Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Biochemistry ; 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38285491

ABSTRACT

Protoporphyrinogen IX oxidase (PPO) is the last common enzyme in chlorophyll and heme biosynthesis pathways. In humans, point mutations on PPO are responsible for the dominantly inherited disorder disease variegate porphyria (VP). It is found that several VP-causing mutation sites are located on an α-helix cluster (consisting of α-5, α-6, and α-7 helix, named the G169 helix cluster) of human PPO, although these mutation sites are outside the active site of the human PPO. In this work, we investigated the role of the G169 helix cluster via site-directed mutagenesis, enzymatic kinetics, and computational studies. Kinetic studies showed that mutations on the G169 helix cluster affect the activity of PPO. The MD simulation showed that mutations on the G169 helix cluster reduced the activity of PPO by affecting the proper orientation of substrate protoporphyrinogen within the active site of PPO and possibly the dipole moment of the G169 helix cluster. Moreover, the mutation abolished the interaction between the mutated site and other residues, thus affecting the secondary structure and hydrogen bond interactions within the G169 helix cluster. These results indicated that the integrity of the G169 helix cluster is important for the stabilization of protoporphyrinogen within the active site of PPO to facilitate the interaction between protoporphyrinogen and cofactor FAD and provide a proper electrostatic environment for the activity of PPO. Our result provides new insight into understanding the relationship between the structure and function of PPO.

2.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Article in English | MEDLINE | ID: mdl-33903234

ABSTRACT

Amyloid fibril formation of α-synuclein (αS) is associated with multiple neurodegenerative diseases, including Parkinson's disease (PD). Growing evidence suggests that progression of PD is linked to cell-to-cell propagation of αS fibrils, which leads to seeding of endogenous intrinsically disordered monomer via templated elongation and secondary nucleation. A molecular understanding of the seeding mechanism and driving interactions is crucial to inhibit progression of amyloid formation. Here, using relaxation-based solution NMR experiments designed to probe large complexes, we probe weak interactions of intrinsically disordered acetylated-αS (Ac-αS) monomers with seeding-competent Ac-αS fibrils and seeding-incompetent off-pathway oligomers to identify Ac-αS monomer residues at the binding interface. Under conditions that favor fibril elongation, we determine that the first 11 N-terminal residues on the monomer form a common binding site for both fibrils and off-pathway oligomers. Additionally, the presence of off-pathway oligomers within a fibril seeding environment suppresses seeded amyloid formation, as observed through thioflavin-T fluorescence experiments. This highlights that off-pathway αS oligomers can act as an auto-inhibitor against αS fibril elongation. Based on these data taken together with previous results, we propose a model in which Ac-αS monomer recruitment to the fibril is driven by interactions between the intrinsically disordered monomer N terminus and the intrinsically disordered flanking regions (IDR) on the fibril surface. We suggest that this monomer recruitment may play a role in the elongation of amyloid fibrils and highlight the potential of the IDRs of the fibril as important therapeutic targets against seeded amyloid formation.


Subject(s)
Amyloid/ultrastructure , Intrinsically Disordered Proteins/ultrastructure , Parkinson Disease/genetics , alpha-Synuclein/ultrastructure , Amyloid/chemistry , Amyloid/genetics , Benzothiazoles/chemistry , Benzothiazoles/metabolism , Binding Sites/genetics , Humans , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Nuclear Magnetic Resonance, Biomolecular , Parkinson Disease/pathology , alpha-Synuclein/chemistry , alpha-Synuclein/genetics
3.
Proteins ; 91(8): 1163-1172, 2023 08.
Article in English | MEDLINE | ID: mdl-37102418

ABSTRACT

Coproporphyrinogen oxidase (CPO) plays important role in the biosynthesis of heme by catalyzing the coproporphyrinogen III to coproporphyrin III. However, in earlier research, it was regarded as the protoporphyrinogen oxidase (PPO) because it can also catalyze the oxidation of protoporphyrinogen IX to protoporphyrin IX. Identification of the commonalities in CPO and PPO would help us to get a further understanding of the enzyme function. In this work, we explored the role of a non-conserved residue, Asp65 in Bacillus subtilis CPO (bsCPO), whose corresponding residues in PPO from various species are neutral or positive residue (arginine in human PPO or asparagine in tobacco PPO, etc.). We found that Asp65 performs its function by forming a polar interaction network with its surrounding residues in bsCPO, which is important for enzymatic activity. This polar network maintains the substrate binding chamber and stabilizes the micro-environment of the isoalloxazine ring of FAD for the substrate-FAD interaction. Both the comparison of the crystal structures of bsCPO with PPO and our previous work showed that a similar polar interaction network is also present in PPOs. The results confirmed our conjecture that non-conserved residues can form a conserved element to maintain the function of CPO or PPO.


Subject(s)
Bacillus subtilis , Coproporphyrinogen Oxidase , Humans , Coproporphyrinogen Oxidase/chemistry , Coproporphyrinogen Oxidase/metabolism , Oxidation-Reduction , Catalysis
4.
Int J Mol Sci ; 24(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37686239

ABSTRACT

The G4C2 hexanucleotide repeat expansion in the c9orf72 gene is a major genetic cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), with the formation of G-quadruplexes directly linked to the development of these diseases. Cations play a crucial role in the formation and structure of G-quadruplexes. In this study, we investigated the impact of biologically relevant potassium ions on G-quadruplex structures and utilized 15N-labeled ammonium cations as a substitute for K+ ions to gain further insights into cation binding and exchange dynamics. Through nuclear magnetic resonance spectroscopy and molecular dynamics simulations, we demonstrate that the single d(G4C2) repeat, in the presence of 15NH4+ ions, adopts a tetramolecular G-quadruplex with an all-syn quartet at the 5'-end. The movement of 15NH4+ ions through the central channel of the G-quadruplex, as well as to the bulk solution, is governed by the vacant cation binding site, in addition to the all-syn quartet at the 5'-end. Furthermore, the addition of K+ ions to G-quadruplexes folded in the presence of 15NH4+ ions induces stacking of G-quadruplexes via their 5'-end G-quartets, leading to the formation of stable higher-ordered species.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , G-Quadruplexes , Humans , Amyotrophic Lateral Sclerosis/genetics , Cations , Potassium
5.
Proteins ; 90(5): 1044-1053, 2022 05.
Article in English | MEDLINE | ID: mdl-34375467

ABSTRACT

Since the identification of the SARS-CoV-2 virus as the causative agent of the current COVID-19 pandemic, considerable effort has been spent characterizing the interaction between the Spike protein receptor-binding domain (RBD) and the human angiotensin converting enzyme 2 (ACE2) receptor. This has provided a detailed picture of the end point structure of the RBD-ACE2 binding event, but what remains to be elucidated is the conformation and dynamics of the RBD prior to its interaction with ACE2. In this work, we utilize molecular dynamics simulations to probe the flexibility and conformational ensemble of the unbound state of the receptor-binding domain from SARS-CoV-2 and SARS-CoV. We have found that the unbound RBD has a localized region of dynamic flexibility in Loop 3 and that mutations identified during the COVID-19 pandemic in Loop 3 do not affect this flexibility. We use a loop-modeling protocol to generate and simulate novel conformations of the CoV2-RBD Loop 3 region that sample conformational space beyond the ACE2 bound crystal structure. This has allowed for the identification of interesting substates of the unbound RBD that are lower energy than the ACE2-bound conformation, and that block key residues along the ACE2 binding interface. These novel unbound substates may represent new targets for therapeutic design.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2 , Binding Sites , Humans , Molecular Dynamics Simulation , Pandemics , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
6.
Nucleic Acids Res ; 48(4): 2189-2197, 2020 02 28.
Article in English | MEDLINE | ID: mdl-31950178

ABSTRACT

Understanding the mechanism by which biological macromolecules fold into their functional native conformations represents a problem of fundamental interest. DNA oligonucleotides derived from human telomeric repeat d[TAGGG(TTAGGG)3] and d[TAGGG(TTAGGG)3TT] fold into G-quadruplexes through diverse steps. Varying the pH and temperature by the use of nuclear magnetic resonance and other methods enabled detection of pre-folded structures that exist in solution before completely formed G-quadruplexes upon addition of cations. Pre-folded structures are in general hard to detect, however their knowledge is crucial to set up folding pathways into final structure since they are believed to be a starting point. Unexpectedly well-defined pre-folded structures composed of base triples for both oligonucleotides were detected at certain pH and temperature. These kinds of structures were up to now only hypothesized as intermediates in the folding process. All revealed pre-folded structures irrespective of the pH and temperature exhibited one common structural feature that could govern folding process.


Subject(s)
DNA/chemistry , G-Quadruplexes , Nucleic Acid Conformation , Telomere/genetics , Circular Dichroism , DNA/genetics , Humans , Hydrogen-Ion Concentration , Ligands , Models, Molecular , Oligonucleotides/chemistry , Oligonucleotides/genetics , Telomere/chemistry , Temperature
7.
Nucleic Acids Res ; 48(5): 2749-2761, 2020 03 18.
Article in English | MEDLINE | ID: mdl-31996902

ABSTRACT

GCn and GCnCG, where n = (G2AG4AG2), fold into well-defined, dimeric G-quadruplexes with unprecedented folding topologies in the presence of Na+ ions as revealed by nuclear magnetic resonance spectroscopy. Both G-quadruplexes exhibit unique combination of structural elements among which are two G-quartets, A(GGGG)A hexad and GCGC-quartet. Detailed structural characterization uncovered the crucial role of 5'-GC ends in formation of GCn and GCnCG G-quadruplexes. Folding in the presence of 15NH4+ and K+ ions leads to 3'-3' stacking of terminal G-quartets of GCn G-quadruplexes, while 3'-GC overhangs in GCnCG prevent dimerization. Results of the present study expand repertoire of possible G-quadruplex structures. This knowledge will be useful in DNA sequence design for nanotechnological applications that may require specific folding topology and multimerization properties.


Subject(s)
Base Composition/genetics , Cations/metabolism , DNA/chemistry , G-Quadruplexes , Dimerization , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular
8.
Biochem Biophys Res Commun ; 557: 20-25, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33857841

ABSTRACT

Protoporphyrinogen IX oxidase (PPO) is the last common enzyme in chlorophyll and heme biosynthesis pathways. In human, point mutations on PPO are responsible for the dominantly inherited disorder disease, Variegate Porphyria (VP). Of the VP-causing mutation site, the Arg59 is by far the most prevalent VP mutation residue identified. Multiple sequences alignment of PPOs shows that the Arg59 of human PPO (hPPO) is not conserved, and experiments have shown that the equivalent residues in PPO from various species are essential for enzymatic activity. In this work, it was proposed that the Arg59 performs its function by forming a hydrogen-bonding (HB) network around it in hPPO, and we investigated the role of the HB network via site-directed mutagenesis, enzymatic kinetics and computational studies. We found the integrity of the HB network around Arg59 is important for enzyme activity. The HB network maintains the substrate binding chamber by holding the side chain of Arg59, while it stabilizes the micro-environment of the isoalloxazine ring of FAD, which is favorable for the substrate-FAD interaction. Our result provides a new insight to understanding the relationship between the structure and function for hPPO that non-conserved residues can form a conserved element to maintain the function of protein.


Subject(s)
Arginine/chemistry , Arginine/metabolism , Protoporphyrinogen Oxidase/chemistry , Protoporphyrinogen Oxidase/metabolism , Amino Acid Sequence , Arginine/genetics , Enzyme Assays/methods , Humans , Hydrogen Bonding , Kinetics , Models, Molecular , Mutagenesis, Site-Directed/methods , Protein Structural Elements , Protoporphyrinogen Oxidase/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Structure-Activity Relationship
9.
J Biol Chem ; 294(39): 14442-14453, 2019 09 27.
Article in English | MEDLINE | ID: mdl-31406019

ABSTRACT

Collagens carry out critical extracellular matrix (ECM) functions by interacting with numerous cell receptors and ECM components. Single glycine substitutions in collagen III, which predominates in vascular walls, result in vascular Ehlers-Danlos syndrome (vEDS), leading to arterial, uterine, and intestinal rupture and an average life expectancy of <50 years. Collagen interactions with integrin α2ß1 are vital for platelet adhesion and activation; however, how these interactions are impacted by vEDS-associated mutations and by specific amino acid substitutions is unclear. Here, we designed collagen-mimetic peptides (CMPs) with previously reported Gly → Xaa (Xaa = Ala, Arg, or Val) vEDS substitutions within a high-affinity integrin α2ß1-binding motif, GROGER. We used these peptides to investigate, at atomic-level resolution, how these amino acid substitutions affect the collagen III-integrin α2ß1 interaction. Using a multitiered approach combining biological adhesion assays, CD, NMR, and molecular dynamics (MD) simulations, we found that these substitutions differentially impede human mesenchymal stem cell spreading and integrin α2-inserted (α2I) domain binding to the CMPs and were associated with triple-helix destabilization. Although an Ala substitution locally destabilized hydrogen bonding and enhanced mobility, it did not significantly reduce the CMP-integrin interactions. MD simulations suggested that bulkier Gly → Xaa substitutions differentially disrupt the CMP-α2I interaction. The Gly → Arg substitution destabilized CMP-α2I side-chain interactions, and the Gly → Val change broke the essential Mg2+ coordination. The relationship between the loss of functional binding and the type of vEDS substitution provides a foundation for developing potential therapies for managing collagen disorders.


Subject(s)
Amino Acid Substitution , Collagen/chemistry , Ehlers-Danlos Syndrome/genetics , Integrin alpha2beta1/metabolism , Peptides/metabolism , Binding Sites , Cell Adhesion , Cell Line , Collagen/metabolism , Humans , Integrin alpha2beta1/chemistry , Integrin alpha2beta1/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/physiology , Molecular Docking Simulation , Peptides/chemistry , Protein Binding
10.
J Am Chem Soc ; 140(38): 11893-11897, 2018 09 26.
Article in English | MEDLINE | ID: mdl-30207719

ABSTRACT

RNA cleavage via internal transesterification is a fundamental reaction involved in RNA processing and metabolism, and the regulation thereof. Herein, the influence of ribose conformation on this reaction was investigated with conformationally constrained ribonucleotides. RNA cleavage rates were found to decrease in the order South-constrained ribonucleotide > native ribonucleotide ≫ North-constrained counterpart, indicating that the ribose conformation plays an important role in modulating RNA cleavage via internal transesterification.


Subject(s)
Oligoribonucleotides/chemistry , RNA Cleavage , RNA/chemistry , Ribose/chemistry , Density Functional Theory , Esterification , Kinetics , Models, Chemical , Nucleic Acid Conformation , Oligoribonucleotides/chemical synthesis
11.
Angew Chem Int Ed Engl ; 55(6): 1993-7, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26836334

ABSTRACT

A four-repeat human telomere DNA sequence without the 3'-end guanine, d[TAGGG(TTAGGG)2 TTAGG] (htel1-ΔG23) has been found to adopt two distinct two G-quartet antiparallel basket-type G-quadruplexes, TD and KDH(+) in presence of KCl. NMR, CD, and UV spectroscopy have demonstrated that topology of KDH(+) form is distinctive with unique protonated T18⋅A20(+) ⋅G5 base triple and other capping structural elements that provide novel insight into structural polymorphism and heterogeneity of G-quadruplexes in general. Specific stacking interactions amongst two G-quartets flanking base triples and base pairs in TD and KDH(+) forms are reflected in 10 K higher thermal stability of KDH(+) . Populations of TD and KDH(+) forms are controlled by pH. The (de)protonation of A20 is the key for pH driven structural transformation of htel1-ΔG23. Reversibility offers possibilities for its utilization as a conformational switch within different compartments of living cell enabling specific ligand and protein interactions.


Subject(s)
DNA/chemistry , G-Quadruplexes , Telomere/chemistry , Base Sequence , DNA/genetics , Humans , Hydrogen-Ion Concentration , Telomere/genetics
12.
Angew Chem Int Ed Engl ; 55(40): 12508-11, 2016 09 26.
Article in English | MEDLINE | ID: mdl-27577037

ABSTRACT

An NMR structural study of the interaction between a small-molecule optical probe (DAOTA-M2) and a G-quadruplex from the promoter region of the c-myc oncogene revealed that they interact at 1:2 binding stoichiometry. NMR-restrained structural calculations show that binding of DAOTA-M2 occurs mainly through π-π stacking between the polyaromatic core of the ligand and guanine residues of the outer G-quartets. Interestingly, the binding affinities of DAOTA-M2 differ by a factor of two for the outer G-quartets of the unimolecular parallel G-quadruplex under study. Unrestrained MD calculations indicate that DAOTA-M2 displays significant dynamic behavior when stacked on a G-quartet plane. These studies provide molecular guidelines for the design of triangulenium derivatives that can be used as optical probes for G-quadruplexes.

13.
J Biol Chem ; 288(17): 11731-40, 2013 Apr 26.
Article in English | MEDLINE | ID: mdl-23467411

ABSTRACT

Defects in the human protoporphyrinogen oxidase (hPPO) gene, resulting in ~50% decreased activity of hPPO, is responsible for the dominantly inherited disorder variegate porphyria (VP). To understand the molecular mechanism of VP, we employed the site-directed mutagenesis, biochemical assays, structural biology, and molecular dynamics simulation studies to investigate VP-causing hPPO mutants. We report here the crystal structures of R59Q and R59G mutants in complex with acifluorfen at a resolution of 2.6 and 2.8 Å. The r.m.s.d. of the Cα atoms of the active site structure of R59G and R59Q with respect to the wild-type was 0.20 and 0.15 Å, respectively. However, these highly similar static crystal structures of mutants with the wild-type could not quantitatively explain the observed large differences in their enzymatic activity. To understand how the hPPO mutations affect their catalytic activities, we combined molecular dynamics simulation and statistical analysis to quantitatively understand the molecular mechanism of VP-causing mutants. We have found that the probability of the privileged conformations of hPPO can be correlated very well with the k(cat)/K(m) of PPO (correlation coefficient, R(2) > 0.9), and the catalytic activity of 44 clinically reported VP-causing mutants can be accurately predicted. These results indicated that the VP-causing mutation affect the catalytic activity of hPPO by affecting the ability of hPPO to sample the privileged conformations. The current work, together with our previous crystal structure study on the wild-type hPPO, provided the quantitative structural insight into human variegate porphyria disease.


Subject(s)
Flavoproteins/chemistry , Mitochondrial Proteins/chemistry , Mutation, Missense , Porphyria, Variegate/enzymology , Protoporphyrinogen Oxidase/chemistry , Amino Acid Substitution , Catalysis , Crystallography, X-Ray , Flavoproteins/genetics , Humans , Mitochondrial Proteins/genetics , Mutagenesis, Site-Directed , Porphyria, Variegate/genetics , Protein Structure, Tertiary , Protoporphyrinogen Oxidase/genetics
14.
ACS Omega ; 9(20): 22175-22185, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38799301

ABSTRACT

In this work, we have applied the concept of α-hydrazino acid insertion in a peptide sequence as a means of structurally organizing a potential protein-protein interactions (PPI) inhibitor. Hydrazino peptides characterized by the incorporation of an α-hydrazino acid at specific positions introduce an additional nitrogen atom into their backbone. This modification leads to a change in the electrostatic properties of the peptide and induces the restructuring of its hydrogen bonding network, resulting in conformational changes toward more stable structural motifs. Despite the successful use of synthetic hydrazino oligomers in binding to nucleic acids, the structural changes due to the incorporation of α-hydrazino acid into short natural peptides in solution are still poorly understood. Based on NMR data, we report structural models of p53-derived hydrazino peptides with elements of localized peptide structuring in the form of an α-, ß-, or γ-turn as a result of hydrazino modification in the peptide backbone. The modifications could potentially lead to the preorganization of a helical secondary peptide structure in a solution that is favorable for binding to a biological receptor. Spectroscopically, we observed that the ensemble averaged rapidly interconverting conformations, including isomerization of the E-Z hydrazide bond. This further increases the adaptability by expanding the conformational space of hydrazine peptides as potential protein-protein interaction antagonists.

15.
Adv Mater ; 36(31): e2403101, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38771974

ABSTRACT

Direct methane conversion to value-added oxygenates under mild conditions with in-depth mechanism investigation has attracted wide interest. Inspired by methane monooxygenase, the K9Na2Fe(H2O)2{[γ-SiW9O34Fe(H2O)]}2·25H2O polyoxometalate (Fe-POM) with well-defined Fe(H2O)2 sites is synthesized to clarify the key role of Fe species and their microenvironment toward CH4 photooxidation. The Fe-POM can efficiently drive the conversion of CH4 to HCOOH with a yield of 1570.0 µmol gPOM -1 and 95.8% selectivity at ambient conditions, much superior to that of [Fe(H2O)SiW11O39]5- with Fe(H2O) active site, [Fe2SiW10O38(OH)]2 14- and [P8W48O184Fe16(OH)28(H2O)4]20- with multinuclear Fe-OH-Fe active sites. Single-dispersion of Fe-POM on polymeric carbon nitride (PCN) is facilely achieved to provide single-cluster functionalized PCN with well-defined Fe(H2O)2 site, the HCOOH yield can be improved to 5981.3 µmol gPOM -1. Systemic investigations demonstrate that the (WO)4-Fe(H2O)2 can supply Fe═O active center for C-H activation via forming (WO)4-Fea-Ot···CH4 intermediate, similar to that for CH4 oxidation in the monooxygenase. This work highlights a promising and facile strategy for single dispersion of ≈1-2 Å metal center with precise coordination microenvironment by uniformly anchoring nanoscale molecular clusters, which provides a well-defined model for in-depth mechanism research.

16.
Biochimie ; 214(Pt A): 73-82, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37573019

ABSTRACT

The human telomere oligonucleotide, d[TAGGG(TTAGGG)2TTAGG] (TAGGG), can adopt two distinct 2-G-quartet G-quadruplex structures at pH 7.0 and 5.0, referred to as the TD and KDH+ forms, respectively. By using a combination of NMR and computational techniques, we determined high-resolution structures of both forms, which revealed unique loop architectures, base triples, and base pairs that play a crucial role in the pH-driven structural transformation of TAGGG. Our study demonstrated that TAGGG represents a reversible pH-driven switch system where the stability and pH-induced structural transformation of the G-quadruplexes are influenced by the terminal residues and base triples. Gaining insight into the factors that regulate the formation of G-quadruplexes and their pH-sensitive structural equilibrium holds great potential for the rational design of novel DNA based pH-driven switches. These advancements in understanding create exciting opportunities for applications in the field of nanotechnology, specifically in the development of bio-nano-motors.


Subject(s)
G-Quadruplexes , Humans , DNA/chemistry , Oligonucleotides/chemistry , Magnetic Resonance Spectroscopy , Telomere , Hydrogen-Ion Concentration , Nucleic Acid Conformation
17.
FASEB J ; 25(2): 653-64, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21048046

ABSTRACT

Human protoporphyrinogen IX oxidase (hPPO), a mitochondrial inner membrane protein, converts protoporphyrinogen IX to protoporphyrin IX in the heme biosynthetic pathway. Mutations in the hPPO gene cause the inherited human disease variegate porphyria (VP). In this study, we report the crystal structure of hPPO in complex with the coenzyme flavin adenine dinucleotide (FAD) and the inhibitor acifluorfen at a resolution of 1.9 Å. The structural and biochemical analyses revealed the molecular details of FAD and acifluorfen binding to hPPO as well as the interactions of the substrate with hPPO. Structural analysis and gel chromatography indicated that hPPO is a monomer rather than a homodimer in vitro. The founder-effect mutation R59W in VP patients is most likely caused by a severe electrostatic hindrance in the hydrophilic binding pocket involving the bulky, hydrophobic indolyl ring of the tryptophan. Forty-seven VP-causing mutations were purified by chromatography and kinetically characterized in vitro. The effect of each mutation was demonstrated in the high-resolution crystal structure.


Subject(s)
Gene Expression Regulation, Enzymologic/physiology , Porphyria, Variegate/genetics , Protoporphyrinogen Oxidase/metabolism , Amino Acid Sequence , Flavin-Adenine Dinucleotide/metabolism , Humans , Models, Molecular , Molecular Sequence Data , Mutation , Protein Binding , Protein Conformation , Protoporphyrinogen Oxidase/chemistry , Protoporphyrinogen Oxidase/genetics
18.
Sci Rep ; 12(1): 2913, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35190671

ABSTRACT

Conquering the mutational drug resistance is a great challenge in anti-HIV drug development and therapy. Quantitatively predicting the mutational drug resistance in molecular level and elucidating the three dimensional structure-resistance relationships for anti-HIV drug targets will help to improve the understanding of the drug resistance mechanism and aid the design of resistance evading inhibitors. Here the MB-QSAR (Mutation-dependent Biomacromolecular Quantitative Structure Activity Relationship) method was employed to predict the molecular drug resistance of HIV-1 protease mutants towards six drugs, and to depict the structure resistance relationships in HIV-1 protease mutants. MB-QSAR models were constructed based on a published data set of Ki values for HIV-1 protease mutants against drugs. Reliable MB-QSAR models were achieved and these models display both well internal and external prediction abilities. Interpreting the MB-QSAR models supplied structural information related to the drug resistance as well as the guidance for the design of resistance evading drugs. This work showed that MB-QSAR method can be employed to predict the resistance of HIV-1 protease caused by polymorphic mutations, which offer a fast and accurate method for the prediction of other drug target within the context of 3D structures.


Subject(s)
Anti-HIV Agents , Drug Resistance, Viral/genetics , HIV Protease/genetics , HIV-1/drug effects , HIV-1/enzymology , Mutation , Quantitative Structure-Activity Relationship , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Drug Design
19.
J Agric Food Chem ; 70(33): 10144-10157, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-35946897

ABSTRACT

Phytoene desaturase (PDS) is not only an important enzyme in the biosynthesis of carotenoids but also a promising target for herbicide discovery. However, in recent years, no expected PDS inhibitors with new scaffolds have been reported. Hence, a solution for developing PDS inhibitors is to search for new compounds with novel chemotypes based on the PDS protein structure. In this work, we integrated structure-based virtual screening, structure-guided optimization, and biological evaluation to discover some PDS inhibitors with novel chemotypes. It is noteworthy that the highly potent compound 1b, 1-(4-chlorophenyl)-2-((5-(hydroxymethyl)-4-(3-(trifluoromethyl)phenyl)-4H-1,2,4-triazol-3-yl)thio)ethan-1-one, exhibited a broader spectrum of post-emergence herbicidal activity at 375-750 g/ha against six kinds of weeds than the commercial PDS inhibitor diflufenican. Surface plasmon resonance (SPR) assay showed that the affinity of our compound 1b (KD = 65.9 µM) to PDS is slightly weaker but at the same level as diflufenican (KD = 38.3 µM). Meanwhile, determination of the phytoene content and PDS mRNA quantification suggested that 1b could induce PDS mRNA reduction and phytoene accumulation. Moreover, 1b also caused the increase of reactive oxygen species (ROS) and the change of ROS-associated enzyme activity in albino leaves. Hence, all these results indicated the feasibility of PDS protein structure-based virtual screen and structure optimization to search for highly potent PDS inhibitors with novel chemotypes for weed control.


Subject(s)
Herbicides , Methanol , Herbicides/chemistry , Herbicides/pharmacology , Oxidoreductases/metabolism , RNA, Messenger , Reactive Oxygen Species
20.
Amino Acids ; 37(3): 523-30, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19266155

ABSTRACT

Protoporphyrinogen IX oxidase (PPO), the last common enzyme of heme and chlorophyll biosynthesis, catalyses the oxidation of protoporphyrinogen IX to protoporphyrin IX, with FAD as cofactor. Among PPO, Bacillus subtilis PPO (bsPPO) is unique because of its broad substrate specificity and resistance to inhibition by diphenylethers. Identification of the activity of bsPPO would help us to understand the catalysis and resistance mechanisms. Based on the modeling and docking studies, we found that Y366 site in bsPPO was adjacent to substrate and FAD. In order to evaluate the functional role of this site, three mutants Y366A Y366E and Y366H were cloned and kinetically characterized. The efficiency of catalysis for Y366A and Y366H reduced to 10% of the wild-type enzyme's activity, while Y366E just retained 1%. Y366E shows large resistance (K (i) = 153.94 microM) to acifluorfen. Molecular docking was carried out to understand the structure and functional relationship of PPO. The experimental results from the site-directed mutagenesis are consistent with the computational studies. The residue at position 366 is seemed to be responsible for substrate binding and catalysis and involved in herbicide resistance of bsPPO.


Subject(s)
Bacillus subtilis/enzymology , Catalytic Domain/genetics , Computational Biology/methods , Mutagenesis, Site-Directed , Protein Binding , Protoporphyrinogen Oxidase/chemistry , Bacillus subtilis/genetics , Biocatalysis , Circular Dichroism , Computer Simulation , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Flavin-Adenine Dinucleotide/metabolism , Kinetics , Models, Molecular , Mutant Proteins/biosynthesis , Mutant Proteins/metabolism , Nitrobenzoates/metabolism , Nitrobenzoates/pharmacology , Oxidation-Reduction , Protoporphyrinogen Oxidase/antagonists & inhibitors , Protoporphyrinogen Oxidase/genetics , Protoporphyrinogen Oxidase/metabolism , Protoporphyrins/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL