Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal
Publication year range
1.
Small ; 19(15): e2207342, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36605002

ABSTRACT

Hydrogen, a clean and flexible energy carrier, can be efficiently produced by electrocatalytic water splitting. To accelerate the sluggish hydrogen evolution reaction and oxygen evolution reaction kinetics in the splitting process, highly active electrocatalysts are essential for lowering the energy barriers, thereby improving the efficiency of overall water splitting. Combining the distinctive advantages of metal-organic frameworks (MOFs) with the physicochemical properties of 2D materials such as large surface area, tunable structure, accessible active sites, and enhanced conductivity, 2D MOFs have attracted intensive attention in the field of electrocatalysis. Different strategies, such as improving the conductivities of MOFs, reducing the thicknesses of MOF nanosheets, and integrating MOFs with conductive particles or substrates, are developed to promote the catalytic performances of pristine MOFs. This review summarizes the recent advances of pristine 2D MOF-based electrocatalysts for water electrolysis. In particular, their intrinsic electrocatalytic properties are detailly analyzed to reveal important roles of inherent MOF active centers, or other in situ generated active phases from MOFs responsible for the catalytic reactions. Finally, the challenges and development prospects of pristine 2D MOFs for the future applications in overall water splitting are discussed.

2.
Small ; 19(52): e2305201, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37635110

ABSTRACT

Multifunctional electrocatalysts are crucial to cost-effective electrochemical energy conversion and storage systems requiring mutual enhancement of disparate reactions. Embedding noble metal nanoparticles in 2D metal-organic frameworks (MOFs) are proposed as an effective strategy, however, the hybrids usually suffer from poor electrochemical performance and electrical conductivity in operating conditions. Herein, ultrafine Pt nanoparticles strongly anchored on thiophenedicarboxylate acid based 2D Fe-MOF nanobelt arrays (Pt@Fe-MOF) are fabricated, allowing sufficient exposure of active sites with superior trifunctional electrocatalytic activity for hydrogen evolution, oxygen evolution, and oxygen reduction reactions. The interfacial Fe─O─Pt bonds can induce the charge redistribution of metal centers, leading to the optimization of adsorption energy for reaction intermediates, while the dispersibility of ultrafine Pt nanoparticles contributes to the high mass activity. When Pt@Fe-MOF is used as bifunctional catalysts for water-splitting, a low voltage of 1.65 V is required at 100 mA cm-2 with long-term stability for 20 h at temperatures (65 °C) relevant for industrial applications, outperforming commercial benchmarks. Furthermore, liquid Zn-air batteries with Pt@Fe-MOF in cathodes deliver high open-circuit voltages (1.397 V) and decent cycling stability, which motivates the fabrication of flexible quasisolid-state rechargeable Zn-air batteries with remarkable performance.

3.
Small ; 15(51): e1906086, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31762172

ABSTRACT

Controlled growth of metal-organic frameworks (MOFs) nanocrystals on requisite surfaces is highly desired for myriad applications related to catalysis, energy, and electronics. Here, this challenge is addressed by overlaying arbitrary surfaces with a thermally evaporated metal layer to enable the well-aligned growth of ultralong quasi-2D MOF nanoarrays comprising cobalt ions and thiophenedicarboxylate acids. This interfacial engineering approach allows preferred chelation of carboxyl groups in the ligands with the metal interlayers, thereby making possible the fabrication and patterning of MOF nanoarrays on substrates of any materials or morphologies. The MOF nanoarrays grown on porous metal scaffolds demonstrate high electrocatalytic capability for water oxidation, exhibiting a small overpotential of 270 mV at 10 mA cm-2 , or 317 mV at 50 mA cm-2 as well as negligible decay of performance within 30 h. The enhanced performance stems from the improved electron and ion transport in the hierarchical porous nanoarrays consisting of in situ formed oxyhydroxide nanosheets in the electrochemical processes. This approach for mediating the growth of MOF nanoarrays can serve as a promising platform for diverse applications.

4.
Small ; 14(21): e1800639, 2018 May.
Article in English | MEDLINE | ID: mdl-29673118

ABSTRACT

Hierarchical porous structures are highly desired for various applications. However, it is still challenging to obtain such materials with tunable architectures. Here, this paper reports hierarchical nanomaterials with oriented 2D pores by taking advantages of thermally instable bonds in vanadium-based metal-organic frameworks (MOFs). High-temperature calcination of these MOFs accompanied by the loss of coordinated water molecules and other components enables the formation of orderly slit-like 2D pores in vanadium oxide/porous carbon nanorods (VOx /PCs). This unique combination leads to an increase of the reactive surface area. In addition, optimized VOx /PCs demonstrate high-rate capability and ultralong cycling life for sodium storage. The assembled full cells also show high capacity and cycling stability. This report provides an effective strategy for producing MOFs-derived composites with hierarchical porous architectures for energy storage.

SELECTION OF CITATIONS
SEARCH DETAIL