Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters

Publication year range
1.
Cell ; 184(24): 5916-5931.e17, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34767757

ABSTRACT

There is increasing interest in the potential contribution of the gut microbiome to autism spectrum disorder (ASD). However, previous studies have been underpowered and have not been designed to address potential confounding factors in a comprehensive way. We performed a large autism stool metagenomics study (n = 247) based on participants from the Australian Autism Biobank and the Queensland Twin Adolescent Brain project. We found negligible direct associations between ASD diagnosis and the gut microbiome. Instead, our data support a model whereby ASD-related restricted interests are associated with less-diverse diet, and in turn reduced microbial taxonomic diversity and looser stool consistency. In contrast to ASD diagnosis, our dataset was well powered to detect microbiome associations with traits such as age, dietary intake, and stool consistency. Overall, microbiome differences in ASD may reflect dietary preferences that relate to diagnostic features, and we caution against claims that the microbiome has a driving role in ASD.


Subject(s)
Autistic Disorder/microbiology , Feeding Behavior , Gastrointestinal Microbiome , Adolescent , Age Factors , Autistic Disorder/diagnosis , Behavior , Child , Child, Preschool , Feces/microbiology , Female , Humans , Male , Phenotype , Phylogeny , Species Specificity
3.
BMC Pediatr ; 18(1): 284, 2018 08 27.
Article in English | MEDLINE | ID: mdl-30149807

ABSTRACT

BACKGROUND: The phenotypic and genetic heterogeneity of autism spectrum disorder (ASD) presents considerable challenges in understanding etiological pathways, selecting effective therapies, providing genetic counselling, and predicting clinical outcomes. With advances in genetic and biological research alongside rapid-pace technological innovations, there is an increasing imperative to access large, representative, and diverse cohorts to advance knowledge of ASD. To date, there has not been any single collective effort towards a similar resource in Australia, which has its own unique ethnic and cultural diversity. The Australian Autism Biobank was initiated by the Cooperative Research Centre for Living with Autism (Autism CRC) to establish a large-scale repository of biological samples and detailed clinical information about children diagnosed with ASD to facilitate future discovery research. METHODS: The primary group of participants were children with a confirmed diagnosis of ASD, aged between 2 and 17 years, recruited through four sites in Australia. No exclusion criteria regarding language level, cognitive ability, or comorbid conditions were applied to ensure a representative cohort was recruited. Both biological parents and siblings were invited to participate, along with children without a diagnosis of ASD, and children who had been queried for an ASD diagnosis but did not meet diagnostic criteria. All children completed cognitive assessments, with probands and parents completing additional assessments measuring ASD symptomatology. Parents completed questionnaires about their child's medical history and early development. Physical measurements and biological samples (blood, stool, urine, and hair) were collected from children, and physical measurements and blood samples were collected from parents. Samples were sent to a central processing site and placed into long-term storage. DISCUSSION: The establishment of this biobank is a valuable international resource incorporating detailed clinical and biological information that will help accelerate the pace of ASD discovery research. Recruitment into this study has also supported the feasibility of large-scale biological sample collection in children diagnosed with ASD with comprehensive phenotyping across a wide range of ages, intellectual abilities, and levels of adaptive functioning. This biological and clinical resource will be open to data access requests from national and international researchers to support future discovery research that will benefit the autistic community.


Subject(s)
Autism Spectrum Disorder/epidemiology , Biological Specimen Banks , Australia , Autism Spectrum Disorder/genetics , Biomedical Research , Blood Specimen Collection , Child , Child, Preschool , Clinical Protocols , Feces , Hair , Humans , Phenotype , Psychological Tests , Surveys and Questionnaires , Urinalysis
4.
Hum Reprod ; 32(4): 893-904, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28177073

ABSTRACT

Study question: Do genetic effects regulate gene expression in human endometrium? Summary answer: This study demonstrated strong genetic effects on endometrial gene expression and some evidence for genetic regulation of gene expression in a menstrual cycle stage-specific manner. What is known already: Genetic effects on expression levels for many genes are tissue specific. Endometrial gene expression varies across menstrual cycle stages and between individuals, but there are limited data on genetic control of expression in endometrium. Study design, size, duration: We analysed genome-wide genotype and gene expression data to map cis expression quantitative trait loci (eQTL) in endometrium. Participants/materials, setting, methods: We recruited 123 women of European ancestry. DNA samples from blood were genotyped on Illumina HumanCoreExome chips. Total RNA was extracted from endometrial tissues. Whole-transcriptome profiles were characterized using Illumina Human HT-12 v4.0 Expression Beadchips. We performed eQTL mapping with ~8 000 000 genotyped and imputed single nucleotide polymorphisms (SNPs) and 12 329 genes. Main results and the role of chance: We identified a total of 18 595 cis SNP-probe associations at a study-wide level of significance (P < 1 × 10-7), which correspond to independent eQTLs for 198 unique genes. The eQTLs with the largest effect in endometrial tissue were rs4902335 for CHURC1 (P = 1.05 × 10-32) and rs147253019 for ZP3 (P = 8.22 × 10-30). We further performed a context-specific eQTL analysis to investigate if genetic effects on gene expression regulation act in a menstrual cycle-specific manner. Interestingly, five cis-eQTLs were identified with a significant stage-by-genotype interaction. The strongest stage interaction was the eQTL for C10ORF33 (PYROXD2) with SNP rs2296438 (P = 2.0 × 10-4), where we observe a 2-fold difference in the average expression levels of heterozygous samples depending on the stage of the menstrual cycle. Large scale data: The summary eQTL results are publicly available to browse or download. Limitations, reasons for caution: A limitation of the present study was the relatively modest sample size. It was not powered to identify trans-eQTLs and larger sample sizes will also be needed to provide better power to detect cis-eQTLs and cycle stage-specific effects, given the substantial changes in expression across the menstrual cycle for many genes. Wider implications of the findings: Identification of endometrial eQTLs provides a platform for better understanding genetic effects on endometriosis risk and other endometrial-related pathologies. Study funding/competing interest(s): Funding for this work was provided by NHMRC Project Grants GNT1026033, GNT1049472, GNT1046880, GNT1050208, GNT1105321 and APP1083405. There are no competing interests.


Subject(s)
Endometrium/metabolism , Gene Expression Regulation , Menstrual Cycle/genetics , Transcriptome , Chromosome Mapping , Female , Genotype , Humans , Polymorphism, Single Nucleotide , Quantitative Trait Loci
5.
Hum Reprod ; 31(5): 999-1013, 2016 May.
Article in English | MEDLINE | ID: mdl-27005890

ABSTRACT

STUDY QUESTION: Do endometriosis risk-associated single nucleotide polymorphisms (SNPs) found at the 12q22 locus have effects on vezatin ( ITALIC! VEZT) expression? SUMMARY ANSWER: The original genome-wide association study (GWAS) SNP (rs10859871), and other newly identified association signals, demonstrate strong evidence for ITALIC! cis-expression quantitative trait loci (eQTL) effects on ITALIC! VEZT expression. WHAT IS KNOWN ALREADY: GWAS have identified several disease-risk loci (SNPs) associated with endometriosis. The SNP rs10859871 is located within the ITALIC! VEZT gene. ITALIC! VEZT expression is altered in the endometrium of endometriosis patients and is an excellent candidate for having a causal role in endometriosis. Most of the SNPs identified from GWAS are not located within the coding region of the genome. However, they are likely to have an effect on the regulation of gene expression. Genetic variants that affect levels of gene expression are called expression quantitative trait loci (eQTL). STUDY DESIGN, SIZE, DURATION: Samples for genotyping and ITALIC! VEZT variant screening were drawn from women recruited for genetic studies in Australia/New Zealand and women undergoing surgery in a tertiary care centre. Coding variants for ITALIC! VEZT were screened in blood from 100 unrelated individuals (endometriosis-dense families) from the QIMR Berghofer Medical Research Institute dataset. SNPs at the 12q22 locus were imputed and reanalysed for their association with endometriosis. Reanalysis of endometriosis risk-association was performed on a final combined Australian dataset of 2594 cases and 4496 controls. Gene expression was performed on 136 endometrial samples. eQTL analysis in whole blood was performed on 862 individuals from the Brisbane Systems Genetics Study. Endometrial tissue-specific eQTL analysis was performed on 122 samples (eutopic endometrium) collected following laparoscopic surgery. VEZT protein expression studies employed ITALIC! n = 56 (western blotting) and ITALIC! n = 42 (immunohistochemistry) endometrial samples. PARTICIPANTS/MATERIALS, SETTING, METHODS: The women recruited for this study provided blood and/or endometrial tissue samples in a hospital setting. Genomic DNA was screened for common and coding variants. SNPs of interest in the 12q22 region were genotyped using Agena MassARRAY technology or Taqman SNP genotyping assay. Gene expression profiles from RNA extracted from blood and endometrial tissue samples were generated using Illumina whole-genome expression chips (Human HT-12 v4.0). Whole protein extracted from endometrium was used for VEZT western blots, and paraffin sections of endometrium were employed for VEZT immunohistochemistry semi-quantitative analysis. MAIN RESULTS AND THE ROLE OF CHANCE: A total of 11 coding variants of ITALIC! VEZT (including one novel variant) were identified from an endometriosis-dense cohort. Polymorphic coding and imputed SNPs were combined with previous GWAS data to reanalyse the endometriosis risk association of the 12q22 region. The disease association signal at 12q22 was due to coding variants in ITALIC! VEZT or ITALIC! FGD6 (FYVE, RhoGEF and PH domain-containing 6) and SNPs with the strongest signals were either intronic or intergenic. We found strong evidence for ITALIC! VEZT cis-eQTLs with the sentinel SNP (rs10859871) in blood and endometrium, where the endometriosis risk allele (C) was associated with an increase in ITALIC! VEZT expression. We could not demonstrate this genotype-specific effect on VEZT protein expression in endometrium. However, we did observe a menstrual cycle stage specific increase in VEZT protein expression in endometrial glands, specific to the secretory phase ( ITALIC! P = 2.0 × 10(-4)). LIMITATIONS, REASONS FOR CAUTION: In comparison to the blood sample datasets, the study numbers of endometrial tissues were substantially reduced. Protein studies failed to complement RNA results, also likely a reflection of the low study numbers in these experiments. ITALIC! In silico prediction tools used in this investigation are typically based on cell lines different to our tissues of interest, thus any functional annotations drawn from these approaches should be considered carefully. Therefore, functional studies on VEZT and related pathway components are still warranted to unequivocally implicate a causal role for VEZT in endometriosis pathophysiology. WIDER IMPLICATIONS OF THE FINDINGS: GWAS have proven to be very valuable tools for deciphering complex diseases. Endometriosis is a text-book example of a complex disease, involving genetic, lifestyle and environmental influences. Our focused investigation of the 12q22 region validates an association with increased endometriosis risk. Endometriosis risk SNPs (including rs10859871) located within this locus demonstrated evidence for ITALIC! cis-eQTLs on ITALIC! VEZT expression. By examining women who possess an enhanced genetic risk of developing endometriosis, we have identified an effect on ITALIC! VEZT expression and therefore a potential gene/gene pathway in endometriosis disease establishment and development. STUDY FUNDING/COMPETING INTERESTS: Funding for this work was provided by NHMRC Project Grants GNT1012245, GNT1026033, GNT1049472 and GNT1046880. G.W.M. is supported by the NHMRC Fellowship scheme (GNT1078399). S.J.H.-C. is supported by the J.N. Peters Bequest Fellowship. The authors declare no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Carrier Proteins/genetics , Endometriosis/genetics , Endometrium/metabolism , Genetic Predisposition to Disease , Membrane Proteins/genetics , Polymorphism, Single Nucleotide , Australia , Cohort Studies , Endometriosis/metabolism , Female , Genetic Association Studies , Genotype , Humans , New Zealand , Quantitative Trait Loci
6.
Addict Biol ; 19(1): 111-21, 2014 Jan.
Article in English | MEDLINE | ID: mdl-22500942

ABSTRACT

Genes encoding the opioid receptors (OPRM1, OPRD1 and OPRK1) are obvious candidates for involvement in risk for heroin dependence. Prior association studies commonly had samples of modest size, included limited single nucleotide polymorphism (SNP) coverage of these genes and yielded inconsistent results. Participants for the current investigation included 1459 heroin-dependent cases ascertained from maintenance clinics in New South Wales, Australia, 1495 unrelated individuals selected from an Australian sample of twins and siblings as not meeting DSM-IV criteria for lifetime alcohol or illicit drug dependence (non-dependent controls) and 531 controls ascertained from economically disadvantaged neighborhoods in proximity to the maintenance clinics. A total of 136 OPRM1, OPRD1 and OPRK1 SNPs were genotyped in this sample. After controlling for admixture with principal components analysis, our comparison of cases to non-dependent controls found four OPRD1 SNPs in fairly high linkage disequilibrium for which adjusted P values remained significant (e.g. rs2236857; OR 1.25; P=2.95×10(-4) ) replicating a previously reported association. A post hoc analysis revealed that the two SNP (rs2236857 and rs581111) GA haplotype in OPRD1 is associated with greater risk (OR 1.68; P=1.41×10(-5) ). No OPRM1 or OPRK1 SNPs reached more than nominal significance. Comparisons of cases to neighborhood controls reached only nominal significance. Our results replicate a prior report providing strong evidence implicating OPRD1 SNPs and, in particular, the two SNP (rs2236857 and rs581111) GA haplotype in liability for heroin dependence. Support was not found for similar association involving either OPRM1 or OPRK1 SNPs.


Subject(s)
Genetic Predisposition to Disease/genetics , Heroin Dependence/genetics , Receptors, Opioid, delta/genetics , Receptors, Opioid/genetics , Adult , Case-Control Studies , Control Groups , Female , Genetic Association Studies , HapMap Project , Haplotypes/genetics , Humans , Linkage Disequilibrium , Logistic Models , Male , Middle Aged , New South Wales , Polymorphism, Single Nucleotide/genetics , Principal Component Analysis , Receptors, Opioid/drug effects , Twins
7.
Nat Med ; 29(4): 936-949, 2023 04.
Article in English | MEDLINE | ID: mdl-37076741

ABSTRACT

Autism omics research has historically been reductionist and diagnosis centric, with little attention paid to common co-occurring conditions (for example, sleep and feeding disorders) and the complex interplay between molecular profiles and neurodevelopment, genetics, environmental factors and health. Here we explored the plasma lipidome (783 lipid species) in 765 children (485 diagnosed with autism spectrum disorder (ASD)) within the Australian Autism Biobank. We identified lipids associated with ASD diagnosis (n = 8), sleep disturbances (n = 20) and cognitive function (n = 8) and found that long-chain polyunsaturated fatty acids may causally contribute to sleep disturbances mediated by the FADS gene cluster. We explored the interplay of environmental factors with neurodevelopment and the lipidome, finding that sleep disturbances and unhealthy diet have a convergent lipidome profile (with potential mediation by the microbiome) that is also independently associated with poorer adaptive function. In contrast, ASD lipidome differences were accounted for by dietary differences and sleep disturbances. We identified a large chr19p13.2 copy number variant genetic deletion spanning the LDLR gene and two high-confidence ASD genes (ELAVL3 and SMARCA4) in one child with an ASD diagnosis and widespread low-density lipoprotein-related lipidome derangements. Lipidomics captures the complexity of neurodevelopment, as well as the biological effects of conditions that commonly affect quality of life among autistic people.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Sleep Wake Disorders , Child , Humans , Autistic Disorder/genetics , Autism Spectrum Disorder/genetics , Lipidomics , Quality of Life , Australia/epidemiology , Sleep Wake Disorders/genetics , Sleep Wake Disorders/complications , DNA Helicases , Nuclear Proteins , Transcription Factors
8.
Am J Hum Genet ; 85(5): 745-9, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19853236

ABSTRACT

Blood cells participate in vital physiological processes, and their numbers are tightly regulated so that homeostasis is maintained. Disruption of key regulatory mechanisms underlies many blood-related Mendelian diseases but also contributes to more common disorders, including atherosclerosis. We searched for quantitative trait loci (QTL) for hematology traits through a whole-genome association study, because these could provide new insights into both hemopoeitic and disease mechanisms. We tested 1.8 million variants for association with 13 hematology traits measured in 6015 individuals from the Australian and Dutch populations. These traits included hemoglobin composition, platelet counts, and red blood cell and white blood cell indices. We identified three regions of strong association that, to our knowledge, have not been previously reported in the literature. The first was located in an intergenic region of chromosome 9q31 near LPAR1, explaining 1.5% of the variation in monocyte counts (best SNP rs7023923, p=8.9x10(-14)). The second locus was located on chromosome 6p21 and associated with mean cell erythrocyte volume (rs12661667, p=1.2x10(-9), 0.7% variance explained) in a region that spanned five genes, including CCND3, a member of the D-cyclin gene family that is involved in hematopoietic stem cell expansion. The third region was also associated with erythrocyte volume and was located in an intergenic region on chromosome 6q24 (rs592423, p=5.3x10(-9), 0.6% variance explained). All three loci replicated in an independent panel of 1543 individuals (p values=0.001, 9.9x10(-5), and 7x10(-5), respectively). The identification of these QTL provides new opportunities for furthering our understanding of the mechanisms regulating hemopoietic cell fate.


Subject(s)
Base Sequence/genetics , Erythrocyte Indices/genetics , Genome, Human , Monocytes , Quantitative Trait Loci , Age Factors , Alleles , Australia , Chromosome Mapping , Chromosomes, Human, Pair 6 , Chromosomes, Human, Pair 9 , Cohort Studies , Computer Simulation , Female , Gene Frequency , Genetics, Population , Genome-Wide Association Study , Genotype , Haplotypes , Humans , Leukocyte Count , Linkage Disequilibrium , Male , Netherlands , Phenotype , Platelet Count , Polymorphism, Single Nucleotide
9.
Genome Res ; 19(11): 2075-80, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19801603

ABSTRACT

Genome-wide association studies (GWAS) have now successfully identified important genetic variants associated with many human traits and diseases. The high cost of genotyping arrays in large data sets remains the major barrier to wider utilization of GWAS. We have developed a novel method in which whole blood from cases and controls, respectively, is pooled prior to DNA extraction for genotyping. We demonstrate proof of principle by clearly identifying the associated variants for eye color, age-related macular degeneration, and pseudoexfoliation syndrome in cohorts not previously studied. Blood pooling has the potential to reduce GWAS cost by several orders of magnitude and dramatically shorten gene discovery time. This method has profound implications for translation of modern genetic approaches to a multitude of diseases and traits yet to be analyzed by GWAS, and will enable developing nations to participate in GWAS.


Subject(s)
Genetic Predisposition to Disease/genetics , Genome, Human/genetics , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide , Blood Specimen Collection/methods , Exfoliation Syndrome/blood , Exfoliation Syndrome/genetics , Eye Color/genetics , Genome-Wide Association Study/economics , Genotype , Humans , Macular Degeneration/blood , Macular Degeneration/genetics , Membrane Transport Proteins , White People/genetics
10.
Sci Rep ; 12(1): 10582, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35732753

ABSTRACT

Individuals encounter varying environmental exposures throughout their lifetimes. Some exposures such as smoking are readily observed and have high personal recall; others are more indirect or sporadic and might only be inferred from long occupational histories or lifestyles. We evaluated the utility of using lifetime-long self-reported exposures for identifying differential methylation in an amyotrophic lateral sclerosis cases-control cohort of 855 individuals. Individuals submitted paper-based surveys on exposure and occupational histories as well as whole blood samples. Genome-wide DNA methylation levels were quantified using the Illumina Infinium Human Methylation450 array. We analyzed 15 environmental exposures using the OSCA software linear and MOA models, where we regressed exposures individually by methylation adjusted for batch effects and disease status as well as predicted scores for age, sex, cell count, and smoking status. We also regressed on the first principal components on clustered environmental exposures to detect DNA methylation changes associated with a more generalised definition of environmental exposure. Five DNA methylation probes across three environmental exposures (cadmium, mercury and metalwork) were significantly associated using the MOA models and seven through the linear models, with one additionally across a principal component representing chemical exposures. Methylome-wide significance for four of these markers was driven by extreme hyper/hypo-methylation in small numbers of individuals. The results indicate the potential for using self-reported exposure histories in detecting DNA methylation changes in response to the environment, but also highlight the confounded nature of environmental exposure in cohort studies.


Subject(s)
DNA Methylation , Metals, Heavy , Environmental Exposure/adverse effects , Humans , Self Report , Smoking
11.
BMJ Open ; 12(10): e064073, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36241351

ABSTRACT

INTRODUCTION: Endometriosis is a common gynaecological disease associated with pelvic pain and subfertility. There are no non-invasive diagnostic tests, medical management requires suppression of oestrogens and surgical removal is associated with risk. Endometriosis is a complex genetic disease with variants in at least 27 genetic regions associated with susceptibility. Previous research has implicated a variety of biological mechanisms in multiple cell types. Endometrial and endometriotic epithelial cells acquire somatic mutations at frequency higher than expected in normal tissue. Stromal cells have altered adhesive capacity and immune cells show altered cytotoxicity. Understanding the functional consequences of these genetic variants on each cell type requires the collection of patient symptoms, clinical and genetic data and disease-relevant tissue in an integrated program. METHODS AND ANALYSIS: The aims of this study are to collect tissue associated with endometriosis, chart the genetic architecture related to endometriosis in this tissue, isolate and propagate patient-specific cellular models, understand the functional consequence of these genetic variants and how they interact with environmental factors in pathogenesis and treatment response.We will collect patient information from online questionnaires prior to surgery and at 6 and 12 months postsurgery. Treating physicians will document detailed surgical data. During surgery, we will collect blood, peritoneal fluid, endometrium and endometriotic tissue. Tissue will be used to isolate and propagate in vitro models of individual cells. Genome wide genotyping and gene expression data will be generated. Somatic mutations will be identified via whole genome sequencing. ETHICS AND DISSEMINATION: The study has been approved and will be monitored by the Metro North Human Research Ethics committee (HREC) and research activities at the University of Queensland (UQ) will be overseen by the UQ HREC with annual reports submitted. Research results will be published in peer-reviewed journals and presented at conferences were appropriate. This study involves human participants and was approved by RBWH Human Research Ethics Committee; HREC/2019/QRBW/56763.The University of Queensland; 2017002744. Participants gave informed consent to participate in the study before taking part.


Subject(s)
Endometriosis , Cohort Studies , Endometriosis/diagnosis , Endometriosis/genetics , Endometrium , Estrogens , Female , Humans , Queensland/epidemiology
12.
Genome Med ; 14(1): 7, 2022 01 19.
Article in English | MEDLINE | ID: mdl-35042540

ABSTRACT

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a complex, late-onset, neurodegenerative disease with a genetic contribution to disease liability. Genome-wide association studies (GWAS) have identified ten risk loci to date, including the TNIP1/GPX3 locus on chromosome five. Given association analysis data alone cannot determine the most plausible risk gene for this locus, we undertook a comprehensive suite of in silico, in vivo and in vitro studies to address this. METHODS: The Functional Mapping and Annotation (FUMA) pipeline and five tools (conditional and joint analysis (GCTA-COJO), Stratified Linkage Disequilibrium Score Regression (S-LDSC), Polygenic Priority Scoring (PoPS), Summary-based Mendelian Randomisation (SMR-HEIDI) and transcriptome-wide association study (TWAS) analyses) were used to perform bioinformatic integration of GWAS data (Ncases = 20,806, Ncontrols = 59,804) with 'omics reference datasets including the blood (eQTLgen consortium N = 31,684) and brain (N = 2581). This was followed up by specific expression studies in ALS case-control cohorts (microarray Ntotal = 942, protein Ntotal = 300) and gene knockdown (KD) studies of human neuronal iPSC cells and zebrafish-morpholinos (MO). RESULTS: SMR analyses implicated both TNIP1 and GPX3 (p < 1.15 × 10-6), but there was no simple SNP/expression relationship. Integrating multiple datasets using PoPS supported GPX3 but not TNIP1. In vivo expression analyses from blood in ALS cases identified that lower GPX3 expression correlated with a more progressed disease (ALS functional rating score, p = 5.5 × 10-3, adjusted R2 = 0.042, Beffect = 27.4 ± 13.3 ng/ml/ALSFRS unit) with microarray and protein data suggesting lower expression with risk allele (recessive model p = 0.06, p = 0.02 respectively). Validation in vivo indicated gpx3 KD caused significant motor deficits in zebrafish-MO (mean difference vs. control ± 95% CI, vs. control, swim distance = 112 ± 28 mm, time = 1.29 ± 0.59 s, speed = 32.0 ± 2.53 mm/s, respectively, p for all < 0.0001), which were rescued with gpx3 expression, with no phenotype identified with tnip1 KD or gpx3 overexpression. CONCLUSIONS: These results support GPX3 as a lead ALS risk gene in this locus, with more data needed to confirm/reject a role for TNIP1. This has implications for understanding disease mechanisms (GPX3 acts in the same pathway as SOD1, a well-established ALS-associated gene) and identifying new therapeutic approaches. Few previous examples of in-depth investigations of risk loci in ALS exist and a similar approach could be applied to investigate future expected GWAS findings.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Amyotrophic Lateral Sclerosis/genetics , Animals , Genetic Predisposition to Disease , Genome-Wide Association Study/methods , Humans , Polymorphism, Single Nucleotide , Zebrafish/genetics
13.
Eur J Hum Genet ; 30(5): 532-539, 2022 05.
Article in English | MEDLINE | ID: mdl-33907316

ABSTRACT

Amyotrophic Lateral Sclerosis (ALS) is recognised to be a complex neurodegenerative disease involving both genetic and non-genetic risk factors. The underlying causes and risk factors for the majority of cases remain unknown; however, ever-larger genetic data studies and methodologies promise an enhanced understanding. Recent analyses using published summary statistics from the largest ALS genome-wide association study (GWAS) (20,806 ALS cases and 59,804 healthy controls) identified that schizophrenia (SCZ), cognitive performance (CP) and educational attainment (EA) related traits were genetically correlated with ALS. To provide additional evidence for these correlations, we built single and multi-trait genetic predictors using GWAS summary statistics for ALS and these traits, (SCZ, CP, EA) in an independent Australian cohort (846 ALS cases and 665 healthy controls). We compared methods for generating the risk predictors and found that the combination of traits improved the prediction (Nagelkerke-R2) of the case-control logistic regression. The combination of ALS, SCZ, CP, and EA, using the SBayesR predictor method gave the highest prediction (Nagelkerke-R2) of 0.027 (P value = 4.6 × 10-8), with the odds-ratio for estimated disease risk between the highest and lowest deciles of individuals being 3.15 (95% CI 1.96-5.05). These results support the genetic correlation between ALS, SCZ, CP and EA providing a better understanding of the complexity of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Schizophrenia , Amyotrophic Lateral Sclerosis/genetics , Australia , Cognition , Genetic Predisposition to Disease , Genome-Wide Association Study/methods , Humans , Polymorphism, Single Nucleotide , Risk Factors , Schizophrenia/genetics
14.
Hum Mutat ; 32(8): 873-6, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21598361

ABSTRACT

We recently mapped a quantitative trait locus for monocyte counts to chromosome 9q31 (rs7023923). Here we extend this work by showing with two independent approaches that rs7023923 regulates the expression levels of the nearby LPAR1 gene (P<0.0001), specifically implicating this gene in monocyte development. Furthermore, we tested 10 additional loci identified in the original analysis for replication in 1,122 individuals and confirm that rs6740847 near the alpha-4-integrin gene (ITGA4) associates with variation in monocyte counts (combined P=2.7×10(-10)). This variant is in complete linkage disequilibrium (r(2) =1) with a previously reported eQTL for ITGA4 (rs2124440), indicating that this is the likely causal gene in the region. Our results indicate that rs7023923 and rs6740847 respectively upregulate LPAR1 and downregulate ITGA4 expression and this increases the number of monocytes circulating in the peripheral blood. Further studies that investigate the downstream mechanism involved and the impact on immune function are warranted.


Subject(s)
Integrin alpha4/genetics , Integrin alpha4/metabolism , Monocytes/metabolism , Quantitative Trait Loci/genetics , Receptors, Lysophosphatidic Acid/genetics , Receptors, Lysophosphatidic Acid/metabolism , Chromosome Mapping , Gene Expression Profiling , Gene Expression Regulation , Genotype , Humans , Leukocyte Count , Monocytes/cytology , Polymorphism, Single Nucleotide
15.
BJPsych Open ; 7(2): e58, 2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33612137

ABSTRACT

BACKGROUND: The schizophrenia polygenic risk score (SCZ-PRS) is an emerging tool in psychiatry. AIMS: We aimed to evaluate the utility of SCZ-PRS in a young, transdiagnostic, clinical cohort. METHOD: SCZ-PRSs were calculated for young people who presented to early-intervention youth mental health clinics, including 158 patients of European ancestry, 113 of whom had longitudinal outcome data. We examined associations between SCZ-PRS and diagnosis, clinical stage and functioning at initial assessment, and new-onset psychotic disorder, clinical stage transition and functional course over time in contact with services. RESULTS: Compared with a control group, patients had elevated PRSs for schizophrenia, bipolar disorder and depression, but not for any non-psychiatric phenotype (for example cardiovascular disease). Higher SCZ-PRSs were elevated in participants with psychotic, bipolar, depressive, anxiety and other disorders. At initial assessment, overall SCZ-PRSs were associated with psychotic disorder (odds ratio (OR) per s.d. increase in SCZ-PRS was 1.68, 95% CI 1.08-2.59, P = 0.020), but not assignment as clinical stage 2+ (i.e. discrete, persistent or recurrent disorder) (OR = 0.90, 95% CI 0.64-1.26, P = 0.53) or functioning (R = 0.03, P = 0.76). Longitudinally, overall SCZ-PRSs were not significantly associated with new-onset psychotic disorder (OR = 0.84, 95% CI 0.34-2.03, P = 0.69), clinical stage transition (OR = 1.02, 95% CI 0.70-1.48, P = 0.92) or persistent functional impairment (OR = 0.84, 95% CI 0.52-1.38, P = 0.50). CONCLUSIONS: In this preliminary study, SCZ-PRSs were associated with psychotic disorder at initial assessment in a young, transdiagnostic, clinical cohort accessing early-intervention services. Larger clinical studies are needed to further evaluate the clinical utility of SCZ-PRSs, especially among individuals with high SCZ-PRS burden.

16.
Transl Psychiatry ; 11(1): 155, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33664235

ABSTRACT

Maternal postpartum depression (PPD) is a significant public health concern due to the severe negative impact on maternal and child health and well-being. In this study, we aimed to identify genes associated with PPD. To do this, we investigated genome-wide gene expression profiles of pregnant women during their third trimester of pregnancy and tested the association of gene expression with perinatal depressive symptoms. A total of 137 women from a cohort from the University of North Carolina, USA were assessed. The main phenotypes analysed were Edinburgh Postnatal Depression Scale (EPDS) scores at 2 months postpartum and PPD (binary yes/no) based on an EPDS cutoff of 10. Illumina NextSeq500/550 transcriptomic sequencing from whole blood was analysed using the edgeR package. We identified 71 genes significantly associated with postpartum depression scores at 2 months, after correction for multiple testing at 5% FDR. These included several interesting candidates including TNFRSF17, previously reported to be significantly upregulated in women with PPD and MMP8, a matrix metalloproteinase gene, associated with depression in a genome-wide association study. Functional annotation of differentially expressed genes revealed an enrichment of immune response-related biological processes. Additional analysis of genes associated with changes in depressive symptoms from recruitment to 2 months postpartum identified 66 genes significant at an FDR of 5%. Of these genes, 33 genes were also associated with depressive symptoms at 2 months postpartum. Comparing the results with previous studies, we observed that 15.4% of genes associated with PPD in this study overlapped with 700 core maternal genes that showed significant gene expression changes across multiple brain regions (P = 7.9e-05) and 29-53% of the genes were also associated with estradiol changes in a pharmacological model of depression (P values range = 1.2e-4-2.1e-14). In conclusion, we identified novel genes and validated genes previously associated with oestrogen sensitivity in PPD. These results point towards the role of an altered immune transcriptomic landscape as a vulnerability factor for PPD.


Subject(s)
Depression, Postpartum , Child , Depression, Postpartum/genetics , Female , Gene Expression , Genome-Wide Association Study , Humans , Postpartum Period , Pregnancy , Pregnancy Trimester, Third , Risk Factors
17.
Mol Autism ; 12(1): 12, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33568206

ABSTRACT

BACKGROUND: Autism spectrum disorder (ASD) is a complex neurodevelopmental condition whose biological basis is yet to be elucidated. The Australian Autism Biobank (AAB) is an initiative of the Cooperative Research Centre for Living with Autism (Autism CRC) to establish an Australian resource of biospecimens, phenotypes and genomic data for research on autism. METHODS: Genome-wide single-nucleotide polymorphism genotypes were available for 2,477 individuals (after quality control) from 546 families (436 complete), including 886 participants aged 2 to 17 years with diagnosed (n = 871) or suspected (n = 15) ASD, 218 siblings without ASD, 1,256 parents, and 117 unrelated children without an ASD diagnosis. The genetic data were used to confirm familial relationships and assign ancestry, which was majority European (n = 1,964 European individuals). We generated polygenic scores (PGS) for ASD, IQ, chronotype and height in the subset of Europeans, and in 3,490 unrelated ancestry-matched participants from the UK Biobank. We tested for group differences for each PGS, and performed prediction analyses for related phenotypes in the AAB. We called copy-number variants (CNVs) in all participants, and intersected these with high-confidence ASD- and intellectual disability (ID)-associated CNVs and genes from the public domain. RESULTS: The ASD (p = 6.1e-13), sibling (p = 4.9e-3) and unrelated (p = 3.0e-3) groups had significantly higher ASD PGS than UK Biobank controls, whereas this was not the case for height-a control trait. The IQ PGS was a significant predictor of measured IQ in undiagnosed children (r = 0.24, p = 2.1e-3) and parents (r = 0.17, p = 8.0e-7; 4.0% of variance), but not the ASD group. Chronotype PGS predicted sleep disturbances within the ASD group (r = 0.13, p = 1.9e-3; 1.3% of variance). In the CNV analysis, we identified 13 individuals with CNVs overlapping ASD/ID-associated CNVs, and 12 with CNVs overlapping ASD/ID/developmental delay-associated genes identified on the basis of de novo variants. LIMITATIONS: This dataset is modest in size, and the publicly-available genome-wide-association-study (GWAS) summary statistics used to calculate PGS for ASD and other traits are relatively underpowered. CONCLUSIONS: We report on common genetic variation and rare CNVs within the AAB. Prediction analyses using currently available GWAS summary statistics are largely consistent with expected relationships based on published studies. As the size of publicly-available GWAS summary statistics grows, the phenotypic depth of the AAB dataset will provide many opportunities for analyses of autism profiles and co-occurring conditions, including when integrated with other omics datasets generated from AAB biospecimens (blood, urine, stool, hair).


Subject(s)
Autism Spectrum Disorder/genetics , Autistic Disorder/genetics , DNA Copy Number Variations , Genetic Predisposition to Disease , Genetic Variation , Australia , Autism Spectrum Disorder/diagnosis , Autistic Disorder/diagnosis , Biological Specimen Banks , Computational Biology/methods , Genome-Wide Association Study , Humans , Multifactorial Inheritance , Phenotype , Polymorphism, Single Nucleotide , Risk Factors
18.
Genome Biol ; 22(1): 90, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33771206

ABSTRACT

BACKGROUND: People with neurodegenerative disorders show diverse clinical syndromes, genetic heterogeneity, and distinct brain pathological changes, but studies report overlap between these features. DNA methylation (DNAm) provides a way to explore this overlap and heterogeneity as it is determined by the combined effects of genetic variation and the environment. In this study, we aim to identify shared blood DNAm differences between controls and people with Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease. RESULTS: We use a mixed-linear model method (MOMENT) that accounts for the effect of (un)known confounders, to test for the association of each DNAm site with each disorder. While only three probes are found to be genome-wide significant in each MOMENT association analysis of amyotrophic lateral sclerosis and Parkinson's disease (and none with Alzheimer's disease), a fixed-effects meta-analysis of the three disorders results in 12 genome-wide significant differentially methylated positions. Predicted immune cell-type proportions are disrupted across all neurodegenerative disorders. Protein inflammatory markers are correlated with profile sum-scores derived from disease-associated immune cell-type proportions in a healthy aging cohort. In contrast, they are not correlated with MOMENT DNAm-derived profile sum-scores, calculated using effect sizes of the 12 differentially methylated positions as weights. CONCLUSIONS: We identify shared differentially methylated positions in whole blood between neurodegenerative disorders that point to shared pathogenic mechanisms. These shared differentially methylated positions may reflect causes or consequences of disease, but they are unlikely to reflect cell-type proportion differences.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Genome-Wide Association Study , Neurodegenerative Diseases/etiology , Alleles , Biomarkers , Blood Cells/metabolism , Case-Control Studies , Disease Susceptibility , Gene Expression Profiling , Genetic Loci , Genetic Predisposition to Disease , Humans , Neurodegenerative Diseases/metabolism
19.
Hum Reprod ; 25(6): 1569-80, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20378614

ABSTRACT

BACKGROUND: The tendency to conceive dizygotic (DZ) twins is a complex trait influenced by genetic and environmental factors. To search for new candidate loci for twinning, we conducted a genome-wide linkage scan in 525 families using microsatellite and single nucleotide polymorphism marker panels. METHODS AND RESULTS: Non-parametric linkage analyses, including 523 families containing a total of 1115 mothers of DZ twins (MODZT) from Australia and New Zealand (ANZ) and The Netherlands (NL), produced four linkage peaks above the threshold for suggestive linkage, including a highly suggestive peak at the extreme telomeric end of chromosome 6 with an exponential logarithm of odds [(exp)LOD] score of 2.813 (P = 0.0002). Since the DZ twinning rate increases steeply with maternal age independent of genetic effects, we also investigated linkage including only families where at least one MODZT gave birth to her first set of twins before the age of 30. These analyses produced a maximum expLOD score of 2.718 (P = 0.0002), largely due to linkage signal from the ANZ cohort, however, ordered subset analyses indicated this result is most likely a chance finding in the combined dataset. Linkage analyses were also performed for two large DZ twinning families from the USA, one of which produced a peak on chromosome 2 in the region of two potential candidate genes. Sequencing of FSHR and FIGLA, along with INHBB in MODZTs from two large NL families with family specific linkage peaks directly over this gene, revealed a potentially functional variant in the 5' untranslated region of FSHR that segregated with the DZ twinning phenotype in the Utah family. CONCLUSION: Our data provide further evidence for complex inheritance of familial DZ twinning.


Subject(s)
Genetic Linkage/genetics , Twins, Dizygotic/genetics , Australia , Family , Female , Genome-Wide Association Study , Genotype , Humans , Male , Maternal Age , Netherlands , New Zealand , Phenotype
20.
Clin Transl Gastroenterol ; 11(12): e00274, 2020 12.
Article in English | MEDLINE | ID: mdl-33512796

ABSTRACT

INTRODUCTION: Celiac disease is an autoimmune disorder where intestinal immunopathology arises after gluten consumption. Previous studies suggested that hookworm infection restores gluten tolerance; however, these studies were small (n = 12) and not placebo controlled. METHODS: We undertook a randomized, placebo-controlled trial of hookworm infection in 54 people with celiac disease. The 94-week study involved treatment with either 20 or 40 Necator americanus third-stage larvae (L3-20 or L3-40) or placebo, followed by escalating gluten consumption (50 mg/d for 12 weeks, 1 g intermittent twice weekly for 12 weeks, 2 g/d sustained for 6 weeks, liberal diet for 1 year). RESULTS: Successful study completion rates at week 42 (primary outcome) were similar in each group (placebo: 57%, L3-20: 37%, and L3-40: 44%; P = 0.61), however gluten-related adverse events were significantly reduced in hookworm-treated participants: Median (range) adverse events/participant were as follows: placebo, 4 (1-9); L3-20, 1 (0-9); and L3-40, 0 (0-3) (P = 0.019). Duodenal villous height:crypt depth deteriorated similarly compared with their enrolment values in each group (mean change [95% confidence interval]: placebo, -0.6 [-1.3 to 0.2]; L3-20, -0.5 [-0.8 to 0.2]; and L3-40, -1.1 [-1.8 to 0.4]; P = 0.12). A retrospective analysis revealed that 9 of the 40 L3-treated participants failed to establish hookworm infections. Although week 42 completion rates were similar in hookworm-positive vs hookworm-negative participants (48% vs 44%, P = 0.43), quality of life symptom scores were lower in hookworm-positive participants after intermittent gluten challenge (mean [95% confidence interval]: 38.9 [33.9-44] vs 45.9 [39.2-52.6]). DISCUSSION: Hookworm infection does not restore tolerance to sustained moderate consumption of gluten (2 g/d) but was associated with improved symptom scores after intermittent consumption of lower, intermittent gluten doses.


Subject(s)
Celiac Disease/therapy , Glutens/immunology , Larva/metabolism , Necator americanus/metabolism , Therapy with Helminths/methods , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Celiac Disease/immunology , Double-Blind Method , Female , Glutens/administration & dosage , Glutens/metabolism , Humans , Male , Middle Aged , Quality of Life , Therapy with Helminths/adverse effects , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL