Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(17): e2217900120, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37068241

ABSTRACT

The United States is the world's largest oil/gas methane emitter according to current national reports. Reducing these emissions is a top priority in the US government's climate action plan. Here, we use a 2010 to 2019 high-resolution inversion of surface and satellite observations of atmospheric methane to quantify emission trends for individual oil/gas production regions in North America and relate them to production and infrastructure. We estimate a mean US oil/gas methane emission of 14.8 (12.4 to 16.5) Tg a-1 for 2010 to 2019, 70% higher than reported by the US Environmental Protection Agency. While emissions in Canada and Mexico decreased over the period, US emissions increased from 2010 to 2014, decreased until 2017, and rose again afterward. Increases were driven by the largest production regions (Permian, Anadarko, Marcellus), while emissions in the smaller production regions generally decreased. Much of the year-to-year emission variability can be explained by oil/gas production rates, active well counts, and new wells drilled, with the 2014 to 2017 decrease driven by reduction in new wells and the 2017 to 2019 surge driven by upswing of production. We find a steady decrease in the oil/gas methane intensity (emission per unit methane gas production) for almost all major US production regions. The mean US methane intensity decreased from 3.7% in 2010 to 2.5% in 2019. If the methane intensity for the oil/gas supply chain continues to decrease at this pace, we may expect a 32% decrease in US oil/gas emissions by 2030 despite projected increases in production.

2.
J Am Chem Soc ; 146(25): 17041-17053, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38865208

ABSTRACT

A large amount of lithium-ion storage in Si-based anodes promises high energy density yet also results in large volume expansion, causing impaired cyclability and conductivity. Instead of restricting pulverization of Si-based particles, herein, we disclose that single-walled carbon nanotubes (SWNTs) can take advantage of volume expansion and induce interfacial reactions that stabilize the pulverized Si-based clusters in situ. Operando Raman spectroscopy and density functional theory calculations reveal that the volume expansion by the lithiation of Si-based particles generates ∼14% tensile strains in SWNTs, which, in turn, strengthens the chemical interaction between Li and C. This chemomechanical coupling effect facilitates the transformation of sp2-C at the defect of SWNTs to Li-C bonds with sp3 hybridization, which also initiates the formation of new Si-C chemical bonds at the interface. Along with this process, SWNTs can also induce in situ reconstruction of the 3D architecture of the anode, forming mechanically strengthened networks with high electrical and ionic conductivities. As such, with the addition of only 1 wt % of SWNTs, graphite/SiOx composite anodes can deliver practical performance well surpassing that of commercial graphite anodes. These findings enrich our understanding of strain-induced interfacial reactions, providing a general principle for mitigating the degradation of alloying or conversion-reaction-based electrodes.

3.
Small ; : e2403247, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39039997

ABSTRACT

AgSbS2-xSex is a promising light-harvesting material for thin film solar cells, characterized by nontoxicity, high chemical stability, and excellent optoelectronic properties. However, the complex chemical composition of AgSbS2-xSex poses significant challenges to thin film preparation, giving rise to an intensive dependence on multi-step preparation methods. Herein, a hydrothermal method is developed for depositing AgSbS2-xSex films and achieves one-step preparation of this kind of thin film materials for the first time. This method can provide sufficient energy for atomic nucleation and adsorption on the substrate surface to promote nuclei aggregation and grow into films. Meanwhile, it achieves control of the chemical kinetics of the deposition solution by introducing EDTA-2Na as an additive and suppressing the enrichment of Ag2Se impurities at the substrate interface. As a result, a high-purity AgSbS2-xSex film with compact and flat morphology is prepared and assembled into solar cells. The device delivers a power conversion efficiency of 3.04% under standard illumination, which is currently the highest efficiency for AgSbS2-xSex solar cells fabricated by the one-step method. This study provides a facile and promising method for the controllable preparation of high-quality AgSbS2-xSex thin films and promoting their application in solar cells.

4.
Ann Surg Oncol ; 31(6): 3839-3849, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38421531

ABSTRACT

BACKGROUND: Obesity is associated with increased mortality in various cancers, but the relationship between obesity and clinical outcomes in unresectable or recurrent esophageal cancer who receive immune checkpoint inhibitors (ICIs) remains unknown. This study investigated the association between body composition and clinical outcomes in patients with unresectable or recurrent esophageal cancer who received ICIs. METHODS: Utilizing an unbiased database of 111 unresectable or recurrent esophageal cancers, we evaluated the relationships between body composition (body mass index, waist circumference, psoas major muscle volume, and subcutaneous and visceral fat areas) at the initiation of ICI treatment and clinical outcomes including the disease control rate and progression-free survival (PFS). RESULTS: Waist circumference was significantly associated with the disease control rate at the first assessment (P = 0.0008). A high waist circumference was significantly associated with favorable PFS in patients treated with nivolumab. In an univariable model, for 5-cm increase of waist circumference in the outcome category of PFS, univariable hazard ratio (HR) was 0.73 (95% confidence interval [CI], 0.61-0.87; P = 0.0002). A multivariable model controlling for potential confounders yielded a similar finding (multivariable HR, 0.56; 95% CI, 0.33-0.94; P = 0.027). We observed the similar finding in esophageal cancer patients treated with pembrolizumab+CDDP+5-FU (P = 0.048). In addition, waist circumference was significantly associated with the prognostic nutritional index (P = 0.0073). CONCLUSIONS: A high waist circumference was associated with favorable clinical outcomes in ICI-treated patients with unresectable or recurrent esophageal cancer, providing a platform for further investigations on the relationships among body composition, nutrition, and the immune status.


Subject(s)
Body Composition , Esophageal Neoplasms , Immune Checkpoint Inhibitors , Humans , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/pathology , Esophageal Neoplasms/mortality , Immune Checkpoint Inhibitors/therapeutic use , Male , Female , Aged , Middle Aged , Survival Rate , Prognosis , Follow-Up Studies , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Retrospective Studies , Aged, 80 and over , Body Mass Index , Obesity/complications , Waist Circumference , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/mortality , Adult , Nivolumab/therapeutic use
5.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39000597

ABSTRACT

Drosophila spermatogenesis involves the renewal of germline stem cells, meiosis of spermatocytes, and morphological transformation of spermatids into mature sperm. We previously demonstrated that Ocnus (ocn) plays an essential role in spermatogenesis. The ValRS-m (Valyl-tRNA synthetase, mitochondrial) gene was down-regulated in ocn RNAi testes. Here, we found that ValRS-m-knockdown induced complete sterility in male flies. The depletion of ValRS-m blocked mitochondrial behavior and ATP synthesis, thus inhibiting the transition from spermatogonia to spermatocytes, and eventually, inducing the accumulation of spermatogonia during spermatogenesis. To understand the intrinsic reason for this, we further conducted transcriptome-sequencing analysis for control and ValRS-m-knockdown testes. The differentially expressed genes (DEGs) between these two groups were selected with a fold change of ≥2 or ≤1/2. Compared with the control group, 4725 genes were down-regulated (dDEGs) and 2985 genes were up-regulated (uDEGs) in the ValRS-m RNAi group. The dDEGs were mainly concentrated in the glycolytic pathway and pyruvate metabolic pathway, and the uDEGs were primarily related to ribosomal biogenesis. A total of 28 DEGs associated with mitochondria and 6 meiosis-related genes were verified to be suppressed when ValRS-m was deficient. Overall, these results suggest that ValRS-m plays a wide and vital role in mitochondrial behavior and spermatogonia differentiation in Drosophila.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Infertility, Male , Spermatogenesis , Animals , Male , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Infertility, Male/genetics , Infertility, Male/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/deficiency , Spermatogenesis/genetics , Mitochondria/metabolism , Mitochondria/genetics , Testis/metabolism , Meiosis/genetics , Spermatogonia/metabolism , Gene Expression Profiling , Amino Acyl-tRNA Synthetases/genetics , Amino Acyl-tRNA Synthetases/metabolism , Spermatocytes/metabolism , Transcriptome
6.
Angew Chem Int Ed Engl ; : e202410988, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39283269

ABSTRACT

Circularly polarized luminescence (CPL) is widely applied in optical data storage, quantum computing and backlights in three-dimensional (3D) displays. Carbon dots (CDs) exhibit competitive optical properties, in addition to excellent resistance to photo- and chemical-bleaching after carbonization. Combining the superior optical performance with polarization peculiarities through hierarchical structure engineering is imperative for the development of CDs. Here, oriented assembly was driven by hydrophobic interactions of aromatic ligands, which participated in the surface-ligand post-modification process on ground-state chiral carbon core. Furthermore, the residual chiral amides on CDs formed multi-hydrogen bonds during gradual aggregation, causing the assembled materials to form asymmetric bending structure. Superficial ligands interfered with optical dynamics of exciton radiation transition and promoted the excited state of the assembled materials to achieve a circularly polarized signal. The linkage ligands successfully overcame the frequent phenomenon of aggregation-induced quenching and contributed further to the formation of self-supporting films by assembly and facilitated chiral optical expression. The full-color and white CPL were manipulated by simply regulating the functional groups on the ligands. Finally, based on the stable chiral powder phosphors, large chiral flexible films and multicolor chiral light-emitting diodes were constructed which provide feasible materials and technical support for flexible 3D displays.

7.
Angew Chem Int Ed Engl ; 63(36): e202406512, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38899603

ABSTRACT

Band structure of a semiconducting film critically determines the charge separation and transport efficiency. In antimony selenosulfide (Sb2(S,Se)3) solar cells, the hydrothermal method has achieved control of band gap width of Sb2(S,Se)3 thin film through tuning the atomic ratio of S/Se, resulting in an efficiency breakthrough towards 10 %. However, the obtained band structure exhibits an unfavorable gradient distribution in terms of carrier transport, which seriously impedes the device efficiency improvement. To solve this problem, here we develop a strategy by intentionally regulating hydrothermal temperature to control the chemical reaction kinetics between S and Se sources with Sb source. This approach enables the control over vertical distribution of S/Se atomic ratio in Sb2(S,Se)3 films, forming a favorable band structure which is conducive to carrier transport. Meanwhile, the adjusted element distribution not only ensures the uniformity of grain structure, but also increases the Se content of the films and suppress sulfur vacancy defects. Ultimately, the device delivers a high efficiency of 10.55 %, which is among the highest reported efficiency of Sb2(S,Se)3 solar cells. This study provides an effective strategy towards manipulating the element distribution in mixed-anion compound films prepared by solution-based method to optimize their optical and electrical properties.

8.
Chemistry ; 29(65): e202302383, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37681290

ABSTRACT

Carbon dots (CDs) smaller than 10 nm constitute a new type of fluorescent carbon-based nanomaterial. They have attracted much attention owing to their unique structures and excellent photoelectric properties. Primitive CDs usually comprise carbon and oxygen and are synthesized in one step from various natural products or synthetic organic compounds, usually via microwave or hydrothermal methods. However, the uniformity of surface functional groups often make CDs lack the diversity of active sites required for specific applications. Therefore, the functionalization of CDs by specific groups is a powerful strategy for improving their photophysical and photochemical properties. This paper reviews surface modification strategies to overcome these shortcomings. Functionalizing CDs using covalent or non-covalent modification can give them unique properties and broaden their applicability.

9.
Nanotechnology ; 34(13)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36563353

ABSTRACT

Since the advent of atomically flat graphene, two-dimensional (2D) layered materials have gained extensive interest due to their unique properties. The 2D layered materials prepared on epitaxial graphene/silicon carbide (EG/SiC) surface by molecular beam epitaxy (MBE) have high quality, which can be directly applied without further transfer to other substrates. Scanning tunneling microscopy and spectroscopy (STM/STS) with high spatial resolution and high-energy resolution are often used to study the morphologies and electronic structures of 2D layered materials. In this review, recent progress in the preparation of various 2D layered materials that are either monoelemental or transition metal dichalcogenides on EG/SiC surface by MBE and their STM/STS investigations are introduced.

10.
Nanotechnology ; 34(37)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37224799

ABSTRACT

Molybdenum disulfide (MoS2) has been deemed as one of the promising noble-metal-free electrocatalysts for hydrogen evolution reaction (HER), but it suffers from the inert basal plane and low electronic conductivity. Regulating the morphology of MoS2during the synthesis on conductive substrates is a synergistic strategy for enhancing the HER performance. In this work, vertical MoS2nanosheets were fabricated on carbon cloth (CC) using an atmospheric pressure chemical vapor deposition method. The growth process could be effectively tuned through introducing hydrogen gas during vapor deposition process, resulting in nanosheets with increased edge density. The mechanism for edge-enriching through controlling the growth atmosphere is systematically studied. The as-prepared MoS2exhibits excellent HER activity due to the combination of optimized microstructures and coupling with CC. Our findings provide new insights to design advanced MoS2-based electrocatalysts for HER.

11.
Environ Sci Technol ; 57(34): 12782-12793, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37596963

ABSTRACT

Summertime surface ozone in China has been increasing since 2013 despite the policy-driven reduction in fuel combustion emissions of nitrogen oxides (NOx). Here we examine the role of soil reactive nitrogen (Nr, including NOx and nitrous acid (HONO)) emissions in the 2013-2019 ozone increase over the North China Plain (NCP), using GEOS-Chem chemical transport model simulations. We update soil NOx emissions and add soil HONO emissions in GEOS-Chem based on observation-constrained parametrization schemes. The model estimates significant daily maximum 8 h average (MDA8) ozone enhancement from soil Nr emissions of 8.0 ppbv over the NCP and 5.5 ppbv over China in June-July 2019. We identify a strong competing effect between combustion and soil Nr sources on ozone production in the NCP region. We find that soil Nr emissions accelerate the 2013-2019 June-July ozone increase over the NCP by 3.0 ppbv. The increase in soil Nr ozone contribution, however, is not primarily driven by weather-induced increases in soil Nr emissions, but by the concurrent decreases in fuel combustion NOx emissions, which enhance ozone production efficiency from soil by pushing ozone production toward a more NOx-sensitive regime. Our results reveal an important indirect effect from fuel combustion NOx emission reduction on ozone trends by increasing ozone production from soil Nr emissions, highlighting the necessity to consider the interaction between anthropogenic and biogenic sources in ozone mitigation in the North China Plain.


Subject(s)
Models, Chemical , Ozone , China , Nitrogen , Soil
12.
Nutr Metab Cardiovasc Dis ; 33(10): 1878-1887, 2023 10.
Article in English | MEDLINE | ID: mdl-37500347

ABSTRACT

BACKGROUND AND AIM: Heart failure (HF) imposes significant global health costs due to its high incidence, readmission, and mortality rate. Accurate assessment of readmission risk and precise interventions have become important measures to improve health for patients with HF. Therefore, this study aimed to develop a machine learning (ML) model to predict 30-day unplanned readmissions in older patients with HF. METHODS AND RESULTS: This study collected data on hospitalized older patients with HF from the medical data platform of Chongqing Medical University from January 1, 2012, to December 31, 2021. A total of 5 candidate algorithms were selected from 15 ML algorithms with excellent performance, which was evaluated by area under the operating characteristic curve (AUC) and accuracy. Then, the 5 candidate algorithms were hyperparameter tuned by 5-fold cross-validation grid search, and performance was evaluated by AUC, accuracy, sensitivity, specificity, and recall. Finally, an optimal ML model was constructed, and the predictive results were explained using the SHapley Additive exPlanations (SHAP) framework. A total of 14,843 older patients with HF were consecutively enrolled. CatBoost model was selected as the best prediction model, and AUC was 0.732, with 0.712 accuracy, 0.619 sensitivity, and 0.722 specificity. NT.proBNP, length of stay (LOS), triglycerides, blood phosphorus, blood potassium, and lactate dehydrogenase had the greatest effect on 30-day unplanned readmission in older patients with HF, according to SHAP results. CONCLUSIONS: The study developed a CatBoost model to predict the risk of unplanned 30-day special-cause readmission in older patients with HF, which showed more significant performance compared with the traditional logistic regression model.


Subject(s)
Heart Failure , Patient Readmission , Humans , Aged , Retrospective Studies , Heart Failure/diagnosis , Heart Failure/epidemiology , Heart Failure/therapy , Length of Stay , Logistic Models
13.
J Opt Soc Am A Opt Image Sci Vis ; 39(6): 1085-1094, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-36215539

ABSTRACT

The success of deep neural networks usually relies on massive amounts of manually labeled data, which is both expensive and difficult to obtain in many real-world datasets. In this paper, a novel unsupervised representation learning network, UMA-Net, is proposed for the downstream 3D object classification. First, the multi-scale shell-based encoder is proposed, which is able to extract the local features from different scales in a simple yet effective manner. Second, an improved angular loss is presented to get a good metric for measuring the similarity between local features and global representations. Subsequently, the self-reconstruction loss is introduced to ensure the global representations do not deviate from the input data. Additionally, the output point clouds are generated by the proposed cross-dim-based decoder. Finally, a linear classifier is trained using the global representations obtained from the pre-trained model. Furthermore, the performance of this model is evaluated on ModelNet40 and applied to the real-world 3D Terracotta Warriors fragments dataset. Experimental results demonstrate that our model achieves comparable performance and narrows the gap between unsupervised and supervised learning approaches in downstream object classification tasks. Moreover, it is the first attempt to apply the unsupervised representation learning for 3D Terracotta Warriors fragments. We hope this success can provide a new avenue for the virtual protection of cultural relics.


Subject(s)
Neural Networks, Computer
14.
Neural Plast ; 2022: 6463355, 2022.
Article in English | MEDLINE | ID: mdl-36452876

ABSTRACT

Sound stimulation is generally used for tinnitus and hyperacusis treatment. Recent studies found that long-term noise exposure can change synaptic and firing properties in the central auditory system, which will be detected by the acoustic startle reflex. However, the perceptual consequences of long-term low-intensity sound exposure are indistinct. This study will detect the effects of moderate-level noise exposure (83 dB SPL) on auditory loudness, and temporal processing was evaluated using CBA/CaJ mice. C-Fos staining was used to detect neural activity changes in the central auditory pathway. With two weeks of 83 dB SPL noise exposure (8 hours per day), no persistent threshold shift of the auditory brainstem response (ABR) was identified. On the other hand, noise exposure enhanced the acoustic startle response (ASR) and gap-induced prepulse inhibition significantly (gap-PPI). Low-level noise exposure, according to the findings, can alter temporal acuity. Noise exposure increased the number of c-Fos labeled neurons in the dorsal cochlear nucleus (DCN) and caudal pontine reticular nucleus (PnC) but not at a higher level in the central auditory nuclei. Our results suggested that noise stimulation can change acoustical temporal processing presumably by increasing the excitability of auditory brainstem neurons.


Subject(s)
Cochlear Nucleus , Time Perception , Mice , Animals , Mice, Inbred CBA , Reflex, Startle , Vestibular Nuclei , Proto-Oncogene Proteins c-fos
15.
J Cell Physiol ; 236(11): 7405-7420, 2021 11.
Article in English | MEDLINE | ID: mdl-33959974

ABSTRACT

Tuberculosis caused by Mycobacterium tuberculosis remains a serious global public health threat. Macrophage polarization is crucial for the innate immunity against M. tuberculosis. However, how M. tuberculosis interferes with macrophage polarization is elusive. We demonstrated here that M. tuberculosis PPE36 (Rv2108) blocked macrophage M1 polarization, preventing the cytokine storm, and alleviating inflammatory damage to mouse immune organs. PPE36 inhibited the polarization of THP-1 cell differentiation to M1 macrophages, reduced mitochondrial dehydrogenase activity, inhibited the expression of CD16, and repressed the expression of pro-inflammatory cytokines IL-6 and TNF-α, as well as chemokines CXCL9, CXCL10, CCL3, and CCL5. Intriguingly, in the mouse infection model, PPE36 significantly alleviated the inflammatory damage of immune organs caused by a cytokine storm. Furthermore, we found that PPE36 inhibited the polarization of macrophages into mature M1 macrophages by suppressing the ERK signaling. The study provided novel insights into the function and mechanism of action of M. tuberculosis effector PPE36 both at the cellular and animal level.


Subject(s)
Antigens, Bacterial/metabolism , Bacterial Proteins/metabolism , Cytokine Release Syndrome/prevention & control , Cytokines/metabolism , Inflammation Mediators/metabolism , Macrophages/microbiology , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium smegmatis/metabolism , Animals , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/metabolism , Cytokine Release Syndrome/microbiology , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Host-Pathogen Interactions , Humans , Macrophages/immunology , Macrophages/metabolism , Mice, Inbred C57BL , Mycobacterium Infections, Nontuberculous/immunology , Mycobacterium Infections, Nontuberculous/metabolism , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/immunology , Phenotype , Signal Transduction , THP-1 Cells
16.
Small ; 17(50): e2100655, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34337855

ABSTRACT

The band alignment, interface states, interface coupling, and carrier transport of semiconductor heterojunctions (SHs) need to be well understood for the design and fabrication of various important semiconductor structures and devices. Scanning tunneling microscopy (STM) with high spatial resolution and scanning tunneling spectroscopy (STS) with high energy resolution are significantly contributing to the understanding on the important properties of SHs. In this work, the recent progress on the use of STM and STS to study lateral, vertical and bulk SHs is reviewed. The spatial structures of SHs with atomically flat surface have been examined with STM. The electronic band structures (e. g., the band offset, interface state, and space charge region) of SHs are measured with STS. Combined with the spatial structures and the tunneling spectra features, the mechanism for the carrier transport in the SH may be proposed.

17.
Mikrochim Acta ; 188(5): 175, 2021 04 24.
Article in English | MEDLINE | ID: mdl-33893886

ABSTRACT

Bisphenol A (BPA), as a typical endocrine disruptor, poses a serious threat to human health. Therefore, it is urgent to establish a rapid, sensitive, and simple method for the determination of BPA. In this paper, based on the aptamer-mediated single-atom Fe carbon dot catalyst (SAFe) catalyzing the HAuCl4-ethylene glycol (EG) nanoreaction, a new SERS/RRS di-mode detection method for BPA was established. The results show that SAFe exhibits a strong catalytic effect on the HAuCl4-EG nanoreaction, which could generate purple gold nanoparticles (AuNPs) with resonance Rayleigh scattering (RRS) signals and surface-enhanced Raman scattering (SERS) effects. After the addition of BPA aptamer (Apt), it could encapsulate SAFe through intermolecular interaction, thus inhibiting its catalytic action, resulting in the reduction of AuNPs generated and the decrease of RRS and SERS signals of the system. With the addition of BPA, Apt was specifically combined with BPA, and SAFe was re-released to restore the catalytic ability; the generated AuNPs increased. As a result of this RRS and SERS signals of the system recovered, and their increment was linear with the concentration of BPA. Thus, the quantification of 0.1-4.0 nM (RRS) and 0.1-12.0 nM (SERS) BPA was realized, and the detection limits were 0.08 nM and 0.03 nM, respectively. At the same time, we used molecular spectroscopy and electron microscopy to study the SAFe-HAuCl4-ethylene glycol indicator reaction, and proposed a reasonable SAFe catalytic reaction mechanism. Based on Apt-mediated SAFe catalysis gold nanoreaction amplification, a SERS/RRS di-mode analytical platform was established for targets such as BPA.


Subject(s)
Aptamers, Nucleotide/chemistry , Benzhydryl Compounds/analysis , Endocrine Disruptors/analysis , Environmental Pollutants/analysis , Metal Nanoparticles/chemistry , Phenols/analysis , Quantum Dots/chemistry , Benzhydryl Compounds/chemistry , Carbon/chemistry , Catalysis , Chlorides/chemistry , Endocrine Disruptors/chemistry , Environmental Pollutants/chemistry , Ethylene Glycol/chemistry , Gold/chemistry , Gold Compounds/chemistry , Iron/chemistry , Limit of Detection , Phenols/chemistry , Plastics/analysis , Reproducibility of Results , Spectrum Analysis, Raman/methods
18.
Molecules ; 26(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34641474

ABSTRACT

Using citric acid (CA) and ethylenediamine (EDA) as precursors, stable nitrogen-doped carbon dots (CD) nanosols were prepared by microwave procedure and characterized in detail. It was found that CDNs catalyze ethanol (Et)-HAuCl4 to generate gold nanoparticles (AuNPs), which have strong surface plasmon resonance, Rayleigh scattering, (RRS) and a surface plasmon resonance (SPR) absorption (Abs) effect at 370 nm and 575 nm, respectively. Compled the new catalytic amplification indicator reaction with the specific As3+ aptamer reaction, a new RRS/Abs dual-mode aptamer sensor for the assay of trace As3+ was developed, based on the RRS/Abs signals increasing linearly with As3+ increasing in the ranges of 5-250 nmol/L and 50-250 nmol/L, whose detection limits were 0.8 nmol/L and 3.4 nmol/L As3+, respectively. This analytical method has the advantages of high selectivity, simplicity, and rapidity, and it has been successfully applied to the detection of practical samples.

19.
Biol Pharm Bull ; 43(8): 1154-1158, 2020.
Article in English | MEDLINE | ID: mdl-32741936

ABSTRACT

Pretubulysin is a bio-precursor of highly toxic tetrapeptide tubulysins. Although pretubulysin has a much simpler chemical structure, it has similar anti-mitotic potency. A series of 2-amino-thiazole-4-carboxamides were designed and synthesized based on the structure of cemadotin. These are all novel compounds and their structures are characterized by 1H-NMR, 13C-NMR, and high resolution (HR)MS. The antitumor activities of these compounds were screened using the methyl thiazolyl tetrazolium colorimetric (MTT) cell viability method in MCF7 (breast cancer) and NCI-H1650 (lung cancer) cells. All the synthesized compounds 6a-n showed moderate anti-proliferation activities. Compounds 6m exhibited antitumor activity with the IC50 value of 0.47 and 1.1 µM in MCF7 and NCI-H1650 cells, respectively.


Subject(s)
Amides/chemical synthesis , Antineoplastic Agents/chemical synthesis , Thiazoles/chemical synthesis , Amides/pharmacology , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Humans , Oligopeptides , Thiazoles/pharmacology
20.
Small ; 13(18)2017 05.
Article in English | MEDLINE | ID: mdl-28266795

ABSTRACT

Atomically thin hexagonal boron nitride (h-BN) is gaining significant attention for many applications such as a dielectric layer or substrate for graphene-based devices. For these applications, synthesis of high-quality and large-area h-BN layers with few defects is strongly desirable. In this work, the aligned growth of millimeter-size single-crystal h-BN domains on epitaxial Ni (111)/sapphire substrates by ion beam sputtering deposition is demonstrated. Under the optimized growth conditions, single-crystal h-BN domains up to 0.6 mm in edge length are obtained, the largest reported to date. The formation of large-size h-BN domains results mainly from the reduced Ni-grain boundaries and the improved crystallinity of Ni film. Furthermore, the h-BN domains show well-aligned orientation and excellent dielectric properties. In addition, the sapphire substrates can be repeatedly used with almost no limit. This work provides an effective approach for synthesizing large-scale high-quality h-BN layers for electronic applications.

SELECTION OF CITATIONS
SEARCH DETAIL