Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Environ Res ; 258: 119415, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38906446

ABSTRACT

BACKGROUND: PM2.5, a known public health risk, is increasingly linked to intestinal disorders, however, the mechanisms of its impact are not fully understood. PURPOSE: This study aimed to explore the impact of chronic PM2.5 exposure on intestinal barrier integrity and to uncover the underlying molecular mechanisms. METHODS: C57BL/6 J mice were exposed to either concentrated ambient PM2.5 (CPM) or filtered air (FA) for six months to simulate urban pollution conditions. We evaluated intestinal barrier damage, microbial shifts, and metabolic changes through histopathology, metagenomics, and metabolomics. Analysis of the TLR signaling pathway was also conducted. RESULTS: The mean concentration of PM2.5 in the CPM exposure chamber was consistently measured at 70.9 ± 26.8 µg/m³ throughout the study period. Our findings show that chronic CPM exposure significantly compromises intestinal barrier integrity, as indicated by reduced expression of the key tight junction proteins Occludin and Tjp1/Zo-1. Metagenomic sequencing revealed significant shifts in the microbial landscape, identifying 35 differentially abundant species. Notably, there was an increase in pro-inflammatory nongastric Helicobacter species and a decrease in beneficial bacteria, such as Lactobacillus intestinalis, Lactobacillus sp. ASF360, and Eubacterium rectale. Metabolomic analysis further identified 26 significantly altered metabolites commonly associated with intestinal diseases. A strong correlation between altered bacterial species and metabolites was also observed. For example, 4 Helicobacter species all showed positive correlations with 13 metabolites, including Lactate, Bile acids, Pyruvate and Glutamate. Additionally, increased expression levels of TLR2, TLR5, Myd88, and NLRP3 proteins were noted, and their expression patterns showed a strong correlation, suggesting a possible involvement of the TLR2/5-MyD88-NLRP3 signaling pathway. CONCLUSIONS: Chronic CPM exposure induces intestinal barrier dysfunction, microbial dysbiosis, metabolic imbalance, and activation of the TLR2/5-MyD88-NLRP3 inflammasome. These findings highlight the urgent need for intervention strategies to mitigate the detrimental effects of air pollution on intestinal health and identify potential therapeutic targets.


Subject(s)
Dysbiosis , Inflammasomes , Mice, Inbred C57BL , Myeloid Differentiation Factor 88 , NLR Family, Pyrin Domain-Containing 3 Protein , Particulate Matter , Toll-Like Receptor 2 , Toll-Like Receptor 5 , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Dysbiosis/chemically induced , Inflammasomes/metabolism , Inflammasomes/drug effects , Particulate Matter/toxicity , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , Toll-Like Receptor 2/metabolism , Mice , Toll-Like Receptor 5/metabolism , Air Pollutants/toxicity , Male , Gastrointestinal Microbiome/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestines/drug effects , Intestines/microbiology
2.
Biochem Biophys Res Commun ; 642: 21-26, 2023 01 29.
Article in English | MEDLINE | ID: mdl-36543020

ABSTRACT

The thyroid follicular cells originate from the foregut endoderm and elucidating which genes and signaling pathways regulate their development is crucial for understanding developmental disorders as well as diseases in adulthood. We exploited unique advantages of the zebrafish model to carry an ENU-based forward mutagenesis screen aiming at identifying genes involved in the development and function of the thyroid follicular cells. ENU is an excellent chemical mutagen due to its high mutation efficiency and an indiscriminate selection of genes. A total of 1606 F2 families from 36 ENU treated founders was raised and embryos from F3 generation were collected at 5dpf to perform the whole embryo in situ hybridization with a cocktail probe of thyroid marker thyroglobulin(tg), pituitary marker thyroid stimulating hormone (tshba) to determine the mutagenic phenotype. Among the 1606 F2 families, 112 F2 mutant families with normal development stages except for thyroid dysfunction were identified and divided into three different groups according to their phenotypic characteristics. Further studies of the mutants are likely to shed more insights into the molecular basis of both the thyroid development and function in the zebrafish and vertebrate.


Subject(s)
Thyroid Gland , Zebrafish , Animals , Zebrafish/genetics , Genetic Testing , Mutation , Mutagenesis
3.
Gen Comp Endocrinol ; 323-324: 114033, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35367205

ABSTRACT

Congenital hypothyroidism (CH) is a highly prevalent but treatable neonatal endocrine disorder. Thyroid peroxidase (TPO) catalyzes key reactions in thyroid hormone (TH) synthesis. TPO mutations have been found to underlie approximately 5% of congenital hypothyroidism in Chinese patients with more severe phenotypes, the treatment of whom usually requires a higher dose of L-thyroxine. The Tpo gene of zebrafish has 66% homology with the human TPO gene, and synteny analysis has indicated that it is likely a human TPO ortholog. In this study, we generated a tpo-/- mutant zebrafish line through knockout of tpo with CRISPR/Cas9 and investigated the associated phenotypes. Tpo-/- mutant zebrafish displayed growth retardation; an increased number of thyroid follicular cells; and abnormal extrathyroidal phenotypes including pigmentation defects, erythema in the thoracic region, delayed scale development and failure of swim bladder secondary lobe formation. All these abnormal phenotypes were reversed by 30 nM thyroxine (T4) treatment starting at 1 month of age. Tpo-/- mutants also showed increased glucose levels during larval stages, and the increases were induced at least in part by increasing glucagon and decreasing insulin expression. Our work indicates that tpo-mutant zebrafish may serve as a human congenital hypothyroidism model for studying TPO- and TH-related disease mechanisms.


Subject(s)
Congenital Hypothyroidism , Animals , Congenital Hypothyroidism/genetics , Glucose , Homeostasis , Humans , Iodide Peroxidase/genetics , Mutation , Thyroid Hormones , Thyroxine , Zebrafish
4.
Nat Commun ; 15(1): 3165, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605010

ABSTRACT

The mechanisms of bifurcation, a key step in thyroid development, are largely unknown. Here we find three zebrafish lines from a forward genetic screening with similar thyroid dysgenesis phenotypes and identify a stop-gain mutation in hgfa and two missense mutations in met by positional cloning from these zebrafish lines. The elongation of the thyroid primordium along the pharyngeal midline was dramatically disrupted in these zebrafish lines carrying a mutation in hgfa or met. Further studies show that MAPK inhibitor U0126 could mimic thyroid dysgenesis in zebrafish, and the phenotypes are rescued by overexpression of constitutively active MEK or Snail, downstream molecules of the HGF/Met pathway, in thyrocytes. Moreover, HGF promotes thyrocyte migration, which is probably mediated by downregulation of E-cadherin expression. The delayed bifurcation of the thyroid primordium is also observed in thyroid-specific Met knockout mice. Together, our findings reveal that HGF/Met is indispensable for the bifurcation of the thyroid primordium during thyroid development mediated by downregulation of E-cadherin in thyrocytes via MAPK-snail pathway.


Subject(s)
Hepatocyte Growth Factor , Thyroid Dysgenesis , Animals , Mice , Hepatocyte Growth Factor/genetics , Hepatocyte Growth Factor/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Cadherins/genetics , Thyroid Dysgenesis/genetics , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-met/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL