Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Opt Express ; 23(25): 32420-8, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26699031

ABSTRACT

In this paper we propose a method of unidirectional excitation of graphene plasmons via metal nanoantenna arrays and reveal its application in a circular polarization analyzer. For nanoantenna pairs with orthogonal orientations, the graphene plasmons are excited through antenna resonances with the direction of propagation can be controlled by incident polarization. On the other hand, based on the spiral shape distribution of antenna arrays, a circular polarization analyzer can be obtained via the interaction of geometric phase effect of antenna arrays and the chirality carried by incident polarization. By utilizing the unidirectional excitation of plasmons, the extinction ratio of analyzer can be improved to over 103, which is at least an order of magnitude larger than the result of antenna pairs with same orientations or antenna arrays with closed circular shape formation. The proposed analyzer may find applications in analyzing chiral molecules using different circularly polarized waves.

2.
Opt Express ; 23(19): 24730-7, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26406674

ABSTRACT

In this paper we propose a circular polarization analyzer based on spiral metal triangle antenna arrays deposited on graphene. Via the dipole antenna resonances, plasmons are excited on graphene surface and the wavefront can be tailed by arranging metal antennas into linetype, circular or spiral arrays. Especially, for spiral antenna arrays, the geometric phase effect can be cancelled by or superposed on the chirality carried within circular polarization incidence, producing spatially separated solid dot or donut shape fields at the center. Such a phenomenon enables the graphene based spiral metal triangle antennas arrays to achieve functionality as a circular polarization analyzer. Extinction ratio over 550 can be achieved and the working wavelength can be tuned by adjusting graphene Fermi level dynamically. The proposed analyzer may find applications in analyzing chiral molecules using different circularly polarized waves.

3.
Opt Express ; 23(12): 16071-83, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26193581

ABSTRACT

In this paper we propose a graphene plasmons isolator based on non-reciprocal coupling within double graphene layer waveguide structure on a magneto-optical substrate. The difference in modal indices of graphene plasmons in opposite directions enables non-reciprocal coupling, which is theoretically investigated via coupled mode theory (CMT) and shows good agreement with numerical finite elements methods (FEM). The non-reciprocal coupling endows such system functionalities as magnetically controlled "plasmons circulator" or "plasmons isolator". For the latter case, systematical investigations of the insertion losses and isolation ratios with respect to the structural parameters, material properties, environmental parameters, fabrication errors as well as dielectric damping are presented. Theoretical investigation has shown an isolation ratio as 42 dB. The proposed plasmons circulator and isolator may serve as potential building blocks in graphene plasmons circuits.

4.
Opt Express ; 23(7): 8348-56, 2015 Apr 06.
Article in English | MEDLINE | ID: mdl-25968673

ABSTRACT

We propose a tunable circular polarization analyzer based on a graphene-coated spiral dielectric lens. Spatially separated solid dot shape (or donut shape) field can be achieved if the geometric shape of analyzer and incident circular polarization possess the opposite (or same) chirality. Moreover, distinct from the narrow working bandwidth of a traditional circular polarization analyzer, the focusing and defocusing effects in the analyzer are independent of the chemical potential of graphene, and depend only on the dielectric permittivities and the grating occupation ratio. Combined with the strong tunability of graphene plasmons, the operation wavelength of analyzer can be tuned by adjusting the graphene chemical potential without degrading the performance. The proposed analyzer could be used in applications in chemistry or biology, such as analyzing the physiological properties of chiral molecules based on circular polarization.

5.
ACS Photonics ; 9(4): 1206-1217, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35480493

ABSTRACT

Thin, flexible, and invisible solar cells will be a ubiquitous technology in the near future. Ultrathin crystalline silicon (c-Si) cells capitalize on the success of bulk silicon cells while being lightweight and mechanically flexible, but suffer from poor absorption and efficiency. Here we present a new family of surface texturing, based on correlated disordered hyperuniform patterns, capable of efficiently coupling the incident spectrum into the silicon slab optical modes. We experimentally demonstrate 66.5% solar light absorption in free-standing 1 µm c-Si layers by hyperuniform nanostructuring for the spectral range of 400 to 1050 nm. The absorption equivalent photocurrent derived from our measurements is 26.3 mA/cm2, which is far above the highest found in literature for Si of similar thickness. Considering state-of-the-art Si PV technologies, we estimate that the enhanced light trapping can result in a cell efficiency above 15%. The light absorption can potentially be increased up to 33.8 mA/cm2 by incorporating a back-reflector and improved antireflection, for which we estimate a photovoltaic efficiency above 21% for 1 µm thick Si cells.

SELECTION OF CITATIONS
SEARCH DETAIL