Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Am J Hypertens ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136164

ABSTRACT

BACKGROUND: Elevated soluble stimulating factor 2 (sST2) level is observed in cardiovascular diseases, such as heart failure and acute coronary syndrome, which reflects myocardial fibrosis and hypertrophy, indicating adverse clinical outcomes. However, the association between sST2 and hypertensive heart disease are less understood. This study aimed to determine the relationship of sST2 with left ventricular hypertrophy (LVH) and geometric remodeling in essential hypertension (EH). METHODS: We enrolled 483 patients (aged 18-80 years; 51.35% female). sST2 measurements and echocardiographic analyses were performed. RESULTS: Stepwise multiple linear regression analysis showed significant associations between sST2, left ventricular (LV) mass, and LV mass index. The prevalence of LVH and concentric hypertrophy (CH) increased with higher sST2 grade levels (p for trend<0.05). Logistic regression analysis suggested that the highest tertile of sST2 was significantly associated with increased LVH risk, compared with the lowest tertile (multivariate-adjusted odds ratio [OR] of highest group: 6.61; p<0.001). Similar results were observed in the left ventricular geometric remodeling; the highest tertile of sST2 was significantly associated with increased CH risk (multivariate-adjusted OR of highest group: 5.80; p<0.001). The receiver operating characteristic analysis results revealed that sST2 had potential predictive value for LVH (area under the curve [AUC]: 0.752, 95% confidence interval [CI]: 0.704-0.800) and CH (AUC: 0.750, 95% CI: 0.699-0.802) in patients with EH. CONCLUSIONS: High sST2 level is strongly related to LVH and CH in patients with EH and can be used as a biomarker for the diagnosis and risk assessment of hypertensive heart disease.

2.
J Clin Hypertens (Greenwich) ; 26(4): 363-373, 2024 04.
Article in English | MEDLINE | ID: mdl-38430459

ABSTRACT

Left ventricular hypertrophy (LVH) is a hypertensive heart disease that significantly escalates the risk of clinical cardiovascular events. Its etiology potentially incorporates various clinical attributes such as gender, age, and renal function. From mechanistic perspective, the remodeling process of LVH can trigger increment in certain biomarkers, notably sST2 and NT-proBNP. This multicenter, retrospective study aimed to construct an LVH risk assessment model and identify the risk factors. A total of 417 patients with essential hypertension (EH), including 214 males and 203 females aged 31-80 years, were enrolled in this study; of these, 161 (38.6%) were diagnosed with LVH. Based on variables demonstrating significant disparities between the LVH and Non-LVH groups, three multivariate stepwise logistic regression models were constructed for risk assessment: the "Clinical characteristics" model, the "Biomarkers" model (each based on their respective variables), and the "Clinical characteristics + Biomarkers" model, which amalgamated both sets of variables. The results revealed that the "Clinical characteristics + Biomarkers" model surpassed the baseline models in performance (AUC values of the "Clinical characteristics + Biomarkers" model, the "Biomarkers" model, and the "Clinical characteristics" model were .83, .75, and .74, respectively; P < .0001 for both comparisons). The optimized model suggested that being female (OR: 4.26, P <.001), being overweight (OR: 1.88, p = .02) or obese (OR: 2.36, p = .02), duration of hypertension (OR: 1.04, P = .04), grade III hypertension (OR: 2.12, P < .001), and sST2 (log-transformed, OR: 1.14, P < .001) were risk factors, while eGFR acted as a protective factor (OR: .98, P = .01). These findings suggest that the integration of clinical characteristics and biomarkers can enhance the performance of LVH risk assessment.


Subject(s)
Hypertension , Hypertrophy, Left Ventricular , Female , Humans , Male , Biomarkers , Essential Hypertension/complications , Essential Hypertension/epidemiology , Hypertension/complications , Hypertension/diagnosis , Hypertension/epidemiology , Hypertrophy, Left Ventricular/diagnosis , Hypertrophy, Left Ventricular/epidemiology , Hypertrophy, Left Ventricular/etiology , Nomograms , Retrospective Studies , Risk Assessment , Adult , Middle Aged , Aged , Aged, 80 and over
3.
Bioengineered ; 12(2): 10420-10429, 2021 12.
Article in English | MEDLINE | ID: mdl-34872444

ABSTRACT

Atherosclerosis (AS) is a typical vascular disease. Emerging evidence has shown that circRNAs play key roles in the progression of AS, but the potential function and underlying mechanism of hsa_circ_0001879 remains unknown. We detected the expression level of hsa_circ_0001879 was determined by qRT-PCR, and the proliferation rate and migration ability of HUVECs were measured by CCK-8 assay and Transwell assay, respectively. Proliferative markers and epithelium mesenchymal transition (EMT) markers were measured through immunoblotting. A dual luciferase activity assay was performed to detect the interaction between circRNAs, miRNAs, and mRNAs. Hsa_circ_0001879 was upregulated in AS patients. Hsa_circ_0001879 inhibited the proliferation and migration ability of Human umbilical vein endothelial cells (HUVECs). Hsa_circ_0001879 directly bound to miR-6873-5p and acted as a sponge. miR-6873-5p-induced HDAC9 mRNA degradation was inhibited by hsa_circ_0001879. Hsa_circ_0001879 decreased the proliferation and migration of HUVECs by inhibiting miR-6873-5p-induced HDAC9 degradation.


Subject(s)
Atherosclerosis/genetics , Atherosclerosis/pathology , Cell Movement , Histone Deacetylases/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Lipoproteins, LDL/pharmacology , MicroRNAs/metabolism , RNA, Circular/metabolism , Repressor Proteins/metabolism , Base Sequence , Biomarkers/metabolism , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/drug effects , Disease Progression , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , MicroRNAs/genetics , Proteolysis/drug effects , RNA, Circular/genetics , Up-Regulation/drug effects , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL