Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Proc Natl Acad Sci U S A ; 121(10): e2317026121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38408250

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been detected in almost all organs of coronavirus disease-19 patients, although some organs do not express angiotensin-converting enzyme-2 (ACE2), a known receptor of SARS-CoV-2, implying the presence of alternative receptors and/or co-receptors. Here, we show that the ubiquitously distributed human transferrin receptor (TfR), which binds to diferric transferrin to traffic between membrane and endosome for the iron delivery cycle, can ACE2-independently mediate SARS-CoV-2 infection. Human, not mouse TfR, interacts with Spike protein with a high affinity (KD ~2.95 nM) to mediate SARS-CoV-2 endocytosis. TfR knock-down (TfR-deficiency is lethal) and overexpression inhibit and promote SARS-CoV-2 infection, respectively. Humanized TfR expression enables SARS-CoV-2 infection in baby hamster kidney cells and C57 mice, which are known to be insusceptible to the virus infection. Soluble TfR, Tf, designed peptides blocking TfR-Spike interaction and anti-TfR antibody show significant anti-COVID-19 effects in cell and monkey models. Collectively, this report indicates that TfR is a receptor/co-receptor of SARS-CoV-2 mediating SARS-CoV-2 entry and infectivity by likely using the TfR trafficking pathway.


Subject(s)
COVID-19 , Animals , Humans , Mice , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Receptors, Transferrin/genetics , Receptors, Transferrin/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism
2.
J Vet Pharmacol Ther ; 47(1): 36-47, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37593974

ABSTRACT

Toltrazuril (TZR) is currently the only registered chemotherapeutic drug in the European Union for the treatment of Cystoisospora suis. This study investigated the comparative pharmacokinetics and tissue concentration-time profiles of TZR and its active metabolite, toltrazuril sulfone (TZR-SO2 ), after oral (per os, p.o.) and intramuscular (i.m.) administration to suckling piglets. Following a single administration of TZR orally at 50 mg/piglet or intramuscularly at 45 mg/piglet, higher concentrations of TZR and TZR-SO2 were observed in all three investigated tissues after p.o. administration. The mean TZR concentration in serum peaked at 14 µg/mL (34.03 h) and 5.36 µg/mL (120 h), while TZR-SO2 peaked at 14.12 µg/mL (246 h) and 9.92 µg/mL (330 h) after p.o. and i.m. administration, respectively. TZR was undetectable in the liver after p.o. administration (18 days) and in the jejunum (24 days) after i.m. injection, while TZR-SO2 was still detectable in all three tissues after 36 days regardless of administration routes. This study showed that p.o. formulation exhibited faster absorption and higher serum/tissue TZR/TZR-SO2 concentrations than i.m. formulation. Both formulations generated sufficient therapeutic concentrations in the serum and jejunum, and sustained enough time to protect against Cystoisospora suis infection in the piglets.


Subject(s)
Coccidiostats , Animals , Swine , Administration, Oral , Triazines , Sulfones , Injections, Intramuscular/veterinary
3.
Mar Drugs ; 21(5)2023 May 20.
Article in English | MEDLINE | ID: mdl-37233508

ABSTRACT

Multidrug resistance (MDR) caused by ATP-Binding Cassette Subfamily B Member 1 (ABCB1, P-glycoprotein, P-gp) is a major barrier for the success of chemotherapy in clinics. In this study, we designed and synthesized a total of 19 Lissodendrins B analogues and tested their ABCB1-mediated MDR reversal activity in doxorubicin (DOX)-resistant K562/ADR and MCF-7/ADR cells. Among all derivatives, compounds D1, D2, and D4 with a dimethoxy-substituted tetrahydroisoquinoline fragment possessed potent synergistic effects with DOX and reversed ABCB1-mediated drug resistance. Notably, the most potent compound D1 merits multiple activities, including low cytotoxicity, the strongest synergistic effect, and effectively reversing ABCB1-mediated drug resistance of K562/ADR (RF = 1845.76) and MCF-7/ADR cells (RF = 207.86) to DOX. As a reference substance, compound D1 allows for additional mechanistic studies on ABCB1 inhibition. The synergistic mechanisms were mainly related to the increased intracellular accumulation of DOX via inhibiting the efflux function of ABCB1 rather than from affecting the expression level of ABCB1. These studies suggest that compound D1 and its derivatives might be potential MDR reversal agents acting as ABCB1 inhibitors in clinical therapeutics and provide insight into a design strategy for the development of ABCB1 inhibitors.


Subject(s)
Antineoplastic Agents , Drug Resistance, Neoplasm , Humans , Drug Resistance, Multiple , ATP Binding Cassette Transporter, Subfamily B/metabolism , Doxorubicin/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor
4.
Int J Mol Sci ; 24(13)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37446275

ABSTRACT

When Poecilobdella manillensis attacks its prey, the prey bleeds profusely but feels little pain. We and other research teams have identified several anticoagulant molecules in the saliva of P. manillensis, but the substance that produces the paralyzing effect in P. manillensis is not known. In this study, we successfully isolated, purified, and identified a serine protease inhibitor containing an antistasin-like domain from the salivary secretions of P. manillensis. This peptide (named poeciguamerin) significantly inhibited elastase activity and slightly inhibited FXIIa and kallikrein activity, but had no effect on FXa, trypsin, or thrombin activity. Furthermore, poeciguamerin exhibited analgesic activity in the foot-licking and tail-withdrawal mouse models and anticoagulant activity in the FeCl3-induced carotid artery thrombosis mouse model. In this study, poeciguamerin was found to be a promising elastase inhibitor with potent analgesic and antithrombotic activity for the inhibition of pain and thrombosis after surgery or in inflammatory conditions.


Subject(s)
Leeches , Serpins , Thrombosis , Animals , Mice , Leeches/chemistry , Serine Proteinase Inhibitors , Anticoagulants/pharmacology , Anticoagulants/therapeutic use , Thrombosis/drug therapy , Pancreatic Elastase , Analgesics/pharmacology , Pain
5.
Int J Mol Sci ; 24(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37686259

ABSTRACT

Staphylococcus aureus (S. aureus) infections are a leading cause of morbidity and mortality, which are compounded by drug resistance. By manipulating the coagulation system, S. aureus gains a significant advantage over host defense mechanisms, with hypercoagulation induced by S. aureus potentially aggravating infectious diseases. Recently, we and other researchers identified that a higher level of LL-37, one endogenous antimicrobial peptide with a significant killing effect on S. aureus infection, resulted in thrombosis formation through the induction of platelet activation and potentiation of the coagulation factor enzymatic activity. In the current study, we identified a novel antimicrobial peptide (RK22) from the salivary gland transcriptome of Hirudinaria manillensis (H. manillensis) through bioinformatic analysis, and then synthesized it, which exhibited good antimicrobial activity against S. aureus, including a clinically resistant strain with a minimal inhibitory concentration (MIC) of 6.25 µg/mL. The RK22 peptide rapidly killed S. aureus by inhibiting biofilm formation and promoting biofilm eradication, with good plasma stability, negligible cytotoxicity, minimal hemolytic activity, and no significant promotion of the coagulation system. Notably, administration of RK22 significantly inhibited S. aureus infection and the clinically resistant strain in vivo. Thus, these findings highlight the potential of RK22 as an ideal treatment candidate against S. aureus infection.


Subject(s)
Leeches , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Staphylococcus aureus , Antimicrobial Peptides , Staphylococcal Infections/drug therapy
6.
Eur J Immunol ; 50(8): 1142-1153, 2020 08.
Article in English | MEDLINE | ID: mdl-32135578

ABSTRACT

Exposure to diesel exhaust particles (DEPs) is associated with acute inflammatory responses in the lung and exacerbation of respiratory diseases. However, the mechanism by which DEPs trigger the inflammatory responses remains unclear. Here, we demonstrated that the IFN response factors IRF3 and IRF7 played pivotal roles in DEP-induced pulmonary inflammation. DEPs could not directly induce inflammatory cytokine expression in mouse cells, whereas DEPs triggered autophagy both in vitro and in vivo. The DEP-induced autophagy was augmented in the absence of IRF3 and IRF7, but not in the absence of IFNAR. The expression of Raptor was induced by IRF3 and IRF7 in response to DEPs treatment. Furthermore, administration of the mechanistic target of rapamycin (mTOR) inhibitor alleviated the inflammatory responses in the lung during DEP exposure. Our findings define an IFNAR-independent role of increased autophagy in the absence of IRF3 and IRF7 during pulmonary DEP exposure, and provide the basis to develop new therapeutic approaches to counteract the adverse effects of DEPs and possibly other ambient particulate matters.


Subject(s)
Autophagy/physiology , Interferon Regulatory Factor-3/physiology , Interferon Regulatory Factor-7/physiology , Mechanistic Target of Rapamycin Complex 1/physiology , Pneumonia/etiology , Vehicle Emissions/toxicity , Animals , Cytokines/biosynthesis , Mice , Mice, Inbred C57BL , Receptor, Interferon alpha-beta/physiology , Sirolimus/pharmacology
7.
Nano Lett ; 20(6): 4270-4277, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32412244

ABSTRACT

The potential screening effect of one-dimensional ZnO nanorods from carriers has been theoretically proved to severely limit its piezoelectricity, but its exact mechanism needs to be further revealed in experiments to guide the design of piezoelectric semiconductors. Here, a discretely structured design was proposed to prevent the free carriers from tunneling among adjacent ZnO nanorods for suppressing the screening effect. Piezoresponse force microscope and finite element analysis were employed in combination to uncover the underlying mechanism in experiment. Further, the output voltage of this discretely structured device was 1.62 times higher than that of the nondesigned device, which clearly authenticates this suppression behavior. Besides, this design prompts an unexpected improvement in flexibility, where the flexural modulus of this piezo-film was reduced by 35.74%. Notably, this work opens a new way to understand the potential screening effect, as expected, and to advance the development of piezo-electronics toward better piezoelectricity and more excellent flexibility.

8.
Nanotechnology ; 31(35): 355701, 2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32396879

ABSTRACT

In this paper, a modified method for predicting surface effect parameters based on experimental data is developed using the surface effect theory. Polyacrylonitrile (PAN) nanowires with diameters in a range of 100 nm - 320 nm are manufactured by electrospinning. The data of the effective elastic moduli of PAN nanowire varying with diameters are obtained by experimenting with contact atomic-force microscopy (C-AFM). It was found that the effective Young's modulus of nanowires increased with the diameter of the nanowires decreases. The validity of the method in this paper are confirmed by comparing with the existing work. By taking into account the effect of surface energy on the bending, the deviation of the prediction of surface effect parameters in the existing work is solved. The current results will also be useful for predicting nanowire surface effect parameters and be helpful for the design of nanostructures and nanodevices related to nanowires.

9.
Sensors (Basel) ; 20(20)2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33050320

ABSTRACT

A novel interactive system for calligraphy called mind calligraphy that reflects the writer's emotions in real time by affective computing and visualization techniques is proposed. Differently from traditional calligraphy, which emphasizes artistic expression, the system is designed to visualize the writer's mental-state changes during writing using audio-visual tools. The writer's mental state is measured with a brain wave machine to yield attention and meditation signals, which are classified next into the four types of emotion, namely, focusing, relaxation, calmness, and anxiety. These emotion types then are represented both by animations and color palettes for by-standing observers to appreciate. Based on conclusions drawn from data collected from on-site observations, surveys via Likert-scale questionnaires, and semi-structured interviews, the proposed system was improved gradually. The participating writers' cognitive, emotional, and behavioral engagements in the system were recorded and analyzed to obtain the following findings: (1) the interactions with the system raise the writer's interest in calligraphy; (2) the proposed system reveals the writer's emotions during the writing process in real time via animations of mixtures of fish swimming and sounds of raindrops, insects, and thunder; (3) the dynamic visualization of the writer's emotion through animations and color-palette displays makes the writer understand better the connection of calligraphy and personal emotions; (4) the real-time audio-visual feedback increases the writer's willingness to continue in calligraphy; and (5) the engagement of the writer in the system with interactions of diversified forms provides the writer with a new experience of calligraphy.


Subject(s)
Dystonic Disorders , Emotions , Humans , User-Computer Interface , Writing
10.
J Org Chem ; 84(11): 7480-7487, 2019 06 07.
Article in English | MEDLINE | ID: mdl-31062593

ABSTRACT

A general and straightforward protocol for di-/perfluoroalkylation of ortho-hydroxycinnamic esters via a photoredox-catalyzed cascade was developed to access a variety of 3-fluoroalkylated coumarins. This method was characterized by all-in-one synthetic design, simplified operation, mild reaction conditions, and broad substrate scope. Moreover, a sequential one-pot procedure starting from commercially available salicylaldehyde was also successfully realized to synthesize 3-fluoroalkylated coumarins.

11.
Planta Med ; 85(4): 292-301, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30380571

ABSTRACT

Ginseng is a perennial herb that contains various medicinal substances. The major active constituents of ginseng are ginsenosides, which have multifarious biological activities. Some pharmacological activities are closely dependent on the stereoisomers derived from the configuration at C20. In this study, the in vitro anti-inflammatory activity of C20 epimeric ocotillol-type triterpenes (2, 3, 9: , and 10: ) and protopanaxadiol [20(S/R)-protopanaxadiol] were investigated. Epimers 2: and 3: were prepared starting from 20(S)-protopanaxadiol. Epimers 9: and 10: were synthesized from 20(R)-3-acetylprotopanaxadiol (7: ). The anti-inflammatory activity of 2, 3, 9, 10: , 20(S)-protopanaxadiol, and 20(R)-protopanaxadiol was evaluated in cultured mouse macrophage RAW 264.7 cells. The MTT assay was used to measure the cytotoxicity. RAW 264.7 cells were stimulated by lipopolysaccharide to release the inflammatory mediators nitric oxide, prostaglandin E2, TNF-α, and interleukin-6 and anti-inflammatory mediator interleukin-10. The effect of the compounds on the overproduction of nitric oxide, prostaglandin E2, TNF-α, interleukin-6, and interleukin-10 was determined using Griess and ELISA methods. The results demonstrated that the in vitro anti-inflammatory activities of C20 epimeric ocotillol-type triterpenes and protopanaxadiol were different. Both the 20S-epimers (2: and 3: ) and 20R-epimers (9: and 10: ) inhibited the release of inflammatory mediator nitric oxide, while mainly the 20S-epimers inhibited the release of inflammatory mediator prostaglandin E2, and the 20R-epimers inhibited the release of inflammatory cytokine TNF-α. Both the 20S-epimers [2, 3: , and 20(S)-protopanaxadiol] and 20R-epimers [9, 10: , and 20(R)-protopanaxadiol] inhibited the release of inflammatory cytokine interleukin-6, but mainly the 20S-epimers [2, 3: , and 20(S)-protopanaxadiol] increased the release of anti-inflammatory mediator interleukin-10.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Ginsenosides/pharmacology , Sapogenins/pharmacology , Triterpenes/pharmacology , Animals , Anti-Inflammatory Agents/chemical synthesis , Dinoprostone/antagonists & inhibitors , Ginsenosides/chemical synthesis , Interleukin-10/metabolism , Mice , Nitric Oxide/antagonists & inhibitors , Panax/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , RAW 264.7 Cells/drug effects , Sapogenins/chemical synthesis , Triterpenes/chemical synthesis , X-Ray Diffraction
12.
Chemistry ; 24(54): 14506-14512, 2018 Sep 25.
Article in English | MEDLINE | ID: mdl-30019781

ABSTRACT

Replacement of the bridging oxygen atom in rhodamine with phosphorus is one of the most efficient ways for bright near-infrared (NIR) fluorophores with wavelengths over 700 nm. However, the organophosphorus bridge is more versatile than just being a spectrum tuner, it is also a profound solubility booster and photostability enhancer, as proved by a series of phosphorus-substituted rhodamines (PRBs). A unique bridge-caging strategy for efficiently manipulating fluorescence has further been innovated in example PRB2. Consistent with theoretical calculations, the formation of organophosphinate by a caging group as a fluorescence-controller locks the spirolactone into a colorless and nonfluorescent form, whereas decaging, a process induced by a specific stimulus, results in a ring-opened form, which yields strong fluorescence. The bridge-caging strategy is feasible for the modular development of NIR probes. Efficient in vivo imaging of photoillumination, hydrogen peroxide, and enzyme have been achieved on the PRB2 scaffold as a photoactivatable fluorophore, PRB2-hν; fluorescent indicator, PRB2-H2 O2 ; and fluorogenic enzyme substrate, PRB2-NTR, respectively.

13.
J Org Chem ; 83(19): 12284-12290, 2018 10 05.
Article in English | MEDLINE | ID: mdl-30183297

ABSTRACT

A facile and enantioselective access to a functionalized octahydroacridine scaffold was developed via an organocatalytic domino sequence between cyclohexenone and 2- N-substituted benzaldehyde. High levels of yields (up to 99%) and enantioselectivities (up to 99:1 er) were readily achieved in this developed organocatalytic transformation, which holds promising applications in the construction of complex multicyclic systems for further pharmacological studies.

14.
Langmuir ; 33(6): 1437-1441, 2017 02 14.
Article in English | MEDLINE | ID: mdl-28110535

ABSTRACT

This article reports the observation of electrical modulation of localized surface plasmon around self-assembled monolayer (SAM)-modified gold nanoparticles and the establishment of a new spectroscopy technique, that is, dynamic electro-optical spectroscopy (DEOS). The gold nanoparticles are deposited onto a transparent conductive substrate, and an electrical bias applied on the conductive substrate can cause shift of resonance plasmon response, where the direction of peak shift is related to the polarity of applied bias. The peak shift observed at 2.4 V is approximately ten times larger than those reported in previous work. It is postulated that significant peak shift is the result of reorientation of adsorbed water on electrode, which can change local dielectric environment of nanoparticles. An energy barrier is identified when adsorbed water molecules are turned from oxygen-down to oxygen-up. Frequency-dependent peak shifts on surface-modified gold nanoparticles show that reorientation is a fast reversible process with rich dynamics.

15.
J Org Chem ; 82(7): 3895-3900, 2017 04 07.
Article in English | MEDLINE | ID: mdl-28281753

ABSTRACT

Reductive dimerization of isatin and its derivatives can be regarded as a step-economical pathway to construct 3,3'-disubstituted bisoxindoles, which was unfortunately accompanied by severe direct reduction as well as low efficiency. A visible-light driven, photoredox-catalytic protocol was developed to readily furnish 3,3'-dihydroxy- (dl-, > 20:1 dr) and 3,3'-diamino-bisoxindoles (meso-, 3.5:1 to 5:1 dr) in moderate to good yields, successfully circumventing the common problem. Two vicinal quaternary carbon centers were effectively assembled under the irradiation of visible light.

16.
Molecules ; 22(12)2017 Dec 04.
Article in English | MEDLINE | ID: mdl-29207567

ABSTRACT

A novel series of 11,12-cyclic carbonate azithromycin-3-O-descladinosyl-3-O-carbamoyl glycosyl derivatives were designed, synthesized, and evaluated for their antibacterial activities in vitro. Most of these compounds had significant antibacterial activity against seven kinds of susceptible strains. In particular, compound G1 exhibited the most potent activity against methicillin-resistant Streptococcus pneumoniae 943 (MIC: 1 µg/mL), Staphylococcus pneumoniae 746 (MIC: 2 µg/mL), Streptococcus pyogenes 447 (MIC: 8 µg/mL), and Escherichia coli 236 (MIC: 32 µg/mL), which were two-, four-, four-, four-, and eight-fold stronger activity than azithromycin, respectively. Additionally, compound G2 exhibited improved activity against methicillin-resistant Staphylococcus aureus MRSA-1 (MIC: 8 µg/mL), Streptococcus pneumoniae 943 (MIC: 2 µg/mL), Staphylococcus pneumoniae 746 (MIC: 2 µg/mL), and Escherichia coli 236 (MIC: 32 µg/mL), which were two-, two-, four-, and eight-fold better activity than azithromycin, respectively. As for methicillin-resistant Staphylococcus aureus MRSA-1, compound G6 presented the most excellent activity (MIC: 4 µg/mL), showing four-fold higher activity than azithromycin (MIC: 16 µg/mL) and erythromycin (MIC: 16 µg/mL). However, compared with other compounds, compounds G7 and G8 with the disaccharide side chain were observed the lower activity against seven strains.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Azithromycin/chemistry , Azithromycin/pharmacology , Escherichia coli/drug effects , Microbial Sensitivity Tests , Molecular Structure , Staphylococcus aureus/drug effects , Streptococcus pneumoniae/drug effects , Streptococcus pyogenes/drug effects
17.
J Org Chem ; 81(17): 8001-8, 2016 09 02.
Article in English | MEDLINE | ID: mdl-27463393

ABSTRACT

Highly diastereo- and enantioselective conjugate additions of azlactones to enolizable cyclic and linear enones were conducted by employing proline aryl sulfonamide as the organocatalyst in trifluorotoluene. The conjugate adducts bearing contiguous quaternary and tertiary stereocenters were obtained in moderate to good yields with excellent diastereoselectivities and moderate to good enantioselectivities. This developed protocol filled in the substrate gap for the organocatalytic conjugate addition of azlactone to enones.

18.
Ergonomics ; 58(8): 1253-65, 2015.
Article in English | MEDLINE | ID: mdl-25680001

ABSTRACT

This study examined usability principles and interface designs in order to understand the relationship between the intentions of mobile e-book interface designs and users' perceptions. First, this study summarised 4 usability principles and 16 interface attributes, in order to conduct usability testing and questionnaire survey by referring to Nielsen (1993), Norman (2002), and Yeh (2010), who proposed the usability principles. Second, this study used the interviews to explore the perceptions and behaviours of user operations through senior users of multi-touch prototype devices. The results of this study are as follows: (1) users' behaviour of operating an interactive interface is related to user prior experience; (2) users' rating of the visibility principle is related to users' subjective perception but not related to user prior experience; however, users' ratings of the ease, efficiency, and enjoyment principles are related to user prior experience; (3) the interview survey reveals that the key attributes affecting users' behaviour of operating an interface include aesthetics, achievement, and friendliness. PRACTITIONER SUMMARY: This study conducts experiments to explore the effects of users' prior multi-touch experience on users' behaviour of operating a mobile e-book interface and users' rating of usability principles. Both qualitative and quantitative data analyses were performed. By applying protocol analysis, key attributes affecting users' behaviour of operation were determined.


Subject(s)
Books , Mobile Applications , User-Computer Interface , Adult , Consumer Behavior , Female , Humans , Male , Perception , Surveys and Questionnaires , Taiwan
19.
Chemosphere ; 358: 142109, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657692

ABSTRACT

Recycling polluted water via different techniques has become one of the most feasible ways to solve the freshwater crisis. We describe a novel method to prepare reusable and efficient photothermal energy conversion materials for water purification. Using crosslinked xerogels as precursor, the porous and interconnected carboxymethylcellulose sodium-derived carbon aerogels (abbreviated as CCAs) with good hydrophilic performance and strong light absorption capability are firstly fabricated through pyrolysis. Photothermal measurement results show that CCA15 exhibit excellent solar steam generation rate of 2.31 kg m-2 h-1 with high light-to-vapor conversion efficiency of 95.9% under 1 sun illumination. In addition, the feasible application of CCA15 for efficient water purification under 1 sun irradiation using a homemade water treatment device has been demonstrated successfully. The as-prepared CCAs shown in here can be a continuable solution to mitigate the global freshwater crisis.


Subject(s)
Carbon , Carboxymethylcellulose Sodium , Gels , Water Purification , Carboxymethylcellulose Sodium/chemistry , Water Purification/methods , Gels/chemistry , Carbon/chemistry , Sunlight , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Porosity
20.
Nat Commun ; 15(1): 1693, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38402226

ABSTRACT

Conventional circuit elements are constrained by limitations in area and power efficiency at processing physical signals. Recently, researchers have delved into high-order dynamics and coupled oscillation dynamics utilizing Mott devices, revealing potent nonlinear computing capabilities. However, the intricate yet manageable population dynamics of multiple artificial sensory neurons with spatiotemporal coupling remain unexplored. Here, we present an experimental hardware demonstration featuring a capacitance-coupled VO2 phase-change oscillatory network. This network serves as a continuous-time dynamic system for sensory pre-processing and encodes information in phase differences. Besides, a decision-making module for special post-processing through software simulation is designed to complete a bio-inspired dynamic sensory system. Our experiments provide compelling evidence that this transistor-free coupling network excels in sensory processing tasks such as touch recognition and gesture recognition, achieving significant advantages of fewer devices and lower energy-delay-product compared to conventional methods. This work paves the way towards an efficient and compact neuromorphic sensory system based on nano-scale nonlinear dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL