Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 23(8): 1256-1272, 2022 08.
Article in English | MEDLINE | ID: mdl-35902638

ABSTRACT

The recombination-activating genes (RAG) 1 and 2 are indispensable for diversifying the primary B cell receptor repertoire and pruning self-reactive clones via receptor editing in the bone marrow; however, the impact of RAG1/RAG2 on peripheral tolerance is unknown. Partial RAG deficiency (pRD) manifesting with late-onset immune dysregulation represents an 'experiment of nature' to explore this conundrum. By studying B cell development and subset-specific repertoires in pRD, we demonstrate that reduced RAG activity impinges on peripheral tolerance through the generation of a restricted primary B cell repertoire, persistent antigenic stimulation and an inflammatory milieu with elevated B cell-activating factor. This unique environment gradually provokes profound B cell dysregulation with widespread activation, remarkable extrafollicular maturation and persistence, expansion and somatic diversification of self-reactive clones. Through the model of pRD, we reveal a RAG-dependent 'domino effect' that impacts stringency of tolerance and B cell fate in the periphery.


Subject(s)
B-Lymphocytes , DNA-Binding Proteins , Homeodomain Proteins , Nuclear Proteins , Cell Differentiation , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Homeodomain Proteins/genetics , Humans , Immune Tolerance , Lymphocyte Count , Nuclear Proteins/deficiency
2.
J Clin Immunol ; 44(2): 42, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38231436

ABSTRACT

BACKGROUND: Patients with partial DiGeorge syndrome (pDGS) can present with immune dysregulation, the most common being autoimmune cytopenia (AIC). There is a lack of consensus on the approach to type, combination, and timing of therapies for AIC in pDGS. Recognition of immune dysregulation early in pDGS clinical course may help individualize treatment and prevent adverse outcomes from chronic immune dysregulation. OBJECTIVES: Objectives of this study were to characterize the natural history, immune phenotype, and biomarkers in pDGS with AIC. METHODS: Data on clinical presentation, disease severity, immunological phenotype, treatment selection, and response for patients with pDGS with AIC were collected via retrospective chart review. Flow cytometric analysis was done to assess T and B cell subsets, including biomarkers of immune dysregulation. RESULTS: Twenty-nine patients with the diagnosis of pDGS and AIC were identified from 5 international institutions. Nineteen (62%) patients developed Evan's syndrome (ES) during their clinical course and twenty (69%) had antibody deficiency syndrome. These patients demonstrated expansion in T follicular helper cells, CD19hiCD21lo B cells, and double negative cells and reduction in CD4 naïve T cells and regulatory T cells. First-line treatment for 17/29 (59%) included corticosteroids and/or high-dose immunoglobulin replacement therapy. Other overlapping therapies included eltrombopag, rituximab, and T cell immunomodulators. CONCLUSIONS: AIC in pDGS is often refractory to conventional AIC treatment paradigms. Biomarkers may have utility for correlation with disease state and potentially even response to therapy. Immunomodulating therapies could be initiated early based on early immune phenotyping and biomarkers before the disease develops or significantly worsens.


Subject(s)
Cytopenia , DiGeorge Syndrome , Humans , DiGeorge Syndrome/diagnosis , DiGeorge Syndrome/therapy , Retrospective Studies , Antigens, CD19 , Disease Progression
3.
Immunity ; 43(5): 884-95, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26546282

ABSTRACT

Activation-induced cytidine deaminase (AID), the enzyme-mediating class-switch recombination (CSR) and somatic hypermutation (SHM) of immunoglobulin genes, is essential for the removal of developing autoreactive B cells. How AID mediates central B cell tolerance remains unknown. We report that AID enzymes were produced in a discrete population of immature B cells that expressed recombination-activating gene 2 (RAG2), suggesting that they undergo secondary recombination to edit autoreactive antibodies. However, most AID+ immature B cells lacked anti-apoptotic MCL-1 and were deleted by apoptosis. AID inhibition using lentiviral-encoded short hairpin (sh)RNA in B cells developing in humanized mice resulted in a failure to remove autoreactive clones. Hence, B cell intrinsic AID expression mediates central B cell tolerance potentially through its RAG-coupled genotoxic activity in self-reactive immature B cells.


Subject(s)
Central Tolerance/genetics , Central Tolerance/immunology , Cytidine Deaminase/genetics , Lymphocyte Activation/immunology , Precursor Cells, B-Lymphoid/immunology , Adolescent , Adult , Aged , Animals , Apoptosis/genetics , Apoptosis/immunology , Case-Control Studies , Child , Child, Preschool , DNA-Binding Proteins/genetics , Female , Genes, Immunoglobulin/genetics , Genes, Immunoglobulin/immunology , Humans , Lymphocyte Activation/genetics , Male , Mice , Middle Aged , Nuclear Proteins/genetics , Recombination, Genetic/genetics , Recombination, Genetic/immunology , Somatic Hypermutation, Immunoglobulin/genetics , Somatic Hypermutation, Immunoglobulin/immunology , Young Adult
4.
J Allergy Clin Immunol ; 151(4): 922-925, 2023 04.
Article in English | MEDLINE | ID: mdl-36463978

ABSTRACT

BACKGROUND: Although previous studies described the production of IgG antibodies in a subgroup of patients with common variable immunodeficiency (CVID) following messenger RNA vaccinations with BNT162b2 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (CVID responders), the functionality of these antibodies in terms of avidity as measured by the dissociation rate constant (kdis) and the antibody response to booster immunization has not been studied. OBJECTIVE: We sought to analyze in CVID responders and healthy individuals, the avidity of anti-SARS-CoV-2 serum antibodies and their neutralization capacity as measured by surrogate virus-neutralizing antibodies in addition to IgG-, IgM-, and IgA-antibody levels and the response of circulating (peripheral blood) follicular T-helper cells after a third vaccination with BNT162b2 SARS-CoV-2 messenger RNA vaccine. METHODS: Binding IgG, IgA, and IgM serum levels were analyzed by ELISA in patients with CVID responding to the primary vaccination (CVID responders, n = 10) and healthy controls (n = 41). The binding avidity of anti-spike antibodies was investigated using biolayer interferometry in combination with biotin-labeled receptor-binding-domain of SARS-CoV-2 spike protein and streptavidin-labeled sensors. Antigen-specific recall T-cell responses were assessed by measuring activation-induced markers by flow cytometry. RESULTS: After the third vaccination with BNT162b2, IgG-, IgM-, and IgA-antibody levels, surrogate virus-neutralizing antibody levels, and antibody avidity were lower in CVID responders than in healthy controls. In contrast, anti-SARS-CoV-2 spike protein avidity was comparable in CVID responders and healthy individuals following primary vaccination. Follicular T-helper cell response to booster vaccination in CVID responders was significantly reduced when compared with that in healthy individuals. CONCLUSIONS: Impaired affinity maturation during booster response provides new insight into CVID pathophysiology.


Subject(s)
COVID-19 , Common Variable Immunodeficiency , Humans , BNT162 Vaccine , Antibody Formation , COVID-19/prevention & control , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , COVID-19 Vaccines , Antibodies, Blocking , Antibodies, Viral , Immunoglobulin A , Immunoglobulin M
5.
J Clin Immunol ; 43(6): 1414-1425, 2023 08.
Article in English | MEDLINE | ID: mdl-37160610

ABSTRACT

PURPOSE: To achieve reductions in infusion time, infusion sites, and frequency, a prospective, open-label, multicenter, Phase 3 study evaluated the safety, efficacy, and tolerability of subcutaneous immunoglobulin (SCIG) 16.5% (Cutaquig®, Octapharma) at enhanced infusion regimens. METHODS: Three separate cohorts received SCIG 16.5% evaluating volume, rate, and frequency: Cohort 1) volume assessment/site: up to a maximum 100 mL/site; Cohort 2) infusion flow rate/site: up to a maximum of 100 mL/hr/site or the maximum flow rate achievable by the tubing; Cohort 3) infusion frequency: every other week at twice the patient's weekly dose. RESULTS: For Cohort 1 (n = 15), the maximum realized volume per site was 108 mL/site, exceeding the currently labeled (US) maximum (up to 40 mL/site for adults). In Cohort 2 (n = 15), the maximum realized infusion flow rate was 67.5 mL/hr/site which is also higher than the labeled (US) maximum (up to 52 mL/hr/site). In Cohort 3 (n = 34), the mean total trough levels for every other week dosing demonstrated equivalency to weekly dosing (p value = 0.0017). All regimens were well tolerated. There were no serious bacterial infections (SBIs). Most patients had mild (23.4%) or moderate (56.3%) adverse events. The majority of patients found the new infusion regimens to be better or somewhat better than their previous regimens and reported that switching to SCIG 16.5% was easy. CONCLUSIONS: SCIG 16.5% (Cutaquig®), infusions are efficacious, safe, and well tolerated with reduced infusion time, fewer infusion sites, and reduced frequency. Further, the majority of patients found the new infusion regimens to be better or somewhat better than their previous regimens.


Subject(s)
Immunologic Deficiency Syndromes , Primary Immunodeficiency Diseases , Adult , Humans , Immunoglobulins, Intravenous/adverse effects , Prospective Studies , Immunologic Deficiency Syndromes/diagnosis , Immunologic Deficiency Syndromes/drug therapy , Infusions, Subcutaneous , Immunoglobulin G/therapeutic use , Primary Immunodeficiency Diseases/drug therapy , Patient Outcome Assessment
6.
J Allergy Clin Immunol ; 149(5): 1525-1560, 2022 05.
Article in English | MEDLINE | ID: mdl-35176351

ABSTRACT

Secondary hypogammaglobulinemia (SHG) is characterized by reduced immunoglobulin levels due to acquired causes of decreased antibody production or increased antibody loss. Clarification regarding whether the hypogammaglobulinemia is secondary or primary is important because this has implications for evaluation and management. Prior receipt of immunosuppressive medications and/or presence of conditions associated with SHG development, including protein loss syndromes, are histories that raise suspicion for SHG. In patients with these histories, a thorough investigation of potential etiologies of SHG reviewed in this report is needed to devise an effective treatment plan focused on removal of iatrogenic causes (eg, discontinuation of an offending drug) or treatment of the underlying condition (eg, management of nephrotic syndrome). When iatrogenic causes cannot be removed or underlying conditions cannot be reversed, therapeutic options are not clearly delineated but include heightened monitoring for clinical infections, supportive antimicrobials, and in some cases, immunoglobulin replacement therapy. This report serves to summarize the existing literature regarding immunosuppressive medications and populations (autoimmune, neurologic, hematologic/oncologic, pulmonary, posttransplant, protein-losing) associated with SHG and highlights key areas for future investigation.


Subject(s)
Agammaglobulinemia , Common Variable Immunodeficiency , Immunologic Deficiency Syndromes , Agammaglobulinemia/diagnosis , Agammaglobulinemia/etiology , Agammaglobulinemia/therapy , Common Variable Immunodeficiency/complications , Humans , Iatrogenic Disease , Immunity , Immunoglobulins , Immunologic Deficiency Syndromes/complications , Immunologic Deficiency Syndromes/diagnosis , Immunologic Deficiency Syndromes/therapy
7.
Am J Med Genet C Semin Med Genet ; 190(2): 215-221, 2022 06.
Article in English | MEDLINE | ID: mdl-36210583

ABSTRACT

Newborn screening (NBS) for severe combined immunodeficiency (SCID) utilizing T-cell receptor excision circles (TRECs) has been implemented in all 50 states as of December 2018 and has been transformative for the clinical care of SCID patients. Though having high sensitivity for SCID, NBS-SCID has low specificity, therefore is able to detect other causes of lymphopenia in newborns including many inborn errors of immunity (IEIs). In a recent study, three of six newborns later diagnosed with Warts, Hypogammaglobulinemia, Infections, and Myelokathexis (WHIM) syndrome were found to have a low TRECs and lymphopenia at birth. This presents an opportunity to increase the detection and diagnosis of WHIM syndrome by NBS-SCID with immunological follow-up along with a combination of flow cytometry for immune cell subsets, absolute neutrophil count, and genetic testing, extending beyond the conventional bone marrow studies. Coupled with emerging technologies such as next-generation sequencing, transcriptomics and proteomics, dried blood spots used in NBS-SCID will promote earlier detection, diagnosis, and therefore treatment of IEIs such as WHIM syndrome.


Subject(s)
Lymphopenia , Severe Combined Immunodeficiency , Infant, Newborn , Humans , Neonatal Screening , Severe Combined Immunodeficiency/diagnosis , Severe Combined Immunodeficiency/genetics , Lymphopenia/diagnosis , Receptors, Antigen, T-Cell/genetics
8.
J Pediatr Hematol Oncol ; 44(3): e819-e822, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-34966099

ABSTRACT

Primary immunodeficiency diseases are associated with an increased tendency for noninfectious complications of autoimmunity and malignancy, particularly leukemia and lymphoma. The mechanisms of immune dysregulation have been linked to the combination of dysregulated immune cells and environmental factors such as infections. In particular, dysfunction in T-cell subsets and Epstein-Barr virus contributes to the development of autoimmunity and lymphoproliferative disease in primary immunodeficiency diseases. There are scant reports of patients with partial DiGeorge syndrome and Epstein-Barr virus-driven lymphoma. We report 1 patients with partial DiGeorge syndrome who developed lymphoma, and review reported cases in the literature.


Subject(s)
DiGeorge Syndrome , Epstein-Barr Virus Infections , Lymphoma , Lymphoproliferative Disorders , Primary Immunodeficiency Diseases , DiGeorge Syndrome/complications , Herpesvirus 4, Human , Humans , Lymphoma/complications , Lymphoproliferative Disorders/complications
9.
Int J Mol Sci ; 24(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36613668

ABSTRACT

The emergence, survival, growth and maintenance of autoreactive (AR) B-cell clones, the hallmark of humoral autoimmunity, leave their footprints in B-cell receptor repertoires. Collecting IgH sequences related to polyreactive (PR) ones from adaptive immune receptor repertoire (AIRR) datasets make the reconstruction and analysis of PR/AR B-cell lineages possible. We developed a computational approach, named ImmChainTracer, to extract members and to visualize clonal relationships of such B-cell lineages. Our approach was successfully applied on the IgH repertoires of patients suffering from monogenic hypomorphic RAG1 and 2 deficiency (pRD) or polygenic systemic lupus erythematosus (SLE) autoimmune diseases to identify relatives of AR IgH sequences and to track their fate in AIRRs. Signs of clonal expansion, affinity maturation and class-switching events in PR/AR and non-PR/AR B-cell lineages were revealed. An extension of our method towards B-cell expansion caused by any trigger (e.g., infection, vaccination or antibody development) may provide deeper insight into antigen specific B-lymphogenesis.


Subject(s)
Autoimmune Diseases , Lupus Erythematosus, Systemic , Humans , B-Lymphocytes , Autoimmunity , Antibodies
10.
J Clin Immunol ; 41(3): 621-628, 2021 04.
Article in English | MEDLINE | ID: mdl-33415666

ABSTRACT

PURPOSE: T cell receptor excision circle (TREC) quantification is a recent addition to newborn screening (NBS) programs and is intended to identify infants with severe combined immunodeficiencies (SCID). However, other primary immunodeficiency diseases (PID) have also been identified as the result of TREC screening. We recently reported a newborn with a low TREC level on day 1 of life who was diagnosed with WHIM (warts, hypogammaglobulinemia, infections, myelokathexis) syndrome, a non-SCID primary immunodeficiency caused by mutations in the chemokine receptor CXCR4. METHODS: We have now retrospectively reviewed the birth and clinical histories of all known WHIM infants born after the implementation of NBS for SCID. RESULTS: We identified six infants with confirmed WHIM syndrome who also had TREC quantification on NBS. Three of the six WHIM infants had low TREC levels on NBS. All six patients were lymphopenic but only one infant had a T cell count below 1,500 cells/µL. The most common clinical manifestation was viral bronchiolitis requiring hospitalization. One infant died of complications related to Tetralogy of Fallot, a known WHIM phenotype. CONCLUSION: The results suggest that WHIM syndrome should be considered in the differential diagnosis of newborns with low NBS TREC levels. TRIAL REGISTRATION: Not applicable.


Subject(s)
Neonatal Screening/methods , Primary Immunodeficiency Diseases/epidemiology , Primary Immunodeficiency Diseases/etiology , Receptors, Antigen, T-Cell/genetics , Warts/epidemiology , Warts/etiology , Biomarkers , DNA Mutational Analysis , Diagnosis, Differential , Disease Susceptibility , Female , Humans , Infant, Newborn , Male , Mutation , Phenotype , Primary Immunodeficiency Diseases/diagnosis , Receptors, CXCR4/genetics , Severe Combined Immunodeficiency/diagnosis , Severe Combined Immunodeficiency/epidemiology , Severe Combined Immunodeficiency/etiology , Warts/diagnosis
11.
J Clin Immunol ; 41(2): 294-302, 2021 02.
Article in English | MEDLINE | ID: mdl-33411155

ABSTRACT

Newborn screening efforts focusing on the quantification of T cell receptor excision circles (TRECs), as a biomarker for abnormal thymic production of T cells, have allowed for the identification and definitive treatment of severe combined immunodeficiency (SCID) in asymptomatic neonates. With the adoption of TREC quantification in Guthrie cards across the USA and abroad, typical, and atypical SCID constitutes only ~ 10% of cases identified with abnormal TRECs associated with T cell lymphopenia. Several other non-SCID-related conditions may be identified by newborn screening in a term infant. Thus, it is important for physicians to recognize that other factors, such as prematurity, are often associated with low TRECs initially, but often improve with age. This paper focuses on a challenge that immunologists face: the diagnostic evaluation and management of cases in which abnormal TRECs are associated with variants of T cell lymphopenia in the absence of a genetically defined form of typical or atypical SCID. Various syndromes associated with T cell impairment, secondary forms of T cell lymphopenia, and idiopathic T cell lymphopenia are identified using this screening approach. Yet there is no consensus or guidelines to assist in the evaluation and management of these newborns, despite representing 90% of the patients identified, resulting in significant work for the clinical teams until a diagnosis is made. Using a case-based approach, we review pearls relevant to the evaluation of these newborns, as well as the management dilemmas for the families and team related to the resolution of genetic ambiguities.


Subject(s)
Receptors, Antigen, T-Cell/immunology , Severe Combined Immunodeficiency/diagnosis , Severe Combined Immunodeficiency/immunology , T-Lymphocytes/immunology , Humans , Infant, Newborn , Lymphopenia/diagnosis , Lymphopenia/immunology , Neonatal Screening/methods
12.
J Allergy Clin Immunol ; 145(1): 46-69, 2020 01.
Article in English | MEDLINE | ID: mdl-31568798

ABSTRACT

Genetic testing has become an integral component of the diagnostic evaluation of patients with suspected primary immunodeficiency diseases. Results of genetic testing can have a profound effect on clinical management decisions. Therefore clinical providers must demonstrate proficiency in interpreting genetic data. Because of the need for increased knowledge regarding this practice, the American Academy of Allergy, Asthma & Immunology Primary Immunodeficiency Diseases Committee established a work group that reviewed and summarized information concerning appropriate methods, tools, and resources for evaluating variants identified by genetic testing. Strengths and limitations of tests frequently ordered by clinicians were examined. Summary statements and tables were then developed to guide the interpretation process. Finally, the need for research and collaboration was emphasized. Greater understanding of these important concepts will improve the diagnosis and management of patients with suspected primary immunodeficiency diseases.


Subject(s)
Genetic Testing , Primary Immunodeficiency Diseases , Asthma , Humans , Primary Immunodeficiency Diseases/diagnosis , Primary Immunodeficiency Diseases/genetics , Primary Immunodeficiency Diseases/therapy , United States
13.
Blood ; 131(26): 2967-2977, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29728406

ABSTRACT

Allogeneic hematopoietic stem cell transplant (HSCT) typically results in donor T-cell engraftment and function in patients with severe combined immunodeficiency (SCID), but humoral immunity, particularly when using donors other than matched siblings, is variable. B-cell function after HSCT for SCID depends on the genetic cause, the use of pre-HSCT conditioning, and whether donor B-cell chimerism is achieved. Patients with defects in IL2RG or JAK3 undergoing HSCT without conditioning often have poor B-cell function post-HSCT, perhaps as a result of impairment of IL-21 signaling in host-derived B cells. To investigate the effect of pre-HSCT conditioning on B-cell function, and the relationship of in vitro B-cell function to clinical humoral immune status, we analyzed 48 patients with IL2RG/JAK3 SCID who were older than 2 years after HSCT with donors other than matched siblings. T follicular helper cells (TFH) developed in these patients with kinetics similar to healthy young children; thus, poor B-cell function could not be attributed to a failure of TFH development. In vitro differentiation of B cells into plasmablasts and immunoglobulin secretion in response to IL-21 strongly correlated with the use of conditioning, donor B-cell engraftment, freedom from immunoglobulin replacement, and response to tetanus vaccine. Patients receiving immunoglobulin replacement who had normal serum immunoglobulin M showed poor response to IL-21 in vitro, similar to those with low serum IgM. In vitro response of B cells to IL-21 may predict clinically relevant humoral immune function in patients with IL2RG/JAK3 SCID after HSCT.


Subject(s)
B-Lymphocytes/immunology , Hematopoietic Stem Cell Transplantation/methods , Interleukin Receptor Common gamma Subunit/immunology , Interleukins/immunology , Janus Kinase 3/immunology , Severe Combined Immunodeficiency/therapy , Transplantation Conditioning/methods , Adolescent , B-Lymphocytes/cytology , Cell Differentiation , Child , Child, Preschool , Female , Humans , Immunity, Humoral , Interleukin Receptor Common gamma Subunit/genetics , Janus Kinase 3/genetics , Lymphocyte Activation , Male , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/immunology , T-Lymphocytes/immunology , Transplantation, Homologous , Young Adult
14.
J Allergy Clin Immunol ; 143(2): 726-735, 2019 02.
Article in English | MEDLINE | ID: mdl-29772310

ABSTRACT

BACKGROUND: Mutations in recombination-activating gene (RAG) 1 and RAG2 are associated with a broad range of clinical and immunologic phenotypes in human subjects. OBJECTIVE: Using a flow cytometry-based assay, we aimed to measure the recombinase activity of naturally occurring RAG2 mutant proteins and to correlate our results with the severity of the clinical and immunologic phenotype. METHODS: Abelson virus-transformed Rag2-/- pro-B cells engineered to contain an inverted green fluorescent protein (GFP) cassette flanked by recombination signal sequences were transduced with retroviruses encoding either wild-type or 41 naturally occurring RAG2 variants. Bicistronic vectors were used to introduce compound heterozygous RAG2 variants. The percentage of GFP-expressing cells was evaluated by using flow cytometry, and high-throughput sequencing was used to analyze rearrangements at the endogenous immunoglobulin heavy chain (Igh) locus. RESULTS: The RAG2 variants showed a wide range of recombination activity. Mutations associated with severe combined immunodeficiency and Omenn syndrome had significantly lower activity than those detected in patients with less severe clinical presentations. Four variants (P253R, F386L, N474S, and M502V) previously thought to be pathogenic were found to have wild-type levels of activity. Use of bicistronic vectors permitted us to assess more carefully the effect of compound heterozygous mutations, with good correlation between GFP expression and the number and diversity of Igh rearrangements. CONCLUSIONS: Our data support genotype-phenotype correlation in the setting of RAG2 deficiency. The assay described can be used to define the possible disease-causing role of novel RAG2 variants and might help predict the severity of the clinical phenotype.


Subject(s)
B-Lymphocytes/physiology , DNA-Binding Proteins/genetics , Immunoglobulin Heavy Chains/genetics , Mutation/genetics , Nuclear Proteins/genetics , Receptors, Antigen, B-Cell/genetics , Severe Combined Immunodeficiency/genetics , Adolescent , Cell Line, Transformed , Child , Child, Preschool , Disease Progression , Female , Gene Knockdown Techniques , Genetic Association Studies , High-Throughput Nucleotide Sequencing , Humans , Infant , Infant, Newborn , Male , Polymorphism, Genetic
15.
J Allergy Clin Immunol ; 143(1): 173-181.e10, 2019 01.
Article in English | MEDLINE | ID: mdl-30248356

ABSTRACT

BACKGROUND: Atopic dermatitis (AD) is a highly prevalent chronic inflammatory skin disease that is known to be, at least in part, genetically determined. Mutations in caspase recruitment domain-containing protein 14 (CARD14) have been shown to result in various forms of psoriasis and related disorders. OBJECTIVE: We aimed to identify rare DNA variants conferring a significant risk for AD through genetic and functional studies in a cohort of patients affected with severe AD. METHODS: Whole-exome and direct gene sequencing, immunohistochemistry, real-time PCR, ELISA, and functional assays in human keratinocytes were used. RESULTS: In a cohort of patients referred with severe AD, DNA sequencing revealed in 4 patients 2 rare heterozygous missense mutations in the gene encoding CARD14, a major regulator of nuclear factor κB (NF-κB). A dual luciferase reporter assay demonstrated that both mutations exert a dominant loss-of-function effect and result in decreased NF-κB signaling. Accordingly, immunohistochemistry staining showed decreased expression of CARD14 in patients' skin, as well as decreased levels of activated p65, a surrogate marker for NF-κB activity. CARD14-deficient or mutant-expressing keratinocytes displayed abnormal secretion of key mediators of innate immunity. CONCLUSIONS: Although dominant gain-of-function mutations in CARD14 are associated with psoriasis and related diseases, loss-of-function mutations in the same gene are associated with a severe variant of AD.


Subject(s)
CARD Signaling Adaptor Proteins , Dermatitis, Atopic , Guanylate Cyclase , Keratinocytes , Loss of Function Mutation , Membrane Proteins , Mutation, Missense , Signal Transduction/genetics , Adolescent , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/metabolism , Dermatitis, Atopic/genetics , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Female , Guanylate Cyclase/genetics , Guanylate Cyclase/metabolism , HEK293 Cells , Humans , Keratinocytes/metabolism , Keratinocytes/pathology , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Severity of Illness Index , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism
16.
J Clin Immunol ; 39(7): 688-701, 2019 10.
Article in English | MEDLINE | ID: mdl-31388879

ABSTRACT

While widespread genome sequencing ushers in a new era of preventive medicine, the tools for predictive genomics are still lacking. Time and resource limitations mean that human diseases remain uncharacterized because of an inability to predict clinically relevant genetic variants. A strategy of targeting highly conserved protein regions is used commonly in functional studies. However, this benefit is lost for rare diseases where the attributable genes are mostly conserved. An immunological disorder exemplifying this challenge occurs through damaging mutations in RAG1 and RAG2 which presents at an early age with a distinct phenotype of life-threatening immunodeficiency or autoimmunity. Many tools exist for variant pathogenicity prediction, but these cannot account for the probability of variant occurrence. Here, we present a method that predicts the likelihood of mutation for every amino acid residue in the RAG1 and RAG2 proteins. Population genetics data from approximately 146,000 individuals was used for rare variant analysis. Forty-four known pathogenic variants reported in patients and recombination activity measurements from 110 RAG1/2 mutants were used to validate calculated scores. Probabilities were compared with 98 currently known human cases of disease. A genome sequence dataset of 558 patients who have primary immunodeficiency but that are negative for RAG deficiency were also used as validation controls. We compared the difference between mutation likelihood and pathogenicity prediction. Our method builds a map of most probable mutations allowing pre-emptive functional analysis. This method may be applied to other diseases with hopes of improving preparedness for clinical diagnosis.


Subject(s)
DNA-Binding Proteins/genetics , Genetic Variation , Genetics, Population , Homeodomain Proteins/genetics , Nuclear Proteins/genetics , Databases, Genetic , Gene Frequency , Genetic Association Studies , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Mutation , Translational Research, Biomedical
18.
Curr Opin Pediatr ; 31(6): 851-862, 2019 12.
Article in English | MEDLINE | ID: mdl-31693597

ABSTRACT

PURPOSE OF REVIEW: Primary immunodeficiency disorders (PIDs) are no longer defined by infections alone. First clinical sign or sequelae of PID may include autoimmunity, such as cytopenias, arthritis or enteropathy. This review addresses the latest in multidisciplinary approaches for expanding clinical phenotypes of PIDs with autoimmunity, including new presentations of known entities and novel gene defects. We also discuss diagnostic tools for identifying the distinct changes in immune cells subsets and autoantibodies, mechanistic understanding of the process, and targeted treatment and indications for hematopoietic stem-cell transplantation (HSCT). RECENT FINDINGS: In the past years, increased awareness and use of genetic screening, confirmatory functional studies and immunological biomarkers opened the door for early recognition of PIDs among patients with autoimmunity. Large cohort studies detail the clinical spectrum and treatment outcome of PIDs with autoimmunity with specific immune genes (e.g., CTLA4, LRBA, PI3Kδ, NFKB1, RAG). The benefit of early recognition is initiation of targeted therapies with precise re-balancing of the dysregulated immune pathways (e.g., biologicals) or definitive therapy (e.g., HSCT). SUMMARY: Clinical presentation of patients with PID and autoimmunity is highly variable and requires in-depth diagnostics and precision medicine approaches.


Subject(s)
Autoimmunity , Hematopoietic Stem Cell Transplantation , Primary Immunodeficiency Diseases , Genetic Testing , Humans , Immunologic Deficiency Syndromes
19.
Pediatr Transplant ; 23(7): e13571, 2019 11.
Article in English | MEDLINE | ID: mdl-31497926

ABSTRACT

Growing evidence suggests receipt of live-attenuated viral vaccines after solid organ transplant (SOT) has occurred and is safe and needed due to lapses in herd immunity. A 2-day consortium of experts in infectious diseases, transplantation, vaccinology, and immunology was held with the objective to review evidence and create expert recommendations for clinicians when considering live viral vaccines post-SOT. For consideration of VV and MMR post-transplant, evidence exists only for kidney and liver transplant recipients. For MMR vaccine post-SOT, consider vaccination during outbreak or travel to endemic risk areas. Patients who have received antiproliferative agents (eg. mycophenolate mofetil), T cell-depleting agents, or rituximab; or have persistently elevated EBV viral loads, or are in a state of functional tolerance, should be vaccinated with caution and have a more in-depth evaluation to define benefit of vaccination and net state of immune suppression prior to considering vaccination. MMR and/or VV (not combined MMRV) is considered to be safe in patients who are clinically well, are greater than 1 year after liver or kidney transplant and 2 months after acute rejection episode, can be closely monitored, and meet specific criteria of "low-level" immune suppression as defined in the document.


Subject(s)
Organ Transplantation , Postoperative Care/methods , Postoperative Complications/prevention & control , Vaccines, Attenuated , Virus Diseases/prevention & control , Child , Humans , Pediatrics , Postoperative Care/standards , Virus Diseases/etiology
20.
Eur J Immunol ; 47(11): 1959-1969, 2017 11.
Article in English | MEDLINE | ID: mdl-28718914

ABSTRACT

Recent studies identified an emerging role of group 2 and 3 innate lymphoid cells (ILCs) as key players in the generation of T-dependent and T-independent antibody production. In this retrospective case-control study, CD117+ ILCs (including the majority of ILC2 and ILC3) were reduced in patients with common variable immunodeficiency (CVID). The reduction in CD117+ ILCs was distinctive to CVID and could not be observed in patients with X-linked agammaglobulinemia. Patients with a more pronounced reduction in CD117+ ILC numbers showed significantly lower numbers of peripheral MZ-like B cells and an increased prevalence of chronic, non-infectious enteropathy. Subsequent phenotyping of ILC subsets in CVID revealed that the reduction in CD117+ ILC numbers is due to a reduction in ILC2 numbers. In vitro expansion of CVID ILC2 in response to IL-2, IL-7, IL-25 and IL-33 was impaired. Furthermore, upregulation of MHCII and IL-2RA in response to IL-2, IL-7, IL-25 and IL-33 was impaired in CVID ILC2. Thus, our results indicate a dysregulation of ILC subsets with a reduction in ILC2 numbers in CVID, however, further studies are needed to explore whether ILC abnormalities are a primary finding or secondary to disease complications encountered in CVID.


Subject(s)
Common Variable Immunodeficiency/immunology , Lymphocyte Subsets/immunology , Case-Control Studies , Female , Humans , Male , Middle Aged , Proto-Oncogene Proteins c-kit/immunology , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL