Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Mol Cell ; 73(3): 547-561.e6, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30735655

ABSTRACT

Chromatin organization undergoes drastic reconfiguration during gametogenesis. However, the molecular reprogramming of three-dimensional chromatin structure in this process remains poorly understood for mammals, including primates. Here, we examined three-dimensional chromatin architecture during spermatogenesis in rhesus monkey using low-input Hi-C. Interestingly, we found that topologically associating domains (TADs) undergo dissolution and reestablishment in spermatogenesis. Strikingly, pachytene spermatocytes, where synapsis occurs, are strongly depleted for TADs despite their active transcription state but uniquely show highly refined local compartments that alternate between transcribing and non-transcribing regions (refined-A/B). Importantly, such chromatin organization is conserved in mouse, where it remains largely intact upon transcription inhibition. Instead, it is attenuated in mutant spermatocytes, where the synaptonemal complex failed to be established. Intriguingly, this is accompanied by the restoration of TADs, suggesting that the synaptonemal complex may restrict TADs and promote local compartments. Thus, these data revealed extensive reprogramming of higher-order meiotic chromatin architecture during mammalian gametogenesis.


Subject(s)
Cellular Reprogramming , Chromatin Assembly and Disassembly , Chromatin/metabolism , Meiosis , Spermatogenesis , Spermatozoa/metabolism , Animals , Chromatin/chemistry , Chromatin/genetics , Gene Expression Regulation, Developmental , HCT116 Cells , Humans , Macaca mulatta , Male , Mice, Inbred C57BL , Mice, Knockout , Nucleic Acid Conformation , Pachytene Stage , Protein Conformation , Structure-Activity Relationship , Time Factors , Transcription, Genetic , X Chromosome Inactivation
2.
BMC Biol ; 17(1): 39, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31088452

ABSTRACT

BACKGROUND: RNA regulation by RNA-binding proteins (RBPs) involve extremely complicated mechanisms. MOV10 and MOV10L1 are two homologous RNA helicases implicated in distinct intracellular pathways. MOV10L1 participates specifically in Piwi-interacting RNA (piRNA) biogenesis and protects mouse male fertility. In contrast, the functional complexity of MOV10 remains incompletely understood, and its role in the mammalian germline is unknown. Here, we report a study of the biological and molecular functions of the RNA helicase MOV10 in mammalian male germ cells. RESULTS: MOV10 is a nucleocytoplasmic protein mainly expressed in spermatogonia. Knockdown and transplantation experiments show that MOV10 deficiency has a negative effect on spermatogonial progenitor cells (SPCs), limiting proliferation and in vivo repopulation capacity. This effect is concurrent with a global disturbance of RNA homeostasis and downregulation of factors critical for SPC proliferation and/or self-renewal. Unexpectedly, microRNA (miRNA) biogenesis is impaired due partially to decrease of miRNA primary transcript levels and/or retention of miRNA via splicing control. Genome-wide analysis of RNA targetome reveals that MOV10 binds preferentially to mRNAs with long 3'-UTR and also interacts with various non-coding RNA species including those in the nucleus. Intriguingly, nuclear MOV10 associates with an array of splicing factors, particularly with SRSF1, and its intronic binding sites tend to reside in proximity to splice sites. CONCLUSIONS: These data expand the landscape of MOV10 function and highlight a previously unidentified role initiated from the nucleus, suggesting that MOV10 is a versatile RBP involved in a broader RNA regulatory network.


Subject(s)
Adult Germline Stem Cells/metabolism , RNA Helicases/genetics , Spermatozoa/metabolism , Animals , Gene Expression Profiling , Male , Mice , RNA Helicases/metabolism
3.
Nat Commun ; 14(1): 8209, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38081819

ABSTRACT

Idiopathic fertility disorders are associated with mutations in various genes. Here, we report that coiled-coil glutamate-rich protein 1 (CCER1), a germline-specific and intrinsically disordered protein (IDP), mediates postmeiotic spermatid differentiation. In contrast, CCER1 deficiency results in defective sperm chromatin compaction and infertility in mice. CCER1 increases transition protein (Tnp1/2) and protamine (Prm1/2) transcription and mediates multiple histone epigenetic modifications during the histone-to-protamine (HTP) transition. Immiscible with heterochromatin in the nucleus, CCER1 self-assembles into a polymer droplet and forms a liquid-liquid phase-separated condensate in the nucleus. Notably, we identified loss-of-function (LoF) variants of human CCER1 (hCCER1) in five patients with nonobstructive azoospermia (NOA) that were absent in 2713 fertile controls. The mutants led to premature termination or frameshift in CCER1 translation, and disrupted condensates in vitro. In conclusion, we propose that nuclear CCER1 is a phase-separated condensate that links histone epigenetic modifications, HTP transitions, chromatin condensation, and male fertility.


Subject(s)
Histones , Infertility, Male , Male , Humans , Mice , Animals , Histones/genetics , Histones/metabolism , Protamines/genetics , Protamines/metabolism , Semen/metabolism , Chromatin/metabolism , Spermatozoa/metabolism , Spermatogenesis/genetics , Fertility/genetics , Infertility, Male/genetics , Infertility, Male/metabolism
4.
Cell Death Discov ; 8(1): 345, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35918318

ABSTRACT

Exploring the functions of human-specific genes (HSGs) is challenging due to the lack of a tractable genetic model system. Testosterone is essential for maintaining human spermatogenesis and fertility, but the underlying mechanism is unclear. Here, we identified Cancer/Testis Antigen gene family 47 (CT47) as an essential regulator of human-specific spermatogenesis by stabilizing arginine methyltransferase 5 (PRMT5). A humanized mouse model revealed that CT47 functions to arrest spermatogenesis by interacting with and regulating CT47/PRMT5 accumulation in the nucleus during the leptotene/zygotene-to-pachytene transition of meiosis. We demonstrate that testosterone induces nuclear depletion of CT47/PRMT5 and rescues leptotene-arrested spermatocyte progression in humanized testes. Loss of CT47 in human embryonic stem cells (hESCs) by CRISPR/Cas9 led to an increase in haploid cells but blocked the testosterone-induced increase in haploid cells when hESCs were differentiated into haploid spermatogenic cells. Moreover, CT47 levels were decreased in nonobstructive azoospermia. Together, these results established CT47 as a crucial regulator of human spermatogenesis by preventing meiosis initiation before the testosterone surge.

5.
Natl Sci Rev ; 6(3): 455-468, 2019 May.
Article in English | MEDLINE | ID: mdl-31355046

ABSTRACT

Expression of DAZ-like (DAZL) is a hallmark of vertebrate germ cells, and is essential for embryonic germ cell development and differentiation, yet the gametogenic function of DAZL has not been fully characterized and most of its in vivo direct targets remain unknown. We showed that postnatal stage-specific deletion of Dazl in mouse germ cells did not affect female fertility, but caused complete male sterility with gradual loss of spermatogonial stem cells, meiotic arrest and spermatid arrest. Using the genome-wide high-throughput sequencing of RNAs isolated by cross-linking immunoprecipitation and mass spectrometry approach, we found that DAZL bound to a large number of testicular mRNA transcripts (at least 3008) at the 3'-untranslated region and interacted with translation proteins including poly(A) binding protein. In the absence of DAZL, polysome-associated target transcripts, but not their total transcripts, were significantly decreased, resulting in a drastic reduction of an array of spermatogenic proteins and thus developmental arrest. Thus, DAZL is a master translational regulator essential for spermatogenesis.

SELECTION OF CITATIONS
SEARCH DETAIL