Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Nano Lett ; 22(23): 9516-9522, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36414380

ABSTRACT

Two-dimensional (2D) materials-based photodetectors in the infrared range hold the key to enabling a wide range of optoelectronics applications including infrared imaging and optical communications. While there exist 2D materials with a narrow bandgap sensitive to infrared photons, a two-photon absorption (TPA) process can also enable infrared photodetection in well-established 2D materials with large bandgaps such as WSe2 and MoS2. However, most of the TPA photodetectors suffer from low responsivity, preventing this method from being widely adopted for infrared photodetection. Herein, we experimentally demonstrate 2D materials-based TPA avalanche photodiodes achieving an ultrahigh responsivity. The WSe2/MoS2 heterostructure absorbs infrared photons with an energy smaller than the material bandgaps via a low-efficiency TPA process. The significant avalanche effect with a gain of ∼1300 improves the responsivity, resulting in the record-high responsivity of 88 µA/W. We believe that this work paves the way toward building practical and high-efficiency 2D materials-based infrared photodetectors.

2.
Opt Express ; 30(20): 35999-36009, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36258538

ABSTRACT

We report a cost-efficient method to demonstrate the beam combining of five laser elements in an array of tunable slot waveguide quantum cascade lasers in the mid-infrared region at around 10 µm. An aspherical lens with five fine-tuned mini mirrors was employed to collimate the individual beams from the laser array. To verify the feasibility of this beam combining approach, the combined beams were coupled into a hollow-core fiber gas cell with a low numerical aperture (N.A.) of 0.03 and a coupling efficiency >= 0.82, for gas sensing of binary compound gases of ammonia and ethylene simultaneously.

3.
Opt Lett ; 47(9): 2174-2177, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35486753

ABSTRACT

Strain-engineered graphene has garnered much attention recently owing to the possibilities of creating substantial energy gaps enabled by pseudo-magnetic fields (PMFs). While theoretical works proposed the possibility of creating large-area PMFs by straining monolayer graphene along three crystallographic directions, clear experimental demonstration of such promising devices remains elusive. Herein, we experimentally demonstrate a triaxially strained suspended graphene structure that has the potential to possess large-scale and quasi-uniform PMFs. Our structure employs uniquely designed metal electrodes that function both as stressors and metal contacts for current injection. Raman characterization and tight-binding simulations suggest the possibility of achieving PMFs over a micrometer-scale area. Current-voltage measurements confirm an efficient current injection into graphene, showing the potential of our devices for a new class of optoelectronic applications. We also theoretically propose a photonic crystal-based laser structure that obtains strongly localized optical fields overlapping with the spatial area under uniform PMFs, thus presenting a practical route toward the realization of graphene lasers.

4.
Biochem Biophys Res Commun ; 512(4): 763-769, 2019 05 14.
Article in English | MEDLINE | ID: mdl-30926163

ABSTRACT

EP300-interacting inhibitor of differentiation 1 (Eid1) regulates differentiation, transcription and acetyltransferase activity. But the main function of Eid1 in the brain is still unclear. To better understand this issue, we generated Eid1-knockout (Eid1-KO) mice. We found poorer learning and memory ability, and smaller volume of neonatal telencephalon in Eid1-KO group than wild-type (WT). Bioinformatics implied that Eid1 may directly regulate cell proliferation. We then isolated neural stem cells (NSCs) and discovered a slower proliferation rate in Eid1-KO NSCs. Moreover, based on bioinformatics results, we investigated the expression of phosphatidylinositol 3-kinase (PI3K)/AKT/GSK3ß pathway by Western blotting assay, which showed attenuated in Eid1-KO group. Our data proved the first comprehensive report of Eid1 regulating NSCs proliferation via PI3K/AKT/GSK3ß pathway, and provide a foundation for the role of EID1 in the brain.


Subject(s)
Cell Proliferation , Neural Stem Cells/cytology , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout , Neural Stem Cells/metabolism , Nuclear Proteins/genetics , Repressor Proteins/genetics , Signal Transduction
5.
J Neuroinflammation ; 16(1): 234, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31771613

ABSTRACT

BACKGROUND: Inflammation and apoptosis caused by intracerebral hemorrhage (ICH) are two important factors that affect patient prognosis and survival. Toll-like receptor 4 (TLR4) triggers activation of the inflammatory pathway, causing synthesis and release of inflammatory factors. The inflammatory environment also causes neuronal apoptosis. However, no studies have reported the role of TLR4 in inflammation and apoptosis. METHODS: We performed survival curve analysis and behavioral scores on TLR4 knockout mice and wild-type mice after inducing ICH. We used TLR4 knockout mice and wild-type mice to make ICH models with type VII collagenase and explored the link between TLR4 in inflammation and apoptosis. We used Western blot to detect the expression of apoptosis-related proteins, inflammatory factors, and their receptors at different time points after ICH induction. The effects of TLR4 on apoptosis were observed by TUNEL, Hoechst, and HE staining techniques. The association with TLR4 in inflammation and apoptosis was explored using IL-1ß and TNF-α antagonists. Data conforming to a normal distribution are expressed as mean ± standard deviation. Grade and quantitative data were compared with rank sum test and t test between two groups. P < 0.05 was considered statistically significant. RESULTS: TLR4 knockout significantly increased the survival rate of ICH mice. The scores of TLR4 knockout mice were significantly lower than those of wild-type mice. We found that TLR4 knockout mice significantly inhibited apoptosis and the expression of inflammatory factors after the induction of ICH. The apoptosis of ICH-induced mice was significantly improved after injecting IL-1ß and TNF-α antagonists. Moreover, the anti-apoptotic effect of the antagonist in wild-type mice is more pronounced. A single injection of the antagonist failed to improve apoptosis in TLR4 knockout mice. CONCLUSIONS: We conclude that TLR4-induced inflammation after ICH promotes neuronal apoptosis. IL-1ß and TNF-α antagonists attenuate this apoptotic effect. Therefore, targeting TLR4 in patients with clinical ICH may attenuate inflammatory response, thereby attenuating apoptosis and improving prognosis.


Subject(s)
Apoptosis/physiology , Brain/metabolism , Cerebral Hemorrhage/metabolism , Toll-Like Receptor 4/metabolism , Animals , Apoptosis/drug effects , Brain/drug effects , Cerebral Hemorrhage/genetics , Collagenases/metabolism , Interleukin-1beta/antagonists & inhibitors , Mice , Mice, Knockout , Toll-Like Receptor 4/genetics , Tumor Necrosis Factor-alpha/antagonists & inhibitors
6.
Sensors (Basel) ; 19(24)2019 Dec 14.
Article in English | MEDLINE | ID: mdl-31847409

ABSTRACT

Advanced chemometric analysis is required for rapid and reliable determination of physical and/or chemical components in complex gas mixtures. Based on infrared (IR) spectroscopic/sensing techniques, we propose an advanced regression model based on the extreme learning machine (ELM) algorithm for quantitative chemometric analysis. The proposed model makes two contributions to the field of advanced chemometrics. First, an ELM-based autoencoder (AE) was developed for reducing the dimensionality of spectral signals and learning important features for regression. Second, the fast regression ability of ELM architecture was directly used for constructing the regression model. In this contribution, nitrogen oxide mixtures (i.e., N2O/NO2/NO) found in vehicle exhaust were selected as a relevant example of a real-world gas mixture. Both simulated data and experimental data acquired using Fourier transform infrared spectroscopy (FTIR) were analyzed by the proposed chemometrics model. By comparing the numerical results with those obtained using conventional principle components regression (PCR) and partial least square regression (PLSR) models, the proposed model was verified to offer superior robustness and performance in quantitative IR spectral analysis.

7.
Plant Cell Physiol ; 59(8): 1630-1642, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29684208

ABSTRACT

Soil salinity significantly represses plant development and growth. Mechanisms involved sodium (Na+) extrusion and compartmentation, intracellular membrane trafficking as well as redox homeostasis regulation play important roles in plant salt tolerance. In this study, we report that Patellin1 (PATL1), a membrane trafficking-related protein, modulates salt tolerance in Arabidopsis. The T-DNA insertion mutant of PATL1 (patl1) with an elevated PATL1 transcription level displays a salt-sensitive phenotype. PATL1 partially associates with the plasma membrane (PM) and endosomal system, and might participate in regulating membrane trafficking. Interestingly, PATL1 interacts with SOS1, a PM Na+/H+ antiporter in the Salt-Overly-Sensitive (SOS) pathway, and the PM Na+/H+ antiport activity is lower in patl1 than in Col-0. Furthermore, the reactive oxygen species (ROS) content is higher in patl1 and the redox signaling of antioxidants is partially disrupted in patl1 under salt stress conditions. Artificial elimination of ROS could partially rescue the salt-sensitive phenotype of patl1. Taken together, our results indicate that PATL1 participates in plant salt tolerance by regulating Na+ transport at least in part via SOS1, and by modulating cellular redox homeostasis during salt stress.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Sodium-Hydrogen Exchangers/metabolism , Arabidopsis/drug effects , Biological Transport/drug effects , Gene Expression Regulation, Plant , Phospholipid Transfer Proteins/metabolism , Reactive Oxygen Species/metabolism , Salt Tolerance , Sodium Chloride/pharmacology
8.
Biochem Biophys Res Commun ; 505(3): 677-684, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30292407

ABSTRACT

Cerebral ischemia-reperfusion-induced microglial activation causes neuronal death through the release of inflammatory cytokines. Increasing evidence suggests that microRNAs (miRNAs) exert a neuroprotective effect by modulating the inflammatory process in cerebral ischemia-reperfusion injury. Furthermore, Toll-like receptor 4 (TLR4) is increasingly being considered to have a significant role in the regulation of inflammation. However, whether miRNAs mediate their neuroprotective effects by regulating TLR4-mediated inflammatory responses remains unknown. To explore this gap in the literature, we conducted both in vitro and in vivo experiments. In vitro: BV2 cells were activated by oxygen-glucose deprivation (OGD). TLR4 and inflammatory cytokine (TNF-a, IL-6, and IL-1ß) transcription and translation expression levels were assessed using RT-PCR, ELISA, and western blot. BV2 cells were transfected with miR-182-5p mimics, inhibitors, siTLR4, or negative control (NC) using lipofectamine 2000 reagent. To confirm whether TLR4 is a direct target of miR-182-5p, we performed a luciferase reporter assay. In BV2 cells, we observed that OGD upregulated TLR4 expression, but downregulated miR-182-5p expression. We determined that miR-182-5p inhibited TLR4 by directly binding to its 3'-UTR. Furthermore, miR-182-5p suppressed the release of TNF-a, IL-6, and IL-1ß. In vivo: A middle cerebral artery occlusion (MCAO) rat model was used to mimic cerebral ischemia-reperfusion. Iba1 and TLR4 double staining was used to demonstrate that the target of miR-182-5p in microglial cells, and the mediator of the anti-inflammatory effect, is TLR4. TTC staining was performed to evaluate the infarct volume. Compared to the animals treated with miR-182-5p NC and normal saline, rats treated with miR-182-5p mimics demonstrated significantly enhanced neurological functions. TTC staining results were consistent with neurological function test findings. In summary, our data suggested that miR-182-5p exhibits potential neuroprotective effects in the cerebral ischemia-reperfusion injury via the regulation of the TLR4-mediated inflammatory response.


Subject(s)
Gene Expression Regulation , MicroRNAs/genetics , Reperfusion Injury/genetics , Toll-Like Receptor 4/genetics , Animals , Brain Ischemia/complications , Cell Line , Cytokines/genetics , Cytokines/metabolism , HEK293 Cells , Humans , Infarction, Middle Cerebral Artery/genetics , Infarction, Middle Cerebral Artery/metabolism , Male , Mice , Neuroprotection/genetics , RNA Interference , Rats, Sprague-Dawley , Reperfusion Injury/etiology , Reperfusion Injury/metabolism , Toll-Like Receptor 4/metabolism
9.
Plant Cell Physiol ; 58(2): 329-341, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28007965

ABSTRACT

Cytoplasmic Ca2+ ([Ca2+]cyt) elevation induced by various signals is responsible for appropriate downstream responses. Through a genetic screen of Arabidopsis thaliana mutants defective in stress-induced [Ca2+]cyt elevation, the glycosyltransferase QUASIMODO1 (QUA1) was identified as a regulator of [Ca2+]cyt in response to salt stress. Compared with the wild type, the qua1-4 mutant exhibited a dramatically greater increase in [Ca2+]cyt under NaCl treatment. Functional analysis showed that QUA1 is a novel chloroplast protein that regulates cytoplasmic Ca2+ signaling. QUA1 was detected in chloroplast thylakoids, and the qua1-4 mutant exhibited irregularly stacked grana. The observed greater increase in [Ca2+]cyt was inhibited upon recovery of chloroplast function in the qua1-4 mutant. Further analysis showed that CAS, a thylakoid-localized calcium sensor, also displayed irregularly stacked grana, and the chloroplasts of the qua1-4 cas-1 double mutant were similar to those of cas-1 plants. In QUA1-overexpressing plants, the protein level of CAS was decreased, and CAS was readily degraded under osmotic stress. When CAS was silenced in the qua1-4 mutant, the large [Ca2+]cyt increase was blocked, and the higher expression of PLC3 and PLC4 was suppressed. Under osmotic stress, the qua1-4 mutant showed an even greater elevation in [Ca2+]cyt and was hypersensitive to drought stress. However, this sensitivity was inhibited when the increase in [Ca2+]cyt was repressed in the qua1-4 mutant. Collectively, our data indicate that QUA1 may function in chloroplast-dependent calcium signaling under salt and drought stresses. Additionally, CAS may function downstream of QUA1 to mediate these processes.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Chloroplasts/metabolism , Droughts , Hexosyltransferases/metabolism , Sodium Chloride/pharmacology , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Calcium/metabolism , Calcium Signaling/drug effects , Calcium Signaling/genetics , Chloroplasts/drug effects , Chloroplasts/genetics , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/genetics , Hexosyltransferases/genetics , Plants, Genetically Modified/drug effects , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
10.
Nat Commun ; 15(1): 5396, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926397

ABSTRACT

Structured vortex light with orbital angular momentum (OAM) shows great promise for high-bandwidth optical communications, quantum information and computing, optical tweezers, microscopy, astronomy, among others. Generating, controlling, and detecting of vortex light by all-electrical means is at the heart of next generation nanophotonic platforms. However, on-chip electrical photodetection of structured vortex light remains challenging. Here, we propose an on-chip photodetector based on 2D broadband thermoelectric material (PdSe2) with a well-designed spin-Hall couplers to directly characterize angular momentum modes of vortex structured light. Photothermoelectric responses in the PdSe2 nanoflake, excited by the focusing surface plasmons, show a magnitude proportional to the total angular momentum modes of the infrared vortex beams, thereby achieving direct detection of spin and orbital angular momentum, as well as the chirality and ellipticity of scalar vortex lights. Our works provide a promising strategy for developing on-chip angular momentum optoelectronic devices, which play a key role in the next-generation high-capacity optical communications, quantum information and computing, imaging, and other photonic systems.

11.
Nat Nanotechnol ; 19(4): 455-462, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38225358

ABSTRACT

A light field carrying multidimensional optical information, including but not limited to polarization, intensity and wavelength, is essential for numerous applications such as environmental monitoring, thermal imaging, medical diagnosis and free-space communications. Simultaneous acquisition of this multidimensional information could provide comprehensive insights for understanding complex environments but remains a challenge. Here we demonstrate a multidimensional optical information detection device based on zero-bias double twisted black arsenic-phosphorus homojunctions, where the photoresponse is dominated by the photothermoelectric effect. By using a bipolar and phase-offset polarization photoresponse, the device operated in the mid-infrared range can simultaneously detect both the polarization angle and incident intensity information through direct measurement of the photocurrents in the double twisted black arsenic-phosphorus homojunctions. The device's responsivity makes it possible to retrieve wavelength information, typically perceived as difficult to obtain. Moreover, the device exhibits an electrically tunable polarization photoresponse, enabling precise distinction of polarization angles under low-intensity light exposure. These demonstrations offer a promising approach for simultaneous detection of multidimensional optical information, indicating potential for diverse photonic applications.

12.
Adv Mater ; 36(26): e2400858, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631028

ABSTRACT

2D materials are burgeoning as promising candidates for investigating nonlinear optical effects due to high nonlinear susceptibilities, broadband optical response, and tunable nonlinearity. However, most 2D materials suffer from poor nonlinear conversion efficiencies, resulting from reduced light-matter interactions and lack of phase matching at atomic thicknesses. Herein, a new 2D nonlinear material, niobium oxide dibromide (NbOBr2) is reported, featuring strong and anisotropic optical nonlinearities with scalable nonlinear intensity. Furthermore, Fabry-Pérot (F-P) microcavities are constructed by coupling NbOBr2 with air holes in silicon. Remarkable enhancement factors of ≈630 times in second harmonic generation (SHG) and 210 times in third harmonic generation (THG) are achieved on cavity at the resonance wavelength of 1500 nm. Notably, the cavity enhancement effect exhibits strong anisotropic feature tunable with pump wavelength, owing to the robust optical birefringence of NbOBr2. The ratio of the enhancement factor along the b- and c-axis of NbOBr2 reaches 2.43 and 5.27 for SHG and THG at 1500 nm pump, respectively, which leads to an extraordinarily high SHG anisotropic ratio of 17.82 and a 10° rotation of THG polarization. The research presents a feasible and practical strategy for developing high-efficiency and low-power-pumped on-chip nonlinear optical devices with tunable anisotropy.

13.
Nat Commun ; 15(1): 3295, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632230

ABSTRACT

Van der Waals semiconductors exemplified by two-dimensional transition-metal dichalcogenides have promised next-generation atomically thin optoelectronics. Boosting their interaction with light is vital for practical applications, especially in the quantum regime where ultrastrong coupling is highly demanded but not yet realized. Here we report ultrastrong exciton-plasmon coupling at room temperature in tungsten disulfide (WS2) layers loaded with a random multi-singular plasmonic metasurface deposited on a flexible polymer substrate. Different from seeking perfect metals or high-quality resonators, we create a unique type of metasurface with a dense array of singularities that can support nanometre-sized plasmonic hotspots to which several WS2 excitons coherently interact. The associated normalized coupling strength is 0.12 for monolayer WS2 and can be up to 0.164 for quadrilayers, showcasing the ultrastrong exciton-plasmon coupling that is important for practical optoelectronic devices based on low-dimensional semiconductors.

15.
Nat Commun ; 14(1): 3421, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37296149

ABSTRACT

Filter-free miniaturized polarization-sensitive photodetectors have important applications in the next-generation on-chip polarimeters. However, their polarization sensitivity is thus far limited by the intrinsic low diattenuation and inefficient photon-to-electron conversion. Here, we implement experimentally a miniaturized detector based on one-dimensional tellurium nanoribbon, which can significantly improve the photothermoelectric responses by translating the polarization-sensitive absorption into a large temperature gradient together with the finite-size effect of a perfect plasmonic absorber. Our devices exhibit a zero-bias responsivity of 410 V/W and an ultrahigh polarization ratio (2.5 × 104), as well as a peak polarization angle sensitivity of 7.10 V/W•degree, which is one order of magnitude higher than those reported in the literature. Full linear polarimetry detection is also achieved with the proposed device in a simple geometrical configuration. Polarization-coded communication and optical strain measurement are demonstrated showing the great potential of the proposed devices. Our work presents a feasible solution for miniaturized room-temperature infrared photodetectors with ultrahigh polarization sensitivity.


Subject(s)
Communication , Electrons , Photons , Records , Tellurium
16.
Nat Commun ; 14(1): 707, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36759671

ABSTRACT

Topological cavities, whose modes are protected against perturbations, are promising candidates for novel semiconductor laser devices. To date, there have been several demonstrations of topological lasers (TLs) exhibiting robust lasing modes. The possibility of achieving nontrivial beam profiles in TLs has recently been explored in the form of vortex wavefront emissions enabled by a structured optical pump or strong magnetic field, which are inconvenient for device applications. Electrically pumped TLs, by contrast, have attracted attention for their compact footprint and easy on-chip integration with photonic circuits. Here, we experimentally demonstrate an electrically pumped TL based on photonic analogue of a Majorana zero mode (MZM), implemented monolithically on a quantum cascade chip. We show that the MZM emits a cylindrical vector (CV) beam, with a topologically nontrivial polarization profile from a terahertz (THz) semiconductor laser.

17.
Adv Mater ; 35(46): e2305594, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37740257

ABSTRACT

Detecting and distinguishing light polarization states, one of the most basic elements of optical fields, have significant importance in both scientific studies and industry applications. Artificially fabricated structures, e.g., metasurfaces with anisotropic absorptions, have shown the capabilities of detecting polarization light and controlling. However, their operations mainly rely on resonant absorptions based on structural designs that are usually narrow bands. Here, a mid-infrared (MIR) broadband polarization photodetector with high PRs and wavelength-dependent polarities using a 2D anisotropic/isotropic Nb2 GeTe4 /MoS2 van der Waals (vdWs) heterostructure is demonstrated. It is shown that the photodetector exhibits high PRs of 48 and 34 at 4.6  and 11.0 µm wavelengths, respectively, and even a negative PR of -3.38 for 3.7 µm under the zero bias condition at room temperature. Such interesting results can be attributed to the superimposed effects of a photovoltaic (PV) mechanism in the Nb2 GeTe4 /MoS2 hetero-junction region and a bolometric mechanism in the MoS2 layer. Furthermore, the photodetector demonstrates its effectiveness in bipolar and unipolar polarization encoding communications and polarization imaging enabled by its unique and high PRs.

18.
Adv Mater ; 35(41): e2304082, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37391190

ABSTRACT

Carbon nanotubes (CNTs) possess extremely anisotropic electronic, thermal, and optical properties owing to their 1D character. While their linear optical properties have been extensively studied, nonlinear optical processes, such as harmonic generation for frequency conversion, remain largely unexplored in CNTs, particularly in macroscopic CNT assemblies. In this work, macroscopic films of aligned and type-separated (semiconducting and metallic) CNTs are synthesized and polarization-dependent third-harmonic generation (THG) from the films with fundamental wavelengths ranging from 1.5 to 2.5 µm is studied. Both films exhibited strongly wavelength-dependent, intense THG signals, enhanced through exciton resonances, and third-order nonlinear optical susceptibilities of 2.50 × 10-19  m2  V-2 (semiconducting CNTs) and 1.23 × 10-19  m2  V-2 (metallic CNTs), respectively are found, for 1.8 µm excitation. Further, through systematic polarization-dependent THG measurements, the values of all elements of the susceptibility tensor are determined, verifying the macroscopically 1D nature of the films. Finally, polarized THG imaging is performed to demonstrate the nonlinear anisotropy in the large-size CNT film with good alignment. These findings promise applications of aligned CNT films in mid-infrared frequency conversion, nonlinear optical switching, polarized pulsed lasers, polarized long-wave detection, and high-performance anisotropic nonlinear photonic devices.

19.
Nat Commun ; 14(1): 1938, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37024508

ABSTRACT

Infrared machine vision system for object perception and recognition is becoming increasingly important in the Internet of Things era. However, the current system suffers from bulkiness and inefficiency as compared to the human retina with the intelligent and compact neural architecture. Here, we present a retina-inspired mid-infrared (MIR) optoelectronic device based on a two-dimensional (2D) heterostructure for simultaneous data perception and encoding. A single device can perceive the illumination intensity of a MIR stimulus signal, while encoding the intensity into a spike train based on a rate encoding algorithm for subsequent neuromorphic computing with the assistance of an all-optical excitation mechanism, a stochastic near-infrared (NIR) sampling terminal. The device features wide dynamic working range, high encoding precision, and flexible adaption ability to the MIR intensity. Moreover, an inference accuracy more than 96% to MIR MNIST data set encoded by the device is achieved using a trained spiking neural network (SNN).

20.
Leukemia ; 37(3): 659-669, 2023 03.
Article in English | MEDLINE | ID: mdl-36596983

ABSTRACT

In the present study, we screened 84 Follicular Lymphoma patients for somatic mutations suitable as liquid biopsy MRD biomarkers using a targeted next-generation sequencing (NGS) panel. We found trackable mutations in 95% of the lymph node samples and 80% of the liquid biopsy baseline samples. Then, we used an ultra-deep sequencing approach with 2 · 10-4 sensitivity (LiqBio-MRD) to track those mutations on 151 follow-up liquid biopsy samples from 54 treated patients. Positive LiqBio-MRD at first-line therapy correlated with a higher risk of progression both at the interim evaluation (HRINT 11.0, 95% CI 2.10-57.7, p = 0.005) and at the end of treatment (HREOT, HR 19.1, 95% CI 4.10-89.4, p < 0.001). Similar results were observed by PET/CT Deauville score, with a median PFS of 19 months vs. NR (p < 0.001) at the interim and 13 months vs. NR (p < 0.001) at EOT. LiqBio-MRD and PET/CT combined identified the patients that progressed in less than two years with 88% sensitivity and 100% specificity. Our results demonstrate that LiqBio-MRD is a robust and non-invasive approach, complementary to metabolic imaging, for identifying FL patients at high risk of failure during the treatment and should be considered in future response-adapted clinical trials.


Subject(s)
Lymphoma, Follicular , Positron Emission Tomography Computed Tomography , Humans , Positron Emission Tomography Computed Tomography/methods , Lymphoma, Follicular/diagnosis , Lymphoma, Follicular/genetics , Lymphoma, Follicular/pathology , Biomarkers , Liquid Biopsy , High-Throughput Nucleotide Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL