=-0.738) and post mortem (r=-0.633) micro-CT fibrosis scores and collagen content. CONCLUSION: Longitudinal micro-CT enables in vivo monitoring of onset and progression and detects radiologic key features of IPF-like lung disease in conditional Nedd4-2-/- mice. Our data support micro-CT as sensitive quantitative endpoint for preclinical evaluation of novel antifibrotic strategies.
ABSTRACT
Improving the scalability of tissue imaging throughput with bright, coherent X-rays requires identifying and mitigating artifacts resulting from the interactions between X-rays and matter. At synchrotron sources, long-term imaging of soft tissues in solution can result in gas bubble formation or cavitation, which dramatically compromises image quality and integrity of the samples. By combining in-line phase-contrast imaging with gas chromatography in real time, we were able to track the onset and evolution of high-energy X-ray-induced gas bubbles in ethanol-embedded soft tissue samples for tens of minutes (two to three times the typical scan times). We demonstrate quantitatively that vacuum degassing of the sample during preparation can significantly delay bubble formation, offering up to a twofold improvement in dose tolerance, depending on the tissue type. However, once nucleated, bubble growth is faster in degassed than undegassed samples, indicating their distinct metastable states at bubble onset. Gas chromatography analysis shows increased solvent vaporization concurrent with bubble formation, yet the quantities of dissolved gasses remain unchanged. By coupling features extracted from the radiographs with computational analysis of bubble characteristics, we uncover dose-controlled kinetics and nucleation site-specific growth. These hallmark signatures provide quantitative constraints on the driving mechanisms of bubble formation and growth. Overall, the observations highlight bubble formation as a critical yet often overlooked hurdle in upscaling X-ray imaging for biological tissues and soft materials and we offer an empirical foundation for their understanding and imaging protocol optimization. More importantly, our approaches establish a top-down scheme to decipher the complex, multiscale radiation-matter interactions in these applications.
Subject(s)
Synchrotrons , X-Rays , Animals , Gases/chemistry , Chromatography, Gas/methods , Ethanol/chemistryABSTRACT
In the later stages of angiogenesis, the vascular sprout transitions into a functional vessel by fusing with a target vessel. Although this process appears to routinely occur in embryonic tissue, the biologic rules for sprout fusion and lumenization in adult regenerating tissue are unknown. To investigate this process, we grafted portions of the regenerating post-pneumonectomy lung onto the chick chorioallantoic membrane (CAM). Grafts from all 4 lobes of the post-pneumonectomy right lung demonstrated peri-graft angiogenesis as reflected by fluorescent plasma markers; however, fluorescent microsphere perfusion primarily occurred in the lobe of the lung that is the dominant site of post-pneumonectomy angiogenesis-namely, the cardiac lobe. Vascularization of the cardiac lobe grafts was confirmed by active tissue growth (p < .05). Functional vascular connections between the cardiac lobe and the CAM vascular network were demonstrated by confocal fluorescence microscopy as well as corrosion casting and scanning electron microscopy (SEM). Bulk transcriptional profiling of the cardiac lobe demonstrated the enhanced expression of many genes relative to alveolar epithelial cell (CD11b-/CD31-) control cells, but only the upregulation of Ereg and Fgf6 compared to the less well-vascularized right upper lobe. The growth of actively regenerating non-neoplastic adult tissue on the CAM demonstrates that functional lumenization can occur between species (mouse and chick) and across the developmental spectrum (adult and embryo).
Subject(s)
Chorioallantoic Membrane , Neovascularization, Physiologic , Mice , Animals , Chorioallantoic Membrane/blood supply , Chickens , Neovascularization, Pathologic , LungABSTRACT
Pleural epithelial adaptations to mechanical stress are relevant to both normal lung function and parenchymal lung diseases. Assessing regional differences in mechanical stress, however, has been complicated by the nonlinear stress-strain properties of the lung and the large displacements with ventilation. Moreover, there is no reliable method of isolating pleural epithelium for structural studies. To define the topographic variation in pleural structure, we developed a method of en face harvest of murine pleural epithelium. Silver-stain was used to highlight cell borders and facilitate imaging with light microscopy. Machine learning and watershed segmentation were used to define the cell area and cell perimeter of the isolated pleural epithelial cells. In the deflated lung at residual volume, the pleural epithelial cells were significantly larger in the apex (624 ± 247 µm2 ) than in basilar regions of the lung (471 ± 119 µm2 ) (p < 0.001). The distortion of apical epithelial cells was consistent with a vertical gradient of pleural pressures. To assess epithelial changes with inflation, the pleura was studied at total lung capacity. The average epithelial cell area increased 57% and the average perimeter increased 27% between residual volume and total lung capacity. The increase in lung volume was less than half the percent change predicted by uniform or isotropic expansion of the lung. We conclude that the structured analysis of pleural epithelial cells complements studies of pulmonary microstructure and provides useful insights into the regional distribution of mechanical stresses in the lung.
Subject(s)
Epithelial Cells , Lung , Pleura , Animals , Mice , Lung/anatomy & histology , Machine Learning , Pleura/anatomy & histology , Respiration , Thorax , Epithelial Cells/cytologyABSTRACT
This work introduces a novel setup for computed tomography of heavy and bulky specimens at the SYRMEP beamline of the Italian synchrotron Elettra. All the key features of the setup are described and the first application to off-center computed tomography scanning of a human chest phantom (approximately 45â kg) as well as the first results for vertical helical acquisitions are discussed.
Subject(s)
Synchrotrons , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Phantoms, ImagingABSTRACT
Mammalian pulmonary arteries divide multiple times before reaching the vast capillary network of the alveoli. Morphological analyses of the arterial branches can be challenging because more proximal branches are likely biologically distinct from more peripheral parts. Thus, it is useful to group the arterial branches into groups of coherent biology. While the generational approach of dichotomous branching is straightforward, the grouping of arterial branches in the asymmetrically branching monopodial lung is less clear. Several established classification methods return highly dissimilar groupings when employed on the same organ. Here, we established a workflow allowing the quantification of grouping results for the monopodial lung and tested various methods to group the branches of the arterial tree into coherent groups. A mouse lung was imaged by synchrotron x-ray microcomputed tomography, and the arteries were digitally segmented. The arterial tree was divided into its individual segments, morphological properties were assessed from corresponding light microscopic scans, and different grouping methods were employed, such as (fractal) generation or (Strahler) order. The results were ranked by the morphological similarity within and dissimilarity between the resulting groups. Additionally, a method from the mathematical field of cluster analysis was employed for creating a reference classification. In conclusion, there were significant differences in method performance. The Strahler order was significantly superior to the generation system commonly used to classify human lung structure. Furthermore, a clustering approach indicated more precise ways to classify the monopodial lung vasculature exist.
Subject(s)
Lung , Pulmonary Artery , Mice , Animals , Humans , X-Ray Microtomography , Pulmonary Alveoli , Cluster Analysis , MammalsABSTRACT
Cirrhosis describes the development of excess fibrous tissue around regenerative nodules in response to chronic liver injury and usually leads to irreversible organ damage and end-stage liver disease. During the development of cirrhosis, the formation of collagenous scar tissue is paralleled by a reorganization and remodeling of the hepatic vascular system. To date, macrovascular remodeling in various cirrhosis models has been examined using three-dimensional (3D) imaging modalities, while microvascular changes have been studied mainly by two-dimensional (2D) light microscopic and electron microscopic imaging. Here, we report on the application of high-resolution 3D synchrotron radiation-based microtomography (SRµCT) for the study of the sinusoidal and capillary blood vessel system in three murine models of advanced parenchymal and biliary hepatic fibrosis. SRµCT facilitates the characterization of microvascular architecture and identifies features of intussusceptive angiogenesis in progressive liver fibrosis in a non-destructive 3D manner.
Subject(s)
Imaging, Three-Dimensional , Liver Cirrhosis/diagnostic imaging , Microvessels/diagnostic imaging , Synchrotrons , X-Ray Microtomography , Animals , Disease Models, Animal , Mice, Inbred C57BLABSTRACT
Various lung diseases, including pulmonary hypertension, chronic obstructive pulmonary disease or bronchopulmonary dysplasia, are associated with structural and architectural alterations of the pulmonary vasculature. The light microscopic (LM) analysis of the blood vessels is limited by the fact that it is impossible to identify which generation of the arterial tree an arterial profile within a LM microscopic section belongs to. Therefore, we established a workflow that allows for the generation-specific quantitative (stereological) analysis of pulmonary blood vessels. A whole left rabbit lung was fixed by vascular perfusion, embedded in glycol methacrylate and imaged by micro-computed tomography (µCT). The lung was then exhaustively sectioned and 20 consecutive sections were collected every 100 µm to obtain a systematic uniform random sample of the whole lung. The digital processing involved segmentation of the arterial tree, generation analysis, registration of LM sections with the µCT data as well as registration of the segmentation and the LM images. The present study demonstrates that it is feasible to identify arterial profiles according to their generation based on a generation-specific color code. Stereological analysis for the first three arterial generations of the monopodial branching of the vasculature included volume fraction, total volume, lumen-to-wall ratio and wall thickness for each arterial generation. In conclusion, the correlative image analysis of µCT and LM-based datasets is an innovative method to assess the pulmonary vasculature quantitatively.
Subject(s)
Imaging, Three-Dimensional , Pulmonary Artery/ultrastructure , X-Ray Microtomography , Animals , Female , Pregnancy , RabbitsABSTRACT
The pathogenetic role of angiogenesis in interstitial lung diseases (ILDs) is controversial. This study represents the first investigation of the spatial complexity and molecular motifs of microvascular architecture in important subsets of human ILD. The aim of our study was to identify specific variants of neoangiogenesis in three common pulmonary injury patterns in human ILD.We performed comprehensive and compartment-specific analysis of 24 human lung explants with usual intersitial pneumonia (UIP), nonspecific interstitial pneumonia (NSIP) and alveolar fibroelastosis (AFE) using histopathology, microvascular corrosion casting, micro-comupted tomography based volumetry and gene expression analysis using Nanostring as well as immunohistochemistry to assess remodelling-associated angiogenesis.Morphometrical assessment of vessel diameters and intervascular distances showed significant differences in neoangiogenesis in characteristically remodelled areas of UIP, NSIP and AFE lungs. Likewise, gene expression analysis revealed distinct and specific angiogenic profiles in UIP, NSIP and AFE lungs.Whereas UIP lungs showed a higher density of upstream vascularity and lower density in perifocal blood vessels, NSIP and AFE lungs revealed densely packed alveolar septal blood vessels. Vascular remodelling in NSIP and AFE is characterised by a prominent intussusceptive neoangiogenesis, in contrast to UIP, in which sprouting of new vessels into the fibrotic areas is characteristic. The molecular analyses of the gene expression provide a foundation for understanding these fundamental differences between AFE and UIP and give insight into the cellular functions involved.
Subject(s)
Idiopathic Interstitial Pneumonias , Lung Diseases, Interstitial , Humans , Lung , Neovascularization, Pathologic , Tomography, X-Ray ComputedABSTRACT
OBJECTIVES: Chronic obstructive pulmonary disease (COPD) is characterized by variable contributions of emphysema and airway disease on computed tomography (CT), and still little is known on their temporal evolution. We hypothesized that quantitative CT (QCT) is able to detect short-time changes in a cohort of patients with very severe COPD. METHODS: Two paired in- and expiratory CT each from 70 patients with avg. GOLD stage of 3.6 (mean age = 66 ± 7.5, mean FEV1/FVC = 35.28 ± 7.75) were taken 3 months apart and analyzed by fully automatic software computing emphysema (emphysema index (EI), mean lung density (MLD)), air-trapping (ratio expiration to inspiration of mean lung attenuation (E/I MLA), relative volume change between - 856 HU and - 950 HU (RVC856-950)), and parametric response mapping (PRM) parameters for each lobe separately and the whole lung. Airway metrics measured were wall thickness (WT) and lumen area (LA) for each airway generation and the whole lung. RESULTS: The average of the emphysema parameters (EI, MLD) increased significantly by 1.5% (p < 0.001) for the whole lung, whereas air-trapping parameters (E/I MLA, RVC856-950) were stable. PRMEmph increased from 34.3 to 35.7% (p < 0.001), whereas PRMNormal decrased from 23.6% to 22.8% (p = 0.012). WT decreased significantly from 1.17 ± 0.18 to 1.14 ± 0.19 mm (p = 0.036) and LA increased significantly from 25.08 ± 4.49 to 25.84 ± 4.87 mm2 (p = 0.041) for the whole lung. The generation-based analysis showed heterogeneous results. CONCLUSION: QCT detects short-time progression of emphysema in severe COPD. The changes were partly different among lung lobes and airway generations, indicating that QCT is useful to address the heterogeneity of COPD progression. KEY POINTS: ⢠QCT detects short-time progression of emphysema in severe COPD in a 3-month period. ⢠QCT is able to quantify even slight parenchymal changes, which were not detected by spirometry. ⢠QCT is able to address the heterogeneity of COPD, revealing inconsistent changes individual lung lobes and airway generations.
Subject(s)
Forced Expiratory Volume/physiology , Lung/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Emphysema/diagnosis , Tomography, X-Ray Computed/methods , Aged , Disease Progression , Female , Follow-Up Studies , Humans , Lung/physiopathology , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Emphysema/etiology , Pulmonary Emphysema/physiopathology , Severity of Illness Index , Spirometry , Time FactorsABSTRACT
Biodegradable pectin polymers have been recommended for a variety of biomedical applications, ranging from the delivery of oral drugs to the repair of injured visceral organs. A promising approach to regulate pectin biostability is the blending of pectin films. To investigate the development of conjoined films, we examined the physical properties of high-methoxyl pectin polymer-polymer (homopolymer) interactions at the adhesive interface. Pectin polymers were tested in glass phase (10-13% w/w water content) and gel phase (38-41% w/w water content). The tensile strength of polymer-polymer adhesion was measured after variable development time and compressive force. Regardless of pretest parameters, the adhesive strength of two glass phase films was negligible. In contrast, adhesion testing of two gel phase films resulted in significant tensile adhesion strength (p < 0.01). Adhesion was also observed between glass phase and gel phase films-likely reflecting the diffusion of water from the gel phase to the glass phase films. In studies of the interaction between two gel phase films, the polymer-polymer adhesive strength increased linearly with increasing compressive force (range 10-80 N) (R2 = 0.956). In contrast, adhesive strength increased logarithmically with time (range 10-10,000 s) (R2 = 0.913); most of the adhesive strength was observed within minutes of contact. Fracture mechanics demonstrated that the adhesion of two gel phase films resulted in a conjoined film with distinctive physical properties including increased extensibility, decreased stiffness and a 30% increase in the work of cohesion relative to native polymers (p < 0.01). Scanning electron microscopy of the conjoined films demonstrated cross-grain adhesion at the interface between the adhesive homopolymers. These structural and functional data suggest that blended pectin films have emergent physical properties resulting from the cross-grain intermingling of interfacial pectin chains.
Subject(s)
Biopolymers/chemistry , Membranes, Artificial , Pectins/chemistry , Water/chemistry , Diffusion , Gels , Glass , Polysaccharides/chemistryABSTRACT
Abstract: Pectin binds the mesothelial glycocalyx of visceral organs, suggesting its potential role as a mesothelial sealant. To assess the mechanical properties of pectin films, we compared pectin films with a less than 50% degree of methyl esterification (low-methoxyl pectin, LMP) to films with greater than 50% methyl esterification (high-methoxyl pectin, HMP). LMP and HMP polymers were prepared by step-wise dissolution and high-shear mixing. Both LMP and HMP films demonstrated a comparable clear appearance. Fracture mechanics demonstrated that the LMP films had a lower burst strength than HMP films at a variety of calcium concentrations and hydration states. The water content also influenced the extensibility of the LMP films with increased extensibility (probe distance) with an increasing water content. Similar to the burst strength, the extensibility of the LMP films was less than that of HMP films. Flexural properties, demonstrated with the 3-point bend test, showed that the force required to displace the LMP films increased with an increased calcium concentration (p < 0.01). Toughness, here reflecting deformability (ductility), was variable, but increased with an increased calcium concentration. Similarly, titrations of calcium concentrations demonstrated LMP films with a decreased cohesive strength and increased stiffness. We conclude that LMP films, particularly with the addition of calcium up to 10 mM concentrations, demonstrate lower strength and toughness than comparable HMP films. These physical properties suggest that HMP has superior physical properties to LMP for selected biomedical applications.
Subject(s)
Calcium/pharmacology , Flexural Strength , Pectins/chemistry , Water/chemistryABSTRACT
In-line free propagation phase-contrast synchrotron tomography of the lungs has been shown to provide superior image quality compared with attenuation-based computed tomography (CT) in small-animal studies. The present study was performed to prove the applicability on a human-patient scale using a chest phantom with ventilated fresh porcine lungs. Local areas of interest were imaged with a pixel size of 100â µm, yielding a high-resolution depiction of anatomical hallmarks of healthy lungs and artificial lung nodules. Details like fine spiculations into surrounding alveolar spaces were shown on a micrometre scale. Minor differences in artificial lung nodule density were detected by phase retrieval. Since we only applied a fraction of the X-ray dose used for clinical high-resolution CT scans, it is believed that this approach may become applicable to the detailed assessment of focal lung lesions in patients in the future.
Subject(s)
Lung/diagnostic imaging , Phantoms, Imaging , Synchrotrons , Algorithms , Anatomic Landmarks , Animals , Humans , Image Processing, Computer-Assisted , In Vitro Techniques , Proof of Concept Study , Swine , Tomography, X-Ray ComputedABSTRACT
BACKGROUND: Emphysematous destruction of lung parenchyma visible in computed tomography (CT) can be attributed to chronic obstructive pulmonary disease (COPD) or to α1-antitrypsin deficiency (AATD). OBJECTIVES: We evaluated if visual semiquantitative phenotyping of CT data helps identifying individuals with AATD in a group of smokers with severe emphysema and airflow limitation. METHOD: n = 14 patients with AATD and n = 15 with COPD and a minimum of 10 pack years underwent CT, clinical assessment, and full-body plethysmography. The extent and type of emphysema as well as large and small airway changes were rated semiquantitatively for each lobe using a standardized previously published scoring system. Lastly, a final diagnosis for each patient was proposed. RESULTS: AATD had a significantly lower mean emphysema score than COPD, with 8.9 ± 3.4 versus 11.9 ± 3.2 (p < 0.001), respectively. Within both groups, there was significantly more emphysema in the lower lobes (p < 0.05-0.001). The COPD group showed an upper- and middle-lobe predominance of emphysema distribution when compared to the AATD group (p < 0.001). Centrilobular (CLE) and panlobular (PLE) emphysema patterns showed a uniform distribution within both groups, with a CLE predominance in the upper lung and a PLE predominance in the lower lung regions. AATD and COPD both showed significantly more airway changes in lower lobes compared to upper lobes (p = 0.05-0.001), without significant differences between both groups. CONCLUSION: The typical emphysema distribution patterns seen on CT traditionally assigned to AATD and COPD were of little use in discriminating both entities. Also, airway changes could not contribute to a more precise differentiation. We conclude that a concise standardized phenotyping-driven approach to chest CT in emphysema is not sufficient to identify patients with AATD in a cohort of smokers with advanced emphysema.
Subject(s)
Pulmonary Emphysema/diagnostic imaging , Smoking/adverse effects , alpha 1-Antitrypsin Deficiency/diagnostic imaging , Aged , Cohort Studies , Diagnosis, Differential , Female , Humans , Male , Middle Aged , Pulmonary Emphysema/etiology , Radiography, Thoracic , Respiratory Function Tests , Tomography, X-Ray ComputedABSTRACT
In many mammals, including humans, removal of one lung (pneumonectomy) results in the compensatory growth of the remaining lung. Compensatory growth involves not only an increase in lung size, but also an increase in the number of alveoli in the peripheral lung; however, the process of compensatory neoalveolarization remains poorly understood. Here, we show that the expression of α-smooth muscle actin (SMA)-a cytoplasmic protein characteristic of myofibroblasts-is induced in the pleura following pneumonectomy. SMA induction appears to be dependent on pleural deformation (stretch) as induction is prevented by plombage or phrenic nerve transection (P < 0.001). Within 3 days of pneumonectomy, the frequency of SMA+ cells in subpleural alveolar ducts was significantly increased (P < 0.01). To determine the functional activity of these SMA+ cells, we isolated regenerating alveolar ducts by laser microdissection and analyzed individual cells using microfluidic single-cell quantitative PCR. Single cells expressing the SMA (Acta2) gene demonstrated significantly greater transcriptional activity than endothelial cells or other discrete cell populations in the alveolar duct (P < 0.05). The transcriptional activity of the Acta2+ cells, including expression of TGF signaling as well as repair-related genes, suggests that these myofibroblast-like cells contribute to compensatory lung growth.
Subject(s)
Lung/growth & development , Myofibroblasts/metabolism , Myofibroblasts/pathology , Stress, Mechanical , Actins/metabolism , Animals , Cell Separation , Gene Expression Regulation, Developmental , Image Cytometry , Lung/metabolism , Lung/surgery , Male , Mice, Inbred C57BL , Pneumonectomy , Polymerase Chain Reaction , Single-Cell Analysis , Transcription, GeneticABSTRACT
Nintedanib, a tyrosine kinase inhibitor approved for the treatment of idiopathic pulmonary fibrosis, has anti-fibrotic, anti-inflammatory, and anti-angiogenic activity. We explored the impact of nintedanib on microvascular architecture in a pulmonary fibrosis model. Lung fibrosis was induced in C57Bl/6 mice by intratracheal bleomycin (0.5 mg/kg). Nintedanib was started after the onset of lung pathology (50 mg/kg twice daily, orally). Micro-computed tomography was performed via volumetric assessment. Static lung compliance and forced vital capacity were determined by invasive measurements. Mice were subjected to bronchoalveolar lavage and histologic analyses, or perfused with a casting resin. Microvascular corrosion casts were imaged by scanning electron microscopy and synchrotron radiation tomographic microscopy, and quantified morphometrically. Bleomycin administration resulted in a significant increase in higher-density areas in the lungs detected by micro-computed tomography, which was significantly attenuated by nintedanib. Nintedanib significantly reduced lung fibrosis and vascular proliferation, normalized the distorted microvascular architecture, and was associated with a trend toward improvement in lung function and inflammation. Nintedanib resulted in a prominent improvement in pulmonary microvascular architecture, which outperformed the effect of nintedanib on lung function and inflammation. These findings uncover a potential new mode of action of nintedanib that may contribute to its efficacy in idiopathic pulmonary fibrosis.
Subject(s)
Idiopathic Pulmonary Fibrosis/drug therapy , Indoles/therapeutic use , Microvessels/ultrastructure , Animals , Bleomycin , Cell Proliferation/drug effects , Collagen/metabolism , Disease Models, Animal , Idiopathic Pulmonary Fibrosis/diagnostic imaging , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/physiopathology , Imaging, Three-Dimensional , Mice, Inbred C57BL , Microvessels/diagnostic imaging , Microvessels/drug effects , Neovascularization, Physiologic/drug effects , Pneumonia/complications , Pneumonia/diagnostic imaging , Pneumonia/pathology , Pneumonia/physiopathology , Pulmonary Alveoli/drug effects , Pulmonary Alveoli/pathology , Pulmonary Alveoli/ultrastructure , Respiratory Function Tests , X-Ray MicrotomographyABSTRACT
A contribution of pulmonary blood distension to alveolar opening was first proposed more than 100 years ago. To investigate the contribution of blood distension to lung mechanics, we studied control mice (normal perfusion), mice after exsanguination (absent perfusion) and mice after varying degrees of parenchymal resection (supra-normal perfusion). On inflation, mean tracheal pressures were higher in the bloodless mouse (4.0 ± 2.5 cm H2O); however, there was minimal difference between conditions on deflation (0.7 ± 0.9 cm H2O). To separate the peripheral and central mechanical effects of blood volume, multi-frequency lung impedance data was fitted to the constant-phase model. The presence or absence of blood had no effect on central airway resistance (p > .05). In contrast, measures of tissue damping (G), tissue elastance (H) and hysteresivity (η) demonstrated a significant increase in bloodless mice relative to control mice (p < .001). After varying amount of surgical resection and associated supra-normal perfusion of the remaining lung, there was an increase in G and H. Although the absolute difference in G and H increased with the amount of parenchymal resection, the proportional contribution of blood was identical in all conditions. The presence of blood in the pulmonary vasculature resulted in a constant 64 ± 5% reduction in tissue damping (G) and a 55 ± 4% reduction in tissue elastance (H). This nearly-constant contribution of blood to lung hysteresivity was only reduced by positive end-expiratory pressure (PEEP). To identify a distinct structural subset of vessels in the lung potentially contributing to these observations, vascular casting and scanning electron microscopy of the lung demonstrated morphologically distinct vascular rings at the alveolar opening. Our results suggest that intravascular blood distension, likely attributable to a subset of vessels in the alveolar entrance ring, contributes a measurable scaffolding effect to the functional recruitment of the peripheral lung.