Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
J Antimicrob Chemother ; 79(1): 186-194, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38019670

ABSTRACT

OBJECTIVES: To investigate the population structure and antimicrobial resistance (AMR) of avian Pasteurella multocida in China. METHODS: Utilizing WGS analysis, we explored the phylogeny using a dataset of 546 genomes, comprising avian P. multocida isolates from China (n = 121), the USA (n = 165), Australia(n = 153), Bangladesh (n = 3) and isolates of other hosts from China (n = 104). We examined the integrative and conjugative element (ICE) structures and the distribution of their components carrying resistance genes, and reconstructed the evolutionary history of A:L1:ST129 (n = 110). RESULTS: The population structure of avian P. multocida in China was dominated by the A:L1:ST129 clone with limited genetic diversity. A:L1:ST129 isolates possessed a broader spectrum of resistance genes at comparatively higher frequencies than those from other hosts and countries. The novel putative ICEs harboured complex resistant clusters that were prevalent in A:L1:ST129. Bayesian analysis predicted that the A:L1:ST129 clone emerged around 1923, and evolved slowly. CONCLUSIONS: A:L1:ST129 appears to possess a host predilection towards avian species in China, posing a potential health threat to other animals. The complex AMR determinants coupled with high frequencies may strengthen the population dominance of A:L1:ST129. The extensive antimicrobial utilization in poultry farming and the mixed rearing practices could have accelerated AMR accumulation in A:L1:ST129. ICEs, together with their resistant clusters, significantly contribute to resistance gene transfer and facilitate the adaptation of A:L1:ST129 to ecological niches. Despite the genetic stability and slow evolution rate, A:L1:ST129 deserves continued monitoring due to its propensity to retain resistance genes, warranting global attention to preclude substantial economic losses.


Subject(s)
Pasteurella Infections , Pasteurella multocida , Animals , Pasteurella multocida/genetics , Pasteurella Infections/veterinary , Anti-Bacterial Agents/pharmacology , Bayes Theorem , Drug Resistance, Bacterial , Genomics
2.
BMC Vet Res ; 19(1): 232, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37936127

ABSTRACT

BACKGROUND: Goose astrovirus (GoAstV) is an important pathogen that causes joint and visceral gout in goslings. It has been circulating in many provinces of China since 2017. Goose astrovirus genotypes 2 (GoAstV-2) is the main epidemic strain, and its high morbidity and mortality have caused huge economic losses to the goose industry. An accurate point-of-care detection for GoAstV-2 is of great significance. In this study, we developed a real-time reverse transcription recombinase polymerase amplification (RT-RPA) method for the on-site detection of GoAstV-2 infection. RESULTS: The real-time RT-RPA reaction was carried out at a constant temperature of 39 °C, and the entire detection time from nucleic acid preparation to the end of amplification was only 25 min using the portable device. The results of a specificity analysis showed that no cross-reaction was observed with other related pathogens. The detection limit of the assay was 100 RNA copies/µL. The low coefficient of variation value indicated excellent repeatability. We used 270 clinical samples to evaluate the performance of our established method, the positive concordance rates with RT-qPCR were 99.6%, and the linear regression analysis revealed a strong correlation. CONCLUSIONS: The established real-time RT-RPA assay showed high rapidity, specificity and sensitivity, which can be widely applied in the laboratory, field and especially in the resource-limited settings for GoAstV-2 point-of-care diagnosis.


Subject(s)
Recombinases , Reverse Transcription , Animals , Recombinases/metabolism , Geese , Sensitivity and Specificity , China , Nucleic Acid Amplification Techniques/veterinary , Nucleic Acid Amplification Techniques/methods , Real-Time Polymerase Chain Reaction/veterinary , Real-Time Polymerase Chain Reaction/methods
3.
Arch Virol ; 166(11): 3105-3116, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34482448

ABSTRACT

Several outbreaks of duck hepatitis A virus type 1 (DHAV-1), which were characterized by yellow coloration and hemorrhage in pancreatic tissues, have occurred in China. The causative agent is called pancreatitis-associated DHAV-1. The mechanisms involved in pancreatitis-associated DHAV-1 infection are still unclear. Transcriptome analysis of duck pancreas infected with classical-type DHAV-1 and pancreatitis-associated DHAV-1 was carried out. Deep sequencing with Illumina-Solexa resulted in a total of 53.9 Gb of clean data from the cDNA library of the pancreas, and a total of 29,597 unigenes with an average length of 993.43 bp were generated by de novo sequence assembly. The expression levels of D-3-phosphoglycerate dehydrogenase, phosphoserine aminotransferase, and phosphoserine phosphatase, which are involved in glycine, serine, and threonine metabolism pathways, were significantly downregulated in ducks infected with pancreatitis-associated DHAV-1 compared with those infected with classical-type DHAV-1. These findings provide information regarding differences in expression levels of metabolism-associated genes between ducks infected with pancreatitis-associated DHAV-1 and those infected with classical-type DHAV-1, indicating that intensive metabolism disorders may contribute to the different phenotypes of DHAV-1-infection.


Subject(s)
Hepatitis Virus, Duck/pathogenicity , Hepatitis, Viral, Animal/virology , Host-Pathogen Interactions/genetics , Picornaviridae Infections/veterinary , Poultry Diseases/virology , Amino Acids/genetics , Amino Acids/metabolism , Animals , Ducks/virology , Gene Expression , Hepatitis, Viral, Animal/genetics , Hepatitis, Viral, Animal/metabolism , Hepatitis, Viral, Animal/pathology , Pancreas/cytology , Pancreas/pathology , Pancreas/virology , Pancreatitis/pathology , Pancreatitis/virology , Picornaviridae Infections/metabolism , Picornaviridae Infections/pathology , Picornaviridae Infections/virology , Poultry Diseases/genetics , Poultry Diseases/metabolism , Poultry Diseases/pathology , Real-Time Polymerase Chain Reaction , Sequence Analysis, RNA
4.
Microb Pathog ; 137: 103766, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31580957

ABSTRACT

Recently, a novel goose astrovirus (N-GoAstV) was discovered in China, with the transmission route of N-GoAstV unclear. In this study, we developed a TaqMan-based real-time RT-PCR (qRT-PCR) assay for the detection of N-GoAstV infection. After the optimization of the qRT-PCR assay conditions, the results demonstrated that the lower limit of detection for N-GoAstV was 33.4 copies/µL. No cross-reactivity was observed with other goose-origin viruses. Intra-assay and inter-assay variability were ≤1.36% and 2.34%, respectively. N-GoAstV was detected in both field samples, embryos and newly hatched goslings by qRT-PCR assay, provided the view that N-GoAstV may be both horizontally and vertically transmitted. The established qRT-PCR method showed high specificity, sensitivity, and reproducibility, which can be used in future investigations on the pathogenesis and epidemiology of N-GoAstV.


Subject(s)
Astroviridae Infections/veterinary , Avastrovirus/isolation & purification , Bird Diseases/virology , Geese/virology , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Animals , Astroviridae Infections/virology , Avastrovirus/classification , Avastrovirus/genetics , China , Sensitivity and Specificity
5.
Mol Cell Probes ; 48: 101447, 2019 12.
Article in English | MEDLINE | ID: mdl-31518643

ABSTRACT

Duck adenovirus 3 (DAdV-3) is a newly identified duck adenovirus that has recently emerged in China. The incidence of duck infection caused by this virus is very high, with very large economic losses to the poultry industry. Thus, there is an urgent need for a serological assay for the specific detection of DAdV-3. To this end, prokaryotic expression of the fiber2 protein of DAdV-3 was used as a coating antigen to establish an indirect enzyme linked immunosorbent assay (ELISA) method for the specific detection of antibodies against DAdV-3. The method was found to be specific, repeatable and more sensitive than the agarose gel precipitation test (AGP). This indirect ELISA method based on the recombinant fiber2 protein may be used for the clinical detection of DAdV-3 infection and for monitoring antibody levels after vaccine immunization and is of great significance for the effective prevention and control of the disease.


Subject(s)
Adenoviridae Infections/virology , Adenoviridae/metabolism , Ducks/virology , Enzyme-Linked Immunosorbent Assay/methods , Poultry Diseases/virology , Adenoviridae/immunology , Adenoviridae Infections/immunology , Animals , Antibodies, Viral/immunology , China , Ducks/immunology , Poultry Diseases/immunology , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Sensitivity and Specificity , Viral Vaccines/immunology
6.
Mol Cell Probes ; 47: 101439, 2019 10.
Article in English | MEDLINE | ID: mdl-31445110

ABSTRACT

Both Muscovy duck parvovirus (MDPV) and goose parvovirus (GPV) can cause high mortality and morbidity in Muscovy ducklings. MDPVs and GPVs share high nucleotide identity, which can cause errors during differential diagnosis. In this study, the NS genes of both MDPVs and GPVs were chosen for the design of specific primers after genetic comparison. Only three primers (GF1, MF1 and MGR1) were designed for the duplex PCR assay: GF1 is specific for GPV only; MF1 is specific for MDPV only; and MGR1 is highly conserved for both MDPV and GPV. After a series of optimization experiments, the duplex PCR assay amplified a 161-bp fragment specifically for GPV, a 1197-bp fragment specifically for MDPV, and two fragments (161-bp and 1197-bp) for both GPV and MDPV. The lowest detection limit was 103 copies/µl. No amplification was obtained using nucleic acids from other pathogens (including DAdV-A, DuCV, DEV, GHPV, R.A., E. coli., P.M. and S.S.) occurring in Muscovy ducks. Application of the duplex PCR assay in field samples showed that even one-day-old Muscovy ducklings were both MDPV-positive and GPV-positive. In conclusion, a duplex PCR assay for the simultaneous detection and differentiation of MDPV and GPV was established using only three highly specific primers. Our finding suggested that country-wide vaccination with MDPV and GPV vaccines in waterfowls are necessary.


Subject(s)
Multiplex Polymerase Chain Reaction/methods , Parvoviridae Infections/veterinary , Parvovirus/classification , Poultry Diseases/virology , Viral Nonstructural Proteins/genetics , Animals , Diagnosis, Differential , Ducks , Geese , Limit of Detection , Parvovirinae , Parvovirus/genetics , Parvovirus/isolation & purification , Phylogeny , Species Specificity
7.
Arch Virol ; 164(3): 847-851, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30564896

ABSTRACT

Recently, infectious disease outbreaks characterized by swelling and hemorrhagic liver and kidneys occurred in Muscovy ducklings in China. Four viruses were isolated and identified as adenoviruses by transmission electron microscopy (TEM) and polymerase chain reaction (PCR). Sequence analysis identified the new isolates as duck adenovirus 3 (DAdV-3), species Duck aviadenovirus B. The pathogenicity of the new isolate DAdV-3 FJGT01 was investigated using challenge experiments. The gross lesions in the animal experiment were similar to the clinical lesions observed in the diseased ducks. TEM examination of liver sample showed that virions accumulated and arranged in crystal lattice formations in the nuclei of hepatocytes. The present study provides new information about the epidemiology and characteristics of duck adenovirus associated with Muscovy ducklings.


Subject(s)
Adenoviridae Infections/veterinary , Aviadenovirus/isolation & purification , Ducks/virology , Poultry Diseases/virology , Adenoviridae Infections/pathology , Adenoviridae Infections/virology , Animals , Aviadenovirus/classification , Aviadenovirus/genetics , Aviadenovirus/pathogenicity , Liver/pathology , Liver/virology , Phylogeny , Poultry Diseases/pathology , Virulence
8.
Avian Pathol ; 48(4): 352-361, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30982334

ABSTRACT

Duck hepatitis A virus type 1 (DHAV-1) causes acute hepatitis with high morbidity and mortality in ducklings of the genera Cairina and Anas and is characterized by ecchymotic haemorrhage and necrosis of the liver surface. Since September 2011, a new subtype of DHAV-1 (named pancreatitis-type DHAV-1) has been isolated. This new subtype is characterized by yellowish or haemorrhagic pancreatitis, but with no significant pathological changes in the liver. To further investigate the difference in pathogenicity between hepatitis-type DHAV-1 and pancreatitis-type DHAV-1, we infected Muscovy ducklings with a hepatitis-type DHAV-1 strain, FZ86, or a pancreatitis-type DHAV-1 strain, MPZJ1206, and then compared the resulting gross lesions, histopathological changes, viral distribution and cellular apoptosis in the liver and pancreas of Muscovy ducklings. The results suggested that FZ86 induced a more efficient viral propagation in the liver than MPZJ1206, and the gross and histopathological lesions were also limited to the liver. However, MPZJ1206 induced more effective viral replication in the pancreas than FZ86. The MPZJ1206-infected Muscovy ducklings showed an obviously yellowed and haemorrhagic pancreas, but with no significant pathological changes in the liver. Furthermore, FZ86 induced notable hepatocyte apoptosis and increased the expression of caspase-3 in the liver, whereas MPZJ1206 caused apoptosis in a large number of acinar epithelial cells and elevated the expression of caspase-3 in the pancreas. Taken together, these results demonstrated that pancreatitis-type DHAV-1 has many new pathogenic features which distinguish it from the hepatitis-type DHAV-1. RESEARCH HIGHLIGHTS Pancreatitis-type DHAV-1 (MPZJ1206) was characterized by pancreatic haemorrhage and yellow discolouration, but with no obvious haemorrhage and necrosis in the liver. Pancreatitis-type DHAV-1 (MPZJ1206) exhibits many new pathogenic features which distinguish it from the hepatitis-type DHAV-1 (FZ86).


Subject(s)
Ducks , Hepatitis Virus, Duck/pathogenicity , Hepatitis, Viral, Animal/virology , Pancreatitis, Acute Necrotizing/veterinary , Picornaviridae Infections/veterinary , Poultry Diseases/virology , Animals , Hepatitis Virus, Duck/classification , Hepatitis, Viral, Animal/pathology , Liver/pathology , Pancreas/pathology , Pancreatitis, Acute Necrotizing/pathology , Pancreatitis, Acute Necrotizing/virology , Picornaviridae Infections/pathology , Picornaviridae Infections/virology , Poultry Diseases/pathology
9.
BMC Vet Res ; 15(1): 389, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31676004

ABSTRACT

BACKGROUND: Classic goose parvovirus (cGPV) causes high mortality and morbidity in goslings and Muscovy ducklings. Novel GPV (N-GPV) causes short beak and dwarfism syndrome (SBDS) in Cherry Valley ducks, Pekin ducks and Mule ducks. Both cGPV and N-GPV have relatively strict host specificity, with obvious differences in pathogenicity. Specific detection of cGPV and N-GPV may result in false positives due to high nucleotide similarity with Muscovy duck parvovirus (MDPV). The aim of this study was to develop a highly specific, sensitive, and reliable TaqMan real-time PCR (TaqMan qPCR) assay for facilitating the molecular detection of cGPV and N-GPV. RESULTS: After genetic comparison, the specific conserved region (located on the NS gene) of cGPV and N-GPV was selected for primer and probe design. The selected regions were significantly different from MDPV. Through a series of optimization experiments, the limit of detection was 50.2 copies/µl. The assay was highly specific for the detection of cGPV and N-GPV and no cross-reactivity was observed with E. coli., P.M., R.A., S.S., MDPV, N-MDPV, DAdV-A, DEV, GHPV, DHAV-1, DHAV-3, ATmV, AIV, MDRV and N-DRV. The assay was reproducible with an intra-assay and inter-assay variability of less than 2.37%. Combined with host specificity, the developed TaqMan qPCR can be used for cGPV and N-GPV in differential diagnoses. The frequency of cGPV in Muscovy duckling and goslings was determined to be 12 to 44%, while N-GPV frequency in Mule ducks and Cherry Valley ducks was 36 to 56%. Additionally, fluorescence-positive signals can be found in Mule duck embryos and newly hatched Mule ducklings. These findings provide evidence of possible vertical transmission of N-GPV from breeding Mule ducks to ducklings. CONCLUSIONS: We established a quantitative platform for epidemiological investigations and pathogenesis studies of cGPV and N-GPV DNA that was highly sensitive, specific, and reproducible. N-GPV and cGPV infections can be distinguished based on host specificity.


Subject(s)
Parvoviridae Infections/veterinary , Parvovirinae/isolation & purification , Polymerase Chain Reaction/methods , Poultry Diseases/virology , Animals , DNA, Bacterial/genetics , DNA, Complementary/genetics , DNA, Viral/genetics , Ducks , Host Specificity , Parvoviridae Infections/diagnosis , Parvoviridae Infections/virology , Poultry Diseases/diagnosis , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Sensitivity and Specificity
10.
Mol Cell Probes ; 39: 53-56, 2018 06.
Article in English | MEDLINE | ID: mdl-29625161

ABSTRACT

Pigeon torque teno virus (PTTV), a recently discovered circular DNA virus. Here, we developed a TaqMan-based real-time PCR for rapid and specific detection of PTTV infections with sensitivity up to 49.3 copies/µl. Positive signals can be observed by the assay in pigeon embryonated eggs, which indicted that PTTV can be transmitted vertically. Our findings play important implications for a better understanding the transmission of torque teno virus in pigeons.


Subject(s)
Columbidae/virology , Real-Time Polymerase Chain Reaction/methods , Torque teno virus/isolation & purification , Animals , Reference Standards , Reproducibility of Results , Sensitivity and Specificity
11.
Mol Cell Probes ; 39: 61-64, 2018 06.
Article in English | MEDLINE | ID: mdl-29665412

ABSTRACT

Due to low doses of infection, an efficient and sensitive virus detection method is necessary to detect low amounts of goose hemorrhagic polyomavirus (GHPV). In this study, we have developed a TaqMan real-time PCR (qPCR) specific assay for the detection of GHPV. Specificity assay showed no cross-reactions with other common waterfowl viruses. The standard curve had a linear correlation of 0.997 and efficiency of 99% between the cycle threshold value and the logarithm of the plasmids copy number. The possible lowest detectable concentration was 35.4 copies/µl; 100 times more sensitive than conventional PCR (detection limit, 3.54 × 103 copies/µl). Domestic Jinyun Sheldrakes ducks and their embryonated eggs were found positive of GHPV infection which provides evidence of possible vertical transmission of GHPV.


Subject(s)
Geese/virology , Polyomavirus/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Animals , Reproducibility of Results , Sensitivity and Specificity
12.
BMC Vet Res ; 14(1): 267, 2018 Sep 03.
Article in English | MEDLINE | ID: mdl-30176903

ABSTRACT

BACKGROUND: Muscovy duck parvovirus (MDPV) causes high mortality and morbidity in Muscovy ducks, with the pathogenesis of the virus still unknown in many respects. Specific MDPV detection is often rife with false positive results because of high identity at the genomic nucleotide level and antigenic similarity with goose parvovirus (GPV). The objective of this study was to develop a sensitive, highly specific, and repeatable TaqMan-based real-time PCR (qPCR) assay for facilitating the molecular detection of MDPV. RESULTS: The specific primers and probe were designed based on the conserved regions within MDPVs, but there was a variation in GPVs of the nonstructural (NS) genes after genetic comparison. After the optimization of qPCR conditions, the detection limit of this qPCR assay was 29.7 copies/µl. The assay was highly specific for the detection of MDPV, and no cross-reactivity was observed with other non-targeted duck-derived pathogens. Intra- and inter-assay variability was less than 2.21%, means a high degree of repeatability. The diagnostic applicability of the qPCR assay was proven that MDPV-positive can be found in cloacal swabs samples, Muscovy duck embryos and newly hatched Muscovy ducklings. CONCLUSIONS: Our data provided incidents that MDPV could be possible vertically transmitted from breeder Muscovy ducks to Muscovy ducklings. The developed qPCR assay in the study could be a reliable and specific tool for epidemiological surveillance and pathogenesis studies of MDPV.


Subject(s)
Ducks , Parvoviridae Infections/veterinary , Parvovirus/isolation & purification , Poultry Diseases/virology , Real-Time Polymerase Chain Reaction/veterinary , Animals , Cloaca/virology , Embryo, Nonmammalian/virology , Infectious Disease Transmission, Vertical/veterinary , Parvoviridae Infections/transmission , Parvoviridae Infections/virology , Parvovirus/genetics , Real-Time Polymerase Chain Reaction/methods
15.
Arch Virol ; 161(1): 11-8, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26427380

ABSTRACT

Avian Tembusu virus (ATV), an emerging virus that mainly infects laying and breeding ducks in China, has caused severe economic loss in duck industry. However, there have been no reports about host innate immune responses during ATV infection and its correlation with clinical signs or pathology. To identify the roles of these immune factors in the innate host response to ATV infection, quantitative real-time PCR (qPCR) was used to analyze the transcriptional profiles on the genes encoding two retinoic-acid-induced gene I (RIG-I)-like receptors (RLRs) and two interferons (INF-α and INF-γ) in seven tissues of an ATV-infected shelduck. After infection with ATV, both RLR genes were significantly upregulated (P < 0.05) in all seven tissues. The peak expression levels of the two RLR genes were observed at 24 hours postinfection (hpi) and were higher in non-lymphoid tissues (liver, lung, kidney, and ovary) than in lymphoid tissues (thymus, spleen and bursa). Although the transcription levels of both IFN genes were also upregulated, they showed different time-dependent expression patterns compared with those of the RLR genes. In addition, the highest mRNA expression of the two IFN genes was observed in the ovary at 6 hpi. This observation suggests that the ovary is the primary target tissue in ATV infection and explains the clinical characteristics of the primary pathological changes in the ovaries of ATV-infected ducks. Our results, for the first time, elucidate the differential and coordinated expression profiles of two RLRs and two IFNs in an ATV-infected shelduck.


Subject(s)
DEAD-box RNA Helicases/genetics , Flavivirus/physiology , Influenza in Birds/genetics , Interferons/genetics , Poultry Diseases/genetics , Animals , DEAD-box RNA Helicases/metabolism , Ducks , Female , Influenza in Birds/metabolism , Influenza in Birds/virology , Interferons/metabolism , Lung/metabolism , Lung/virology , Poultry Diseases/metabolism , Poultry Diseases/virology , Spleen/metabolism , Spleen/virology
16.
Wei Sheng Wu Xue Bao ; 54(9): 1082-9, 2014 Sep 04.
Article in Zh | MEDLINE | ID: mdl-25522597

ABSTRACT

[OBJECTIVE] We studied the molecular characteristics of the full-length genome of duck hepatitis A virus type 1 causing pancreatitis in Muscovy ducklings. [METHODS] We determined the entire genomic sequence of duck hepatitis A virus type 1 strain MPZJ1206 using reverse transcription polymerase chain reaction assay and analyzed the bioinformatics of the viral genome sequence. [ RESULTS] The genome length of strain MPZJ1206 comprised 7703 bases, with a G + C content of 43.05%. The genome of MPZJ1206 contains a single, long open reading frame encoding a polypeptide of 2249 amino acids, with a genomic orgariization similar to those of other isolates of duck hepatitis A virus type 1. MPZJ1206 is identical with previously isolates by 93. 5% - 99. 6% in nucleotide sequence and 97. 9% - 99. 6% in amino acid sequence and shares genetic distance no more than 7%. Phylogenetic analysis based on genome sequence indicates that MPZJ1206 shares a close genetic relationship with two strains isolated in 2011. [CONCLUSION] Although pathotype caused by MPZJ1206 strain is significantly distinct from those induced by classical isolates of duck hepatitis A virus type 1, the genome of MPZJ1206 shares high homology with those of previous isolates. The change of pathotype may result from an alteration in viral tissue tropism of MPZJ1206.


Subject(s)
Hepatitis Virus, Duck/genetics , Pancreatitis/veterinary , Poultry Diseases/virology , Animals , Base Sequence , Ducks , Genome, Viral , Hepatitis Virus, Duck/classification , Hepatitis Virus, Duck/isolation & purification , Molecular Sequence Data , Pancreatitis/virology , Phylogeny , Viral Proteins/genetics
17.
Poult Sci ; 103(4): 103566, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417341

ABSTRACT

Birds infected with duck circovirus (DuCV) can potentially cause immunosuppression by damaging lymphoid tissues, causing great losses in the duck breeding industry. Duck circovirus can be divided into two genotypes (DuCV-1 and DuCV-2), but simultaneous detection and differentiation of DuCV-1 and DuCV-2 by high-resolution melting (HRM) analysis is still lacking. Here, we designed specific primers according to the sequence characteristics of the newly identified ORF3 gene and then established a PCR-HRM method for the simultaneous detection and differentiation of DuCV-1 and DuCV-2 via high-resolution melting analysis. Our data showed that the established PCR-HRM assay had the advantages of specificity, with the lowest detection limits of 61.9 copies/µL (for DuCV-1) and 60.6 copies/µL (for DuCV-2). The melting curve of the PCR-HRM results indicated that the amplification product was specific, with no cross-reaction with common waterfowl origin pathogens and a low coefficient of variation less than 1.50% in both intra-batch and inter-batch repetitions, indicating the advantages of repeatability. We found that the percentage of DuCV-2-positive ducks was higher than that of DuCV-1-positive ducks, with 8.62% rate of DuCV-1 and DuCV-2 coinfection. In addition, we found DuCV-2-positive in geese firstly. In conclusion, this study provides a candidate PCR-HRM assay for the detection and accurate differentiation of DuCV-1 and DuCV-2 infection, which will help us for further epidemiological surveillance of DuCVs.


Subject(s)
Circoviridae Infections , Circovirus , Poultry Diseases , Animals , Chickens/genetics , Polymerase Chain Reaction/veterinary , Circovirus/genetics , Circoviridae Infections/diagnosis , Circoviridae Infections/veterinary , Circoviridae Infections/epidemiology
18.
Poult Sci ; 103(7): 103775, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38713985

ABSTRACT

Goose circovirus (GoCV), a potential immunosuppressive virus possessing a circular single-stranded DNA genome, is widely distributed in both domesticated and wild geese. This virus infection causes significant economic losses in the waterfowl industry. The codon usage patterns of viruses reflect the evolutionary history and genetic architecture, allowing them to adapt quickly to changes in the external environment, particularly to their hosts. In this study, we retrieved the coding sequences (Rep and Cap) and the genome of GoCV from GenBank, conducting comprehensive research to explore the codon usage patterns in 144 GoCV strains. The overall codon usage of the GoCV strains was relatively similar and exhibited a slight bias. The effective number of codons (ENC) indicated a low overall extent of codon usage bias (CUB) in GoCV. Combined with the base composition and relative synonymous codon usage (RSCU) analysis, the results revealed a bias toward A- and G-ending codons in the overall codon usage. Analysis of the ENC-GC3s plot and neutrality plot suggested that natural selection plays an important role in shaping the codon usage pattern of GoCV, with mutation pressure having a minor influence. Furthermore, the correlations between ENC and relative indices, as well as correspondence analysis (COA), showed that hydrophobicity and geographical distribution also contribute to codon usage variation in GoCV, suggesting the possible involvement of natural selection. In conclusion, GoCV exhibits comparatively slight CUB, with natural selection being the major factor shaping the codon usage pattern of GoCV. Our research contributes to a deeper understanding of GoCV evolution and its host adaptation, providing valuable insights for future basic studies and vaccine design related to GoCV.


Subject(s)
Circovirus , Codon Usage , Geese , Circovirus/genetics , Animals , Geese/virology , Poultry Diseases/virology , Poultry Diseases/genetics , Circoviridae Infections/veterinary , Circoviridae Infections/virology , Selection, Genetic , Host Adaptation/genetics , Adaptation, Physiological/genetics
19.
Poult Sci ; 103(5): 103611, 2024 May.
Article in English | MEDLINE | ID: mdl-38471226

ABSTRACT

The aim of this study was to develop an efficient and accurate platform for the detection of the newly identified goose megrivirus (GoMV). To achieve this goal, we developed a TaqMan real-time PCR technology for the rapid detection and identification of GoMV. Our data showed that the established TaqMan real-time PCR assay had high sensitivity, with the lowest detection limit of 67.3 copies/µL. No positive signal can be observed from other goose origin viruses (including AIV, GPV, GoCV, GHPyV, and GoAstV), with strong specificity. The coefficients of variation of repeated intragroup and intergroup tests were all less than 1.5%, with excellent repeatability. Clinical sample investigation data from domestic Minbei White geese firstly provided evidence that GoMV can be transmitted both horizontally and vertically. In conclusion, since the TaqMan real-time PCR method has high sensitivity, specificity, and reproducibility, it can be a useful candidate tool for GoMV epidemiological investigation.


Subject(s)
Geese , Poultry Diseases , Real-Time Polymerase Chain Reaction , Animals , Real-Time Polymerase Chain Reaction/veterinary , Real-Time Polymerase Chain Reaction/methods , Geese/virology , Poultry Diseases/virology , Poultry Diseases/diagnosis , Sensitivity and Specificity , RNA Virus Infections/veterinary , RNA Virus Infections/virology , RNA Virus Infections/diagnosis , Reproducibility of Results
20.
Poult Sci ; 103(7): 103848, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38843610

ABSTRACT

Pigeons infected with aviadenoviruses have been found worldwide. Recently, pigeon adenovirus 2 (PiAdV-2) has been widely distributed in racing pigeons in Germany. However, the epidemiology of this virus remains unclear due to the lack of a specific detection platform for PiAdV-2. In this study, we first detected PiAdV-2 positivity in racing pigeons (designated FJ21125 and FJ21128, which share 100% nucleotide identity with each other based on the fiber 2 gene) in Fujian, Southeast China. These genes shared 99.8% nucleotide identity with PiAdV-2 (GenBank No. NC_031501) but only 54.1% nucleotide identity with PiAdV-1 (GenBank No. NC024474). Then, the TaqMan-qPCR assay for the detection of PiAdV-2 was established based on fiber 2 gene characterization. The established assay had a correlation coefficient of 1.00, with an amplification efficiency of 99.0%. The minimum detection limit was 34.6 copies/µL. Only PiAdV-2 exhibited a positive fluorescent signal, and no signal was detected for other pathogens (including PiCV, FAdV-4, FAdV-8a, EDSV, PPMV-1, RVA and PiHV). The assay has good reproducibility, with a coefficient of variation less than 2.42% both intragroup and intergroup. The distributions of PiAdV-2 in fecal samples from YPDS (35 samples) and healthy (43 samples) racing pigeons from different geographical areas were investigated and were 37.14% (YPDS) and 20.93% (healthy), respectively. In summary, we developed a TaqMan-qPCR platform for the detection of PiAdV-2 infection with high sensitivity, specificity, and reproducibility. We confirmed the presence of PiAdV-2 in China, and our data suggested that there is no indication of a correlation between YPDS and PiAdV-2. This study provides more information on the pathogenesis mechanism and epidemiological surveillance of PiAdV-2.


Subject(s)
Adenoviridae Infections , Aviadenovirus , Columbidae , Real-Time Polymerase Chain Reaction , Animals , Adenoviridae Infections/veterinary , Adenoviridae Infections/diagnosis , Adenoviridae Infections/virology , Adenoviridae Infections/epidemiology , Real-Time Polymerase Chain Reaction/veterinary , Real-Time Polymerase Chain Reaction/methods , China/epidemiology , Aviadenovirus/isolation & purification , Aviadenovirus/genetics , Bird Diseases/virology , Bird Diseases/diagnosis , Poultry Diseases/virology , Poultry Diseases/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL