ABSTRACT
Coronary artery disease (CAD), type 2 diabetes (T2D) and depression are among the leading causes of chronic morbidity and mortality worldwide. Epidemiological studies indicate a substantial degree of multimorbidity, which may be explained by shared genetic influences. However, research exploring the presence of pleiotropic variants and genes common to CAD, T2D and depression is lacking. The present study aimed to identify genetic variants with effects on cross-trait liability to psycho-cardiometabolic diseases. We used genomic structural equation modelling to perform a multivariate genome-wide association study of multimorbidity (Neffective = 562,507), using summary statistics from univariate genome-wide association studies for CAD, T2D and major depression. CAD was moderately genetically correlated with T2D (rg = 0.39, P = 2e-34) and weakly correlated with depression (rg = 0.13, P = 3e-6). Depression was weakly correlated with T2D (rg = 0.15, P = 4e-15). The latent multimorbidity factor explained the largest proportion of variance in T2D (45%), followed by CAD (35%) and depression (5%). We identified 11 independent SNPs associated with multimorbidity and 18 putative multimorbidity-associated genes. We observed enrichment in immune and inflammatory pathways. A greater polygenic risk score for multimorbidity in the UK Biobank (N = 306,734) was associated with the co-occurrence of CAD, T2D and depression (OR per standard deviation = 1.91, 95% CI = 1.74-2.10, relative to the healthy group), validating this latent multimorbidity factor. Mendelian randomization analyses suggested potentially causal effects of BMI, body fat percentage, LDL cholesterol, total cholesterol, fasting insulin, income, insomnia, and childhood maltreatment. These findings advance our understanding of multimorbidity suggesting common genetic pathways.
Subject(s)
Coronary Artery Disease , Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Genome-Wide Association Study , Multimorbidity , Risk Factors , Coronary Artery Disease/epidemiology , Coronary Artery Disease/genetics , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide/geneticsABSTRACT
Epigenetic age acceleration (EAA), defined as the difference between chronological age and epigenetically predicted age, was calculated from multiple gestational epigenetic clocks (Bohlin, EPIC overlap, and Knight) using DNA methylation levels from cord blood in three large population-based birth cohorts: the Generation R Study (The Netherlands), the Avon Longitudinal Study of Parents and Children (United Kingdom), and the Norwegian Mother, Father and Child Cohort Study (Norway). We hypothesized that a lower EAA associates prospectively with increased ADHD symptoms. We tested our hypotheses in these three cohorts and meta-analyzed the results (n = 3383). We replicated previous research on the association between gestational age (GA) and ADHD. Both clinically measured gestational age as well as epigenetic age measures at birth were negatively associated with ADHD symptoms at ages 5-7 years (clinical GA: ß = -0.04, p < 0.001, Bohlin: ß = -0.05, p = 0.01; EPIC overlap: ß = -0.05, p = 0.01; Knight: ß = -0.01, p = 0.26). Raw EAA (difference between clinical and epigenetically estimated gestational age) was positively associated with ADHD in our main model, whereas residual EAA (raw EAA corrected for clinical gestational age) was not associated with ADHD symptoms across cohorts. Overall, findings support a link between lower gestational age (either measured clinically or using epigenetic-derived estimates) and ADHD symptoms. Epigenetic age acceleration does not, however, add unique information about ADHD risk independent of clinically estimated gestational age at birth.
Subject(s)
Attention Deficit Disorder with Hyperactivity , DNA Methylation , Epigenesis, Genetic , Gestational Age , Humans , Attention Deficit Disorder with Hyperactivity/genetics , Female , Child , Epigenesis, Genetic/genetics , Male , Prospective Studies , DNA Methylation/genetics , Child, Preschool , United Kingdom/epidemiology , Longitudinal Studies , Netherlands/epidemiology , Norway , Cohort Studies , Pregnancy , Fetal Blood/metabolismABSTRACT
BACKGROUND: Alzheimer's disease (AD)-related neuropathological changes can occur decades before clinical symptoms. We aimed to investigate whether neurodevelopment and/or neurodegeneration affects the risk of AD, through reducing structural brain reserve and/or increasing brain atrophy, respectively. METHODS: We used bidirectional two-sample Mendelian randomisation to estimate the effects between genetic liability to AD and global and regional cortical thickness, estimated total intracranial volume, volume of subcortical structures and total white matter in 37 680 participants aged 8-81 years across 5 independent cohorts (Adolescent Brain Cognitive Development, Generation R, IMAGEN, Avon Longitudinal Study of Parents and Children and UK Biobank). We also examined the effects of global and regional cortical thickness and subcortical volumes from the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium on AD risk in up to 37 741 participants. RESULTS: Our findings show that AD risk alleles have an age-dependent effect on a range of cortical and subcortical brain measures that starts in mid-life, in non-clinical populations. Evidence for such effects across childhood and young adulthood is weak. Some of the identified structures are not typically implicated in AD, such as those in the striatum (eg, thalamus), with consistent effects from childhood to late adulthood. There was little evidence to suggest brain morphology alters AD risk. CONCLUSIONS: Genetic liability to AD is likely to affect risk of AD primarily through mechanisms affecting indicators of brain morphology in later life, rather than structural brain reserve. Future studies with repeated measures are required for a better understanding and certainty of the mechanisms at play.
ABSTRACT
BACKGROUND: DNA methylation levels at specific sites can be used to proxy C-reactive protein (CRP) levels, providing a potentially more stable and accurate indicator of sustained inflammation and associated health risk. However, its use has been primarily limited to adults or preterm infants, and little is known about determinants for - or offspring outcomes of - elevated levels of this epigenetic proxy in cord blood. The aim of this study was to comprehensively map prenatal predictors and long-term neurobehavioral outcomes of neonatal inflammation, as assessed with an epigenetic proxy of inflammation in cord blood, in the general pediatric population. METHODS: Our study was embedded in the prospective population-based Generation R Study (n = 2,394). We created a methylation profile score of CRP (MPS-CRP) in cord blood as a marker of neonatal inflammation and validated it against serum CRP levels in mothers during pregnancy, as well as offspring at birth and in childhood. We then examined (i) which factors (previously associated with sustained inflammation) explain variability in MPS-CRP at birth, including a wide range of prenatal lifestyle and clinical conditions, pro-inflammatory exposures, as well as child genetic liability to elevated CRP levels; and (ii) whether MPS-CRP at birth associates with child neurobehavioral outcomes, including global structural MRI and DTI measures (child mean age 10 and 14 years) as well as psychiatric symptoms over time (Child Behavioral Checklist, at mean age 1.5, 3, 6, 10 and 14 years). RESULTS: MPS-CRP at birth was validated with serum CRP in cord blood (cut-off > 1 mg/L) (AUC = 0.72). Prenatal lifestyle pro-inflammatory factors explained a small part (i.e., < 5%) of the variance in the MPS-CRP at birth. No other prenatal predictor or the polygenic score of CRP in the child explained significant variance in the MPS-CRP at birth. The MPS-CRP at birth prospectively associated with a reduction in global fractional anisotropy over time on mainly a nominal threshold (ß = -0.014, SE = 0.007, p = 0.032), as well as showing nominal associations with structural differences (amygdala [(ß = 0.016, SE = 0.006, p = 0.010], cerebellum [(ß = -0.007, SE = 0.003, p = 0.036]). However, no associations with child psychiatric symptoms were observed. CONCLUSION: Prenatal exposure to lifestyle-related pro-inflammatory factors was the only prenatal predictor that accounted for some of the individual variability in MPS-CRP levels at birth. Further, while the MPS-CRP prospectively associated with white matter alterations over time, no associations were observed at the behavioral level. Thus, the relevance and potential utility of using epigenetic data as a marker of neonatal inflammation in the general population remain unclear. In the future, the use of epigenetic proxies for a wider range of immune markers may lend further insights into the relationship between neonatal inflammation and adverse neurodevelopment within the general pediatric population.
Subject(s)
Biomarkers , C-Reactive Protein , DNA Methylation , Epigenesis, Genetic , Fetal Blood , Inflammation , Humans , Female , C-Reactive Protein/metabolism , C-Reactive Protein/genetics , Pregnancy , Inflammation/genetics , Fetal Blood/metabolism , Fetal Blood/chemistry , Infant, Newborn , Male , Longitudinal Studies , Adult , Biomarkers/blood , Prospective Studies , Child , Prenatal Exposure Delayed Effects , Infant , Child, Preschool , Magnetic Resonance ImagingABSTRACT
Epigenetic mechanisms, such as DNA methylation (DNAm), have gained increasing attention as potential biomarkers and mechanisms underlying risk for neurodevelopmental, psychiatric and other brain-based disorders. Yet, surprisingly little is known about the extent to which DNAm is linked to individual differences in the brain itself, and how these associations may unfold across development - a time of life when many of these disorders emerge. Here, we systematically review evidence from the nascent field of Neuroimaging Epigenetics, combining structural or functional neuroimaging measures with DNAm, and the extent to which the developmental period (birth to adolescence) is represented in these studies. We identified 111 articles published between 2011-2021, out of which only a minority (21%) included samples under 18 years of age. Most studies were cross-sectional (85%), employed a candidate-gene approach (67%), and examined DNAm-brain associations in the context of health and behavioral outcomes (75%). Nearly half incorporated genetic data, and a fourth investigated environmental influences. Overall, studies support a link between peripheral DNAm and brain imaging measures, but there is little consistency in specific findings and it remains unclear whether DNAm markers present a cause, correlate or consequence of brain alterations. Overall, there is large heterogeneity in sample characteristics, peripheral tissue and brain outcome examined as well as the methods used. Sample sizes were generally low to moderate (median nall = 98, ndevelopmental = 80), and attempts at replication or meta-analysis were rare. Based on the strengths and weaknesses of existing studies, we propose three recommendations on how advance the field of Neuroimaging Epigenetics. We advocate for: (1) a greater focus on developmentally oriented research (i.e. pre-birth to adolescence); (2) the analysis of large, prospective, pediatric cohorts with repeated measures of DNAm and imaging to assess directionality; and (3) collaborative, interdisciplinary science to identify robust signals, triangulate findings and enhance translational potential.
Subject(s)
DNA Methylation , Epigenesis, Genetic , Adolescent , Child , Humans , Brain/diagnostic imaging , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Neuroimaging , Prospective StudiesABSTRACT
BACKGROUND: Lateral ventricular volume (LVV) enlargement has been repeatedly linked to schizophrenia; yet, what biological factors shape LVV during early development remain unclear. DNA methylation (DNAm), an essential process for neurodevelopment that is altered in schizophrenia, is a key molecular system of interest. METHODS: In this study, we conducted the first epigenome-wide association study of neonatal DNAm in cord blood with LVV in childhood (measured using T1-weighted brain scans at 10 years), based on data from a large population-based birth cohort, the Generation R Study (N = 840). Employing both probe-level and methylation profile score (MPS) approaches, we further examined whether epigenetic modifications identified at birth in cord blood are: (a) also observed cross-sectionally in childhood using peripheral blood DNAm at age of 10 years (Generation R, N = 370) and (b) prospectively associated with LVV measured in young adulthood in an all-male sample from the Avon Longitudinal Study of Parents and Children (ALSPAC, N = 114). RESULTS: At birth, DNAm levels at four CpGs (annotated to potassium channel tetramerization domain containing 3, KCTD3; SHH signaling and ciliogenesis regulator, SDCCAG8; glutaredoxin, GLRX) prospectively associated with childhood LVV after genome-wide correction; these genes have been implicated in brain development and psychiatric traits including schizophrenia. An MPS capturing a broader epigenetic profile of LVV - but not individual top hits - showed significant cross-sectional associations with LVV in childhood in Generation R and prospectively associated with LVV in early adulthood within ALSPAC. CONCLUSIONS: This study finds suggestive evidence that DNAm at birth prospectively associates with LVV at different life stages, albeit with small effect sizes. The prediction of MPS on LVV in a childhood sample and an independent male adult sample further underscores the stability and reproducibility of DNAm as a potential marker for LVV. Future studies with larger samples and comparable time points across development are needed to further elucidate how DNAm associates with this clinically relevant brain structure and risk for neuropsychiatric disorders, and what factors explain the identified DNAm profile of LVV at birth.
Subject(s)
DNA Methylation , Genome-Wide Association Study , Infant, Newborn , Child , Adult , Humans , Male , Young Adult , Longitudinal Studies , Cross-Sectional Studies , Reproducibility of Results , Epigenesis, Genetic , NeuroimagingABSTRACT
OBJECTIVE: Early-life stress (ELS) is an established risk factor for a host of adult mental and physical health problems, including both depression and obesity. Recent studies additionally showed that ELS was associated with an increased risk of comorbidity between mental and physical health problems, already in adolescence. Healthy lifestyle factors, including physical activity, sleep and diet have also been robustly linked to both emotional and physical wellbeing. However, it is yet unclear whether these lifestyle factors may moderate the association between ELS and psycho-physical comorbidity. METHODS: We investigated whether (a) participation in physical activity, (b) sleep duration, and (c) adherence to a Mediterranean diet, moderated the relationship between cumulative ELS exposure over the first 10 years of life and psycho-physical comorbidity at the age of 13.5 years. Analyses were conducted in 2022-2023, using data from two large adolescent samples based in the UK (ALSPAC; n = 8428) and The Netherlands (Generation R; n = 4268). RESULTS: Exposure to ELS was significantly associated with a higher risk of developing comorbidity, however this association was not modified by any of the three lifestyle factors investigated. Only physical activity was significantly associated with a reduced risk of comorbidity in one cohort (ORALSPAC [95%CI] = 0.73 [0.59;0.89]). CONCLUSIONS: In conclusion, while we found some evidence that more frequent physical activity may be associated with a reduction in psycho-physical comorbidity, we did not find evidence in support of the hypothesised moderation effects. However, more research is warranted to examine how these associations may evolve over time.
ABSTRACT
DNA methylation (DNAm) is known to play a pivotal role in childhood health and development, but a comprehensive characterization of genome-wide DNAm trajectories across this age period is currently lacking. We have therefore performed a series of epigenome-wide association studies in 5019 blood samples collected at multiple time-points from birth to late adolescence from 2348 participants of two large independent cohorts. DNAm profiles of autosomal CpG sites (CpGs) were generated using the Illumina Infinium HumanMethylation450 BeadChip. Change over time was widespread, observed at over one-half (53%) of CpGs. In most cases, DNAm was decreasing (36% of CpGs). Inter-individual variation in linear trajectories was similarly widespread (27% of CpGs). Evidence for non-linear change and inter-individual variation in non-linear trajectories was somewhat less common (11 and 8% of CpGs, respectively). Very little inter-individual variation in change was explained by sex differences (0.4% of CpGs) even though sex-specific DNAm was observed at 5% of CpGs. DNAm trajectories were distributed non-randomly across the genome. For example, CpGs with decreasing DNAm were enriched in gene bodies and enhancers and were annotated to genes enriched in immune-developmental functions. In contrast, CpGs with increasing DNAm were enriched in promoter regions and annotated to genes enriched in neurodevelopmental functions. These findings depict a methylome undergoing widespread and often non-linear change throughout childhood. They support a developmental role for DNA methylation that extends beyond birth into late adolescence and has implications for understanding life-long health and disease. DNAm trajectories can be visualized at http://epidelta.mrcieu.ac.uk.
Subject(s)
DNA Methylation/genetics , Epigenesis, Genetic , Epigenome/genetics , Adolescent , Age Factors , Child , Child, Preschool , CpG Islands/genetics , Female , Humans , Infant , Infant, Newborn , Male , Sex CharacteristicsABSTRACT
BACKGROUND: Childhood maltreatment is associated with depression and cardiometabolic disease in adulthood. However, the relationships with these two diseases have so far only been evaluated in different samples and with different methodology. Thus, it remains unknown how the effect sizes magnitudes for depression and cardiometabolic disease compare with each other and whether childhood maltreatment is especially associated with the co-occurrence ("comorbidity") of depression and cardiometabolic disease. This pooled analysis examined the association of childhood maltreatment with depression, cardiometabolic disease, and their comorbidity in adulthood. METHODS: We carried out an individual participant data meta-analysis on 13 international observational studies (N = 217,929). Childhood maltreatment comprised self-reports of physical, emotional, and/or sexual abuse before 18 years. Presence of depression was established with clinical interviews or validated symptom scales and presence of cardiometabolic disease with self-reported diagnoses. In included studies, binomial and multinomial logistic regressions estimated sociodemographic-adjusted associations of childhood maltreatment with depression, cardiometabolic disease, and their comorbidity. We then additionally adjusted these associations for lifestyle factors (smoking status, alcohol consumption, and physical activity). Finally, random-effects models were used to pool these estimates across studies and examined differences in associations across sex and maltreatment types. RESULTS: Childhood maltreatment was associated with progressively higher odds of cardiometabolic disease without depression (OR [95% CI] = 1.27 [1.18; 1.37]), depression without cardiometabolic disease (OR [95% CI] = 2.68 [2.39; 3.00]), and comorbidity between both conditions (OR [95% CI] = 3.04 [2.51; 3.68]) in adulthood. Post hoc analyses showed that the association with comorbidity was stronger than with either disease alone, and the association with depression was stronger than with cardiometabolic disease. Associations remained significant after additionally adjusting for lifestyle factors, and were present in both males and females, and for all maltreatment types. CONCLUSIONS: This meta-analysis revealed that adults with a history of childhood maltreatment suffer more often from depression and cardiometabolic disease than their non-exposed peers. These adults are also three times more likely to have comorbid depression and cardiometabolic disease. Childhood maltreatment may therefore be a clinically relevant indicator connecting poor mental and somatic health. Future research should investigate the potential benefits of early intervention in individuals with a history of maltreatment on their distal mental and somatic health (PROSPERO CRD42021239288).
Subject(s)
Cardiovascular Diseases , Child Abuse , Male , Adult , Female , Child , Humans , Depression , Child Abuse/psychology , Comorbidity , Self Report , Cardiovascular Diseases/epidemiologyABSTRACT
Schizophrenia is frequently associated with obesity, which is linked with neurostructural alterations. Yet, we do not understand how the brain correlates of obesity map onto the brain changes in schizophrenia. We obtained MRI-derived brain cortical and subcortical measures and body mass index (BMI) from 1260 individuals with schizophrenia and 1761 controls from 12 independent research sites within the ENIGMA-Schizophrenia Working Group. We jointly modeled the statistical effects of schizophrenia and BMI using mixed effects. BMI was additively associated with structure of many of the same brain regions as schizophrenia, but the cortical and subcortical alterations in schizophrenia were more widespread and pronounced. Both BMI and schizophrenia were primarily associated with changes in cortical thickness, with fewer correlates in surface area. While, BMI was negatively associated with cortical thickness, the significant associations between BMI and surface area or subcortical volumes were positive. Lastly, the brain correlates of obesity were replicated among large studies and closely resembled neurostructural changes in major depressive disorders. We confirmed widespread associations between BMI and brain structure in individuals with schizophrenia. People with both obesity and schizophrenia showed more pronounced brain alterations than people with only one of these conditions. Obesity appears to be a relevant factor which could account for heterogeneity of brain imaging findings and for differences in brain imaging outcomes among people with schizophrenia.
Subject(s)
Depressive Disorder, Major , Schizophrenia , Humans , Brain , Magnetic Resonance Imaging/methods , ObesityABSTRACT
Psychiatric disorders are highly heritable and associated with a wide variety of social adversity and physical health problems. Using genetic liability (rather than phenotypic measures of disease) as a proxy for psychiatric disease risk can be a useful alternative for research questions that would traditionally require large cohort studies with long-term follow up. Here we conducted a hypothesis-free phenome-wide association study in about 330,000 participants from the UK Biobank to examine associations of polygenic risk scores (PRS) for five psychiatric disorders (major depression (MDD), bipolar disorder (BP), schizophrenia (SCZ), attention-deficit/ hyperactivity disorder (ADHD) and autism spectrum disorder (ASD)) with 23,004 outcomes in UK Biobank, using the open-source PHESANT software package. There was evidence after multiple testing (p<2.55x10-06) for associations of PRSs with 294 outcomes, most of them attributed to associations of PRSMDD (n = 167) and PRSSCZ (n = 157) with mental health factors. Among others, we found strong evidence of association of higher PRSADHD with 1.1 months younger age at first sexual intercourse [95% confidence interval [CI]: -1.25,-0.92] and a history of physical maltreatment; PRSASD with 0.01% lower erythrocyte distribution width [95%CI: -0.013,-0.007]; PRSSCZ with 0.95 lower odds of playing computer games [95%CI:0.95,0.96]; PRSMDD with a 0.12 points higher neuroticism score [95%CI:0.111,0.135] and PRSBP with 1.03 higher odds of having a university degree [95%CI:1.02,1.03]. We were able to show that genetic liabilities for five major psychiatric disorders associate with long-term aspects of adult life, including socio-demographic factors, mental and physical health. This is evident even in individuals from the general population who do not necessarily present with a psychiatric disorder diagnosis.
Subject(s)
Biological Specimen Banks/statistics & numerical data , Genome-Wide Association Study/methods , Mental Disorders/epidemiology , Mental Disorders/genetics , Adult , Attention Deficit Disorder with Hyperactivity/epidemiology , Attention Deficit Disorder with Hyperactivity/genetics , Autism Spectrum Disorder/epidemiology , Autism Spectrum Disorder/genetics , Bipolar Disorder/epidemiology , Bipolar Disorder/genetics , Cohort Studies , Depressive Disorder, Major/epidemiology , Depressive Disorder, Major/genetics , Female , Genetic Heterogeneity , Genetic Predisposition to Disease , Humans , Male , Multifactorial Inheritance , Phenotype , Risk Factors , Schizophrenia/epidemiology , Schizophrenia/genetics , Socioeconomic Factors , United Kingdom/epidemiologyABSTRACT
Schizophrenia is associated with widespread alterations in subcortical brain structure. While analytic methods have enabled more detailed morphometric characterization, findings are often equivocal. In this meta-analysis, we employed the harmonized ENIGMA shape analysis protocols to collaboratively investigate subcortical brain structure shape differences between individuals with schizophrenia and healthy control participants. The study analyzed data from 2,833 individuals with schizophrenia and 3,929 healthy control participants contributed by 21 worldwide research groups participating in the ENIGMA Schizophrenia Working Group. Harmonized shape analysis protocols were applied to each site's data independently for bilateral hippocampus, amygdala, caudate, accumbens, putamen, pallidum, and thalamus obtained from T1-weighted structural MRI scans. Mass univariate meta-analyses revealed more-concave-than-convex shape differences in the hippocampus, amygdala, accumbens, and thalamus in individuals with schizophrenia compared with control participants, more-convex-than-concave shape differences in the putamen and pallidum, and both concave and convex shape differences in the caudate. Patterns of exaggerated asymmetry were observed across the hippocampus, amygdala, and thalamus in individuals with schizophrenia compared to control participants, while diminished asymmetry encompassed ventral striatum and ventral and dorsal thalamus. Our analyses also revealed that higher chlorpromazine dose equivalents and increased positive symptom levels were associated with patterns of contiguous convex shape differences across multiple subcortical structures. Findings from our shape meta-analysis suggest that common neurobiological mechanisms may contribute to gray matter reduction across multiple subcortical regions, thus enhancing our understanding of the nature of network disorganization in schizophrenia.
Subject(s)
Amygdala/pathology , Corpus Striatum/pathology , Hippocampus/pathology , Neuroimaging , Schizophrenia/pathology , Thalamus/pathology , Amygdala/diagnostic imaging , Corpus Striatum/diagnostic imaging , Hippocampus/diagnostic imaging , Humans , Multicenter Studies as Topic , Schizophrenia/diagnostic imaging , Thalamus/diagnostic imagingABSTRACT
The structured life-course modeling approach (SLCMA) is a theory-driven analytical method that empirically compares multiple prespecified life-course hypotheses characterizing time-dependent exposure-outcome relationships to determine which theory best fits the observed data. In this study, we performed simulations and empirical analyses to evaluate the performance of the SLCMA when applied to genomewide DNA methylation (DNAm). Using simulations (n = 700), we compared 5 statistical inference tests used with SLCMA, assessing the familywise error rate, statistical power, and confidence interval coverage to determine whether inference based on these tests was valid in the presence of substantial multiple testing and small effects-2 hallmark challenges of inference from -omics data. In the empirical analyses (n = 703), we evaluated the time-dependent relationship between childhood abuse and genomewide DNAm. In simulations, selective inference and the max-|t|-test performed best: Both controlled the familywise error rate and yielded moderate statistical power. Empirical analyses using SLCMA revealed time-dependent effects of childhood abuse on DNAm. Our findings show that SLCMA, applied and interpreted appropriately, can be used in high-throughput settings to examine time-dependent effects underlying exposure-outcome relationships over the life course. We provide recommendations for applying the SLCMA in -omics settings and encourage researchers to move beyond analyses of exposed versus unexposed individuals.
Subject(s)
Computational Biology/methods , Data Interpretation, Statistical , Models, Theoretical , Outcome Assessment, Health Care/methods , Time Factors , Child , Child Abuse , Computer Simulation , DNA Methylation , Female , Humans , MaleABSTRACT
Individuals most often use several rather than one substance among alcohol, cigarettes or cannabis. This widespread co-occurring use of multiple substances is thought to stem from a common liability that is partly genetic in origin. Genetic risk may indirectly contribute to a common liability to substance use through genetically influenced mental health vulnerabilities and individual traits. To test this possibility, we used polygenic scores indexing mental health and individual traits and examined their association with the common versus specific liabilities to substance use. We used data from the Avon Longitudinal Study of Parents and Children (N = 4218) and applied trait-state-occasion models to delineate the common and substance-specific factors based on four classes of substances (alcohol, cigarettes, cannabis and other illicit substances) assessed over time (ages 17, 20 and 22). We generated 18 polygenic scores indexing genetically influenced mental health vulnerabilities and individual traits. In multivariable regression, we then tested the independent contribution of selected polygenic scores to the common and substance-specific factors. Our results implicated several genetically influenced traits and vulnerabilities in the common liability to substance use, most notably risk taking (bstandardised = 0.14; 95% confidence interval [CI] [0.10, 0.17]), followed by extraversion (bstandardised = -0.10; 95% CI [-0.13, -0.06]), and schizophrenia risk (bstandardised = 0.06; 95% CI [0.02, 0.09]). Educational attainment (EA) and body mass index (BMI) had opposite effects on substance-specific liabilities such as cigarette use (bstandardised-EA = -0.15; 95% CI [-0.19, -0.12]; bstandardised-BMI = 0.05; 95% CI [0.02, 0.09]) and alcohol use (bstandardised-EA = 0.07; 95% CI [0.03, 0.11]; bstandardised-BMI = -0.06; 95% CI [-0.10, -0.02]). These findings point towards largely distinct sets of genetic influences on the common versus specific liabilities.
Subject(s)
Alcohol Drinking/epidemiology , Multifactorial Inheritance , Substance-Related Disorders/epidemiology , Adolescent , Alcohol Drinking/genetics , Alcohol Drinking/psychology , Female , Genome-Wide Association Study , Humans , Longitudinal Studies , Male , Multivariate Analysis , Regression Analysis , Risk Factors , Schizophrenia/epidemiology , Schizophrenia/genetics , Substance-Related Disorders/genetics , Substance-Related Disorders/psychology , Tobacco Use/epidemiology , Tobacco Use/genetics , Tobacco Use/psychology , United Kingdom/epidemiology , Young AdultABSTRACT
Low prosocial behavior in childhood has been consistently linked to later psychopathology, with evidence supporting the influence of both genetic and environmental factors on its development. Although neonatal DNA methylation (DNAm) has been found to prospectively associate with a range of psychological traits in childhood, its potential role in prosocial development has yet to be investigated. This study investigated prospective associations between cord blood DNAm at birth and low prosocial behavior within and across four longitudinal birth cohorts from the Pregnancy And Childhood Epigenetics (PACE) Consortium. We examined (a) developmental trajectories of "chronic-low" versus "typical" prosocial behavior across childhood in a case-control design (N = 2,095), and (b) continuous "low prosocial" scores at comparable cross-cohort time-points (N = 2,121). Meta-analyses were performed to examine differentially methylated positions and regions. At the cohort-specific level, three CpGs were found to associate with chronic low prosocial behavior; however, none of these associations was replicated in another cohort. Meta-analysis revealed no epigenome-wide significant CpGs or regions. Overall, we found no evidence for associations between DNAm patterns at birth and low prosocial behavior across childhood. Findings highlight the importance of employing multi-cohort approaches to replicate epigenetic associations and reduce the risk of false positive discoveries.
Subject(s)
Altruism , DNA Methylation/genetics , Infant, Newborn/psychology , Adolescent , Birth Cohort , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Cordocentesis/methods , CpG Islands/genetics , Epigenesis, Genetic/genetics , Epigenome/genetics , Epigenomics/methods , Female , Fetal Blood/metabolism , Genome-Wide Association Study/methods , Humans , Infant, Newborn/metabolism , MaleABSTRACT
BACKGROUND: Positive symptoms are a useful predictor of aggression in schizophrenia. Although a similar pattern of abnormal brain structures related to both positive symptoms and aggression has been reported, this observation has not yet been confirmed in a single sample. METHOD: To study the association between positive symptoms and aggression in schizophrenia on a neurobiological level, a prospective meta-analytic approach was employed to analyze harmonized structural neuroimaging data from 10 research centers worldwide. We analyzed brain MRI scans from 902 individuals with a primary diagnosis of schizophrenia and 952 healthy controls. RESULTS: The result identified a widespread cortical thickness reduction in schizophrenia compared to their controls. Two separate meta-regression analyses revealed that a common pattern of reduced cortical gray matter thickness within the left lateral temporal lobe and right midcingulate cortex was significantly associated with both positive symptoms and aggression. CONCLUSION: These findings suggested that positive symptoms such as formal thought disorder and auditory misperception, combined with cognitive impairments reflecting difficulties in deploying an adaptive control toward perceived threats, could escalate the likelihood of aggression in schizophrenia.
Subject(s)
Aggression/psychology , Cerebral Cortical Thinning/pathology , Schizophrenia/diagnostic imaging , Schizophrenia/pathology , Schizophrenic Psychology , Adult , Case-Control Studies , Cerebral Cortical Thinning/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuroimaging , Prospective Studies , Temporal Lobe/diagnostic imaging , Temporal Lobe/pathologyABSTRACT
Background: Epigenetic variation in the serotonin transporter gene (SLC6A4) has been shown to modulate the functioning of brain circuitry associated with the salience network and may heighten the risk for mental illness. This study is, to our knowledge, the first to test this epigenomebrainbehaviour pathway in patients with anorexia nervosa. Methods: We obtained resting-state functional connectivity (rsFC) data and blood samples from 55 acutely underweight female patients with anorexia nervosa and 55 age-matched female healthy controls. We decomposed imaging data using independent component analysis. We used bisulfite pyrosequencing to analyze blood DNA methylation within the promoter region of SLC6A4. We then explored salience network rsFC patterns in the group × methylation interaction. Results: We identified a positive relationship between SLC6A4 methylation levels and rsFC between the dorsolateral prefrontal cortex and the salience network in patients with anorexia nervosa compared to healthy controls. Increased rsFC in the salience network mediated the link between SLC6A4 methylation and eating disorder symptoms in patients with anorexia nervosa. We confirmed findings of rsFC alterations for CpG-specific methylation at a locus with evidence of methylation correspondence between brain and blood tissue. Limitations: This study was cross-sectional in nature, the sample size was modest for the method and methylation levels were measured peripherally, so findings cannot be fully generalized to brain tissue. Conclusion: This study sheds light on the neurobiological process of how epigenetic variation in the SLC6A4 gene may relate to rsFC in the salience network that is linked to psychopathology in anorexia nervosa.
Subject(s)
Anorexia Nervosa/diagnostic imaging , Brain/diagnostic imaging , Serotonin Plasma Membrane Transport Proteins/genetics , Adolescent , Adult , Anorexia Nervosa/genetics , Anorexia Nervosa/physiopathology , Brain/physiopathology , Case-Control Studies , Child , DNA Methylation/genetics , Female , Functional Neuroimaging , Humans , Magnetic Resonance Imaging , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology , Young AdultABSTRACT
Background: Epigenetic variation in the serotonin transporter gene (SLC6A4) has been shown to modulate the functioning of brain circuitry associated with the salience network and may heighten the risk for mental illness. This study is, to our knowledge, the first to test this epigenomebrainbehaviour pathway in patients with anorexia nervosa. Methods: We obtained resting-state functional connectivity (rsFC) data and blood samples from 55 acutely underweight female patients with anorexia nervosa and 55 age-matched female healthy controls. We decomposed imaging data using independent component analysis. We used bisulfite pyrosequencing to analyze blood DNA methylation within the promoter region of SLC6A4. We then explored salience network rsFC patterns in the group × methylation interaction. Results: We identified a positive relationship between SLC6A4 methylation levels and rsFC between the dorsolateral prefrontal cortex and the salience network in patients with anorexia nervosa compared to healthy controls. Increased rsFC in the salience network mediated the link between SLC6A4 methylation and eating disorder symptoms in patients with anorexia nervosa. We confirmed findings of rsFC alterations for CpG-specific methylation at a locus with evidence of methylation correspondence between brain and blood tissue. Limitations: This study was cross-sectional in nature, the sample size was modest for the method and methylation levels were measured peripherally, so findings cannot be fully generalized to brain tissue. Conclusion: This study sheds light on the neurobiological process of how epigenetic variation in the SLC6A4 gene may relate to rsFC in the salience network that is linked to psychopathology in anorexia nervosa.