Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
Add more filters

Publication year range
1.
J Neurophysiol ; 131(4): 598-606, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38380844

ABSTRACT

The transplantation of neonatal microglia suppresses neuroinflammation caused by traumatic brain injury (TBI). This research aimed to explore the optimal time point of neonatal microglia transplantation for the best effect on the improvement of long-term cognitive function and inflammatory response in mouse models. qPCR and immunoblotting showed that the level of Iba1 gradually increased to the highest on day 7 and then gradually declined in TBI mice. Furthermore, it was observed that the level of CD86 and TNF-α increased to the highest after 7 days and subsequently was maintained until day 21, whereas the level of CD206 and IL-10 increased to the highest after 24 h and subsequently decreased until day 21 by qPCR and enzyme-linked immunosorbent assay. Afterward, it was shown that the neonatal microglia transplantation within 1 h significantly attenuated anxiety-like behavior and improved cognitive impairments in TBI mice. Mechanism exploration showed that the neonatal microglia could significantly decrease the level of cleaved caspase-3, M1/M2 polarization, and inflammatory cytokine (TNF-α) while increasing the level of anti-inflammatory factor IL-10 in TBI mice after transplantation within 1 h. Here, our findings demonstrated that neonatal microglia transplantation within 1 h significantly attenuated anxiety-like behavior and cognitive impairments caused by TBI.NEW & NOTEWORTHY The study demonstrated that neonatal microglia transplantation within 1 h significantly inhibited the pathogenesis of traumatic brain injury (TBI) in mouse models through inhibition of M1 polarization and promotion of M2 polarization.


Subject(s)
Brain Injuries, Traumatic , Microglia , Mice , Animals , Interleukin-10/pharmacology , Tumor Necrosis Factor-alpha/pharmacology , Anti-Inflammatory Agents/pharmacology , Mice, Inbred C57BL
2.
Biochem Biophys Res Commun ; 716: 150039, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38701556

ABSTRACT

The objective of this study was to better characterize the role of the glutamine transporter SLC38A1 in cervical cancer and explore the underlying mechanisms. Data from public databases and clinical cervical cancer tissue samples were used to assess the expression of SLC38A1 and its prognostic significance. Immunohistochemical staining, qRT-PCR, and Western blotting were used to evaluate the expression of relevant genes and proteins. Cell viability, cell cycle, apoptosis, and intracellular glutamine content were measured using CCK-8, flow cytometry, and biochemical assays. Additionally, the RNA immunoprecipitation (RIP) assay was used to examine the impact of METTL3/IGF2BP3 on the m6A modification of the SLC38A1 3'UTR. Both cervical cancer specimens and cells showed significantly increased expression of SLC38A1 and its expression correlated with an unfavorable prognosis. Knockdown of SLC38A1 inhibited cell viability and cell cycle progression, induced apoptosis, and suppressed tumor growth in vivo. Glutaminase-1 inhibitor CB-839 reversed the effects of SLC38A1 overexpression. METTL3 promoted m6A modification of SLC38A1 and enhanced its mRNA stability through IGF2BP3 recruitment. Moreover, METTL3 silencing inhibited cell viability, cell cycle progression, intracellular glutamine content, and induced apoptosis, but these effects were reversed by SLC38A1 overexpression. In conclusion, METTL3-mediated m6A methylation of SLC38A1 stimulates cervical cancer progression. SLC38A1 inhibition is a potential therapeutic strategy for cervical cancer.


Subject(s)
Adenosine , Methyltransferases , Uterine Cervical Neoplasms , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Humans , Female , Methyltransferases/metabolism , Methyltransferases/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/genetics , Methylation , Cell Line, Tumor , Cell Proliferation/genetics , Animals , Amino Acid Transport System A/metabolism , Amino Acid Transport System A/genetics , Apoptosis/genetics , Gene Expression Regulation, Neoplastic , Mice, Nude , Mice , Prognosis , Cell Survival/genetics
3.
J Virol ; 97(5): e0032423, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37042750

ABSTRACT

In ovo vaccination is an attractive immunization approach for chickens. However, most live Newcastle disease virus (NDV) vaccine strains used safely after hatching are unsafe as in ovo vaccines due to their high pathogenicity for chicken embryos. The mechanism for viral pathogenicity in chicken embryos is poorly understood. Our previous studies reported that NDV strain TS09-C was a safe in ovo vaccine, and the F protein cleavage site (FCS) containing three basic amino acids (3B-FCS) was the crucial determinant of the attenuation of TS09-C in chicken embryos. Here, five trypsin-like proteases that activated NDV in chicken embryos were identified. The F protein with 3B-FCS was sensitive to the proteases Tmprss4, Tmprss9, and F7, was present in fewer tissue cells of chicken embryos, which limited the viral tropism, and was responsible for the attenuation of NDV with 3B-FCS, while the F protein with FCS containing two basic amino acids could be cleaved not only by Tmprss4, Tmprss9, and F7 but also by Prss23 and Cfd, was present in most tissue cells, and thereby was responsible for broad tissue tropism and high pathogenicity of virus in chicken embryos. Furthermore, when mixed with the protease inhibitors aprotinin and camostat, NDV with 2B-FCS exhibited greatly weakened pathogenicity in chicken embryos. Thus, our results extend the understanding of the molecular mechanism of NDV pathogenicity in chicken embryos and provide a novel molecular target for the rational design of in ovo vaccines, ensuring uniform and effective vaccine delivery and earlier induction of immune protection by the time of hatching. IMPORTANCE As an attractive immunization approach for chickens, in ovo vaccination can induce a considerable degree of protection by the time of hatching, provide support in closing the window in which birds are susceptible to infection, facilitate fast and uniform vaccine delivery, and reduce labor costs by the use of mechanized injectors. The commercial live Newcastle disease virus (NDV) vaccine strains are not safe for in ovo vaccination and cause the death of chicken embryos. The mechanism for viral pathogenicity in chicken embryos is poorly understood. In the present study, we identified five trypsin-like proteases that activate NDV in chicken embryos and elucidated their roles in the tissue tropism and pathogenicity of NDV used as in ovo vaccine. Finally, we revealed the molecular basis for the pathogenicity of NDV in chicken embryos and provided a novel strategy for the rational design of in ovo ND vaccines.


Subject(s)
Newcastle Disease , Peptide Hydrolases , Poultry Diseases , Viral Vaccines , Animals , Chick Embryo , Antibodies, Viral , Chickens , Newcastle Disease/immunology , Newcastle Disease/virology , Newcastle disease virus/physiology , Peptide Hydrolases/metabolism , Poultry Diseases/immunology , Poultry Diseases/virology , Vaccines, Attenuated , Viral Vaccines/administration & dosage , Virulence
4.
PLoS Pathog ; 18(6): e1010564, 2022 06.
Article in English | MEDLINE | ID: mdl-35679257

ABSTRACT

The development of thermostable vaccines can relieve the bottleneck of existing vaccines caused by thermal instability and subsequent poor efficacy, which is one of the predominant reasons for the millions of deaths caused by vaccine-preventable diseases. Research into the mechanism of viral thermostability may provide strategies for developing thermostable vaccines. Using Newcastle disease virus (NDV) as model, we identified the negative surface charge of attachment glycoprotein as a novel determinant of viral thermostability. It prevented the temperature-induced aggregation of glycoprotein and subsequent detachment from virion surface. Then structural stability of virion surface was improved and virus could bind to and infect cells efficiently after heat-treatment. Employing the approach of surface charge engineering, thermal stability of NDV and influenza A virus (IAV) vaccines was successfully improved. The increase in the level of vaccine thermal stability was determined by the value-added in the negative surface charge of the attachment glycoprotein. The engineered live and inactivated vaccines could be used efficiently after storage at 37°C for at least 10 and 60 days, respectively. Thus, our results revealed a novel surface-charge-mediated link between HN protein and NDV thermostability, which could be used to design thermal stable NDV and IAV vaccines rationally.


Subject(s)
Newcastle Disease , Viral Vaccines , Animals , Chickens/metabolism , Glycoproteins , HN Protein/metabolism , Newcastle Disease/prevention & control , Newcastle disease virus/metabolism
5.
Mol Biol Rep ; 51(1): 236, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38285214

ABSTRACT

BACKGROUND: Early brain injury (EBI) is the vital factor in determining the outcome of subarachnoid hemorrhage (SAH). Schizandrin A (Sch A), the bioactive ingredient extracted from Schisandra chinensis, has been proved to exert beneficial effects in multiple human diseases. However, the effect of Sch A on SAH remains unknown. The current study was designed to explored role and mechanism of Sch A in the pathophysiological process of EBI following SAH. METHOD: A total of 74 male C57BL/6 J mice were subjected to endovascular perforation to establish the SAH model. Different dosages of Sch A were administrated post-modeling. The post-modeling assessments included neurological test, brain water content, RT-PCR, immunofluorescence, Nissl staining. Oxygenated hemoglobin was introduced into microglia to establish a SAH model in vitro. RESULT: Sch A significantly alleviated SAH-induced brain edema and neurological impairment. Moreover, application of Sch A remarkably inhibited SAH-induced neuroinflammation, evidenced by the decreased microglial activation and downregulated TNF-α, IL-1ß and IL-6 and expression. Additionally, Sch A, both in vivo and in vitro, protected neurons against SAH-induced inflammatory injury. Mechanismly, administration of Sch A inhibited miR-155/NF-κB axis and attenuated neuroinflammation, as well as alleviating neuronal injury. CONCLUSION: Our data suggested that Sch A could attenuated EBI following SAH via modulating neuroinflammation. The anti-inflammatory effect was exerted, at least partly through the miR-155/NF-κB axis, which may shed light on a possible therapeutic target for SAH.


Subject(s)
Brain Injuries , Cyclooctanes , Lignans , MicroRNAs , Polycyclic Compounds , Subarachnoid Hemorrhage , Mice , Humans , Animals , Male , Mice, Inbred C57BL , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/drug therapy , NF-kappa B , Neuroinflammatory Diseases , Brain Injuries/drug therapy , MicroRNAs/genetics
6.
Avian Pathol ; : 1-7, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38836447

ABSTRACT

Infectious laryngotracheitis (ILT) poses a significant threat to the poultry industry, and vaccines play an important role in protection. However, due to the increasing scale of poultry production, there is an urgent need to develop vaccines that are suitable for convenient immunization methods such as spraying. Previous studies have shown that Newcastle disease virus (NDV)-ILT vaccines administered via intranasal and intraocular routes to commercial chickens carrying maternally-derived antibodies (MDAs) are still protective against ILT. In this study, a recombinant NDV (rNDV) was generated to express infectious laryngotracheitis virus (ILTV) glycoprotein B (gB), named rLS-gB, based on a full-length cDNA clone of the LaSota strain. The protective effect of different doses of rLS-gB administered by spray vaccination to commercial chickens at 1 d of age (doa) was evaluated. The chickens were exposed to 160-µm aerosol particles for 10 min for spray vaccination, and no adverse reactions were observed after vaccination. Despite the presence of anti-NDV MDAs and anti-ILTV MDAs in chickens, the ILTV- and NDV-specific antibody titres were significantly greater in the vaccinated groups than in the unvaccinated group. After challenge with a virulent ILTV strain, no clinical signs were observed in the 107 EID50/ml group compared to the other groups. Furthermore, vaccination with 107 EID50/ml rLS-gB significantly reduced the ILTV viral load and ameliorated gross and microscopic lesions in the trachea of chickens. Overall, these results suggested that rLS-gB is a safe and efficient candidate spray vaccine for ILT and is especially suitable for scaled chicken farms.

7.
Arch Virol ; 168(8): 203, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37418014

ABSTRACT

The hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) is a multifunctional protein with receptor recognition ability that plays an important role in the infection of cells by NDV. An alignment of NDV HN protein sequences of different genotypes showed that vaccine strains of NDV, such as the LaSota strain, generally have an HN protein of 577 amino acids. In comparison, the HN protein of the V4 strain has 616 amino acids, with 39 more amino acids at the C-terminus. In this study, we generated a recombinant NDV (rNDV) with a 39-amino-acid truncation at the HN C-terminus based on the full-length cDNA clone of the V4 strain. This rNDV, named rV4-HN-tr, displayed thermostability similar to that of the parental V4 strain. However, growth kinetics and pathogenicity analysis suggested that rV4-HN-tr is more virulent than the V4 strain. Notably, the C-terminus of HN affected the ability of the virus to adsorb onto cells. Structural predictions further suggested that the C-terminus of HN may obstruct the sialic acid binding site. Immunization of chickens with rV4-HN-tr induced a 3.5-fold higher level of NDV-specific antibodies than that obtained with the V4 strain and provided 100% immune protection against NDV challenge. Our study suggests that rV4-HN-tr is a thermostable, safe, and highly efficient vaccine candidate against Newcastle disease.


Subject(s)
Newcastle Disease , Viral Vaccines , Animals , Newcastle disease virus , Chickens , Virulence , Neuraminidase/genetics , Hemagglutinins/genetics , HN Protein/genetics , HN Protein/metabolism , Viral Vaccines/genetics , Antibodies, Viral , Amino Acids
8.
Molecules ; 28(18)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37764467

ABSTRACT

To enhance the mechanical strength and cell adhesion of alginate hydrogel, making it satisfy the requirements of an ideal tissue engineering scaffold, the grafting of Arg-Gly-Asp (RGD) polypeptide sequence onto the alginate molecular chain was conducted by oxidation of sodium periodate and subsequent reduction amination of 2-methylpyridine borane complex (2-PBC) to synthesize alginate dialdehyde grafted RGD derivatives (ADA-RGD) with good cellular affinity. The interpenetrating network (IPN) composite hydrogels of alginate/polyvinyl alcohol/cellulose nanocrystals (ALG/PVA/CNCs) were fabricated through a physical mixture of ion cross-linking of sodium alginate (SA) with hydroxyapatite/D-glucono-δ-lactone (HAP/GDL), and physical cross-linking of polyvinyl alcohol (PVA) by a freezing/thawing method, using cellulose nanocrystals (CNCs) as the reinforcement agent. The effects of the addition of CNCs and different contents of PVA on the morphology, thermal stability, mechanical properties, swelling, biodegradability, and cell compatibility of the IPN composite hydrogels were investigated, and the effect of RGD grafting on the biological properties of the IPN composite hydrogels was also studied. The resultant IPN ALG/PVA/CNCs composite hydrogels exhibited good pore structure and regular 3D morphology, whose pore size and porosity could be regulated by adjusting PVA content and the addition of CNCs. By increasing the PVA content, the number of physical cross-linking points in PVA increased, resulting in greater stress support for the IPN composite hydrogels of ALG/PVA/CNCs and consequently improving their mechanical characteristics. The creation of the IPN ALG/PVA/CNCs composite hydrogels' physical cross-linking network through intramolecular or intermolecular hydrogen bonding led to improved thermal resistance and reduced swelling and biodegradation rate. Conversely, the ADA-RGD/PVA/CNCs IPN composite hydrogels exhibited a quicker degradation rate, attributed to the elimination of ADA-RGD by alkali. The results of the in vitro cytocompatibility showed that ALG/0.5PVA/0.3%CNCs and ADA-RGD/PVA/0.3%CNCs composite hydrogels showed better proliferative activity in comparison with other composite hydrogels, while ALG/PVA/0.3%CNCs and ADA-RGD/PVA/0.3%CNCs composite hydrogels displayed obvious proliferation effects, indicating that PVA, CNCs, and ADA-RGD with good biocompatibility were conducive to cell proliferation and differentiation for the IPN composite hydrogels.


Subject(s)
Nanoparticles , Polyvinyl Alcohol , Polyvinyl Alcohol/chemistry , Hydrogels/chemistry , Alginates/chemistry , Oligopeptides , Cellulose/chemistry
9.
Nat Mater ; 19(8): 849-854, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32367079

ABSTRACT

Collective interstitial ordering is at the core of martensite formation in Fe-C-based alloys, laying the foundation for high-strength steels. Even though this ordering has been studied extensively for more than a century, some fundamental mechanisms remain elusive. Here, we show the unexpected effects of two correlated phenomena on the ordering mechanism: anharmonicity and segregation. The local anharmonicity in the strain fields induced by interstitials substantially reduces the critical concentration for interstitial ordering, up to a factor of three. Further, the competition between interstitial ordering and segregation results in an effective decrease of interstitial segregation into extended defects for high interstitial concentrations. The mechanism and corresponding impact on interstitial ordering identified here enrich the theory of phase transitions in materials and constitute a crucial step in the design of ultra-high-performance alloys.

10.
BMC Surg ; 21(1): 154, 2021 Mar 21.
Article in English | MEDLINE | ID: mdl-33743657

ABSTRACT

BACKGROUND: Abdominal cerebrospinal fluid (CSF) pseudocyst is an uncommon but important complication of ventriculoperitoneal (VP) shunts. While individual articles have reported many cases of abdominal CSF pseudocyst following VP shunts, no case of a hemorrhagic abdominal pseudocyst after VP shunts has been reported so far. CASE PRESENTATION: This article reports a 68-year-old woman with a 4-month history of progressive abdominal pain and distention. She denied any additional symptoms. A VP shunt was performed 15 years earlier to treat idiopathic normal pressure hydrocephalus and no other abdominal surgery was performed. Physical examination revealed an elastic palpable mass in her right lower abdomen, which was dull to percussion. Abdominal computed tomography (CT) scan indicated a large cystic collection of homogenous iso-density fluid in the right lower abdominal region with clear margins. The distal segment of the peritoneal shunt catheter was located within the cystic mass. Abdominal CSF pseudocyst was highly suspected as a diagnosis. Laparoscopic cyst drainage with removal of the whole cystic mass was performed, 15-cm cyst which found with thick walls and organized chronic hematic content. No responsible vessel for the cyst hemorrhage was identified. No further shunt revision was placed. Histological examination showed that the cyst wall consisted of outer fibrous tissue and inner granulation tissue without epithelial lining, and the cystic content was chronic hematoma. The patient had an uneventful postoperative course and remained asymptomatic for 8-mo follow-up. CONCLUSION: To the best of our knowledge, this is the first report of hemorrhagic onset in the abdominal pseudocyst following VP shunt. Such special condition can accelerate the appearance of clinical signs of the abdominal pseudocyst after VP shunts, and its mechanisms may be similar to the evolution of subdural effusion into chronic subdural hematoma (CSDH).


Subject(s)
Abdomen/diagnostic imaging , Cysts/etiology , Hemorrhage/etiology , Hydrocephalus/surgery , Ventriculoperitoneal Shunt/adverse effects , Aged , Cerebrospinal Fluid , Cysts/diagnostic imaging , Cysts/surgery , Drainage , Female , Humans , Laparoscopy , Postoperative Complications , Tomography, X-Ray Computed
11.
Mol Ther ; 26(11): 2617-2630, 2018 11 07.
Article in English | MEDLINE | ID: mdl-30274788

ABSTRACT

Myotonic dystrophy type 1 (DM1) is caused by a CTG nucleotide repeat expansion within the 3' UTR of the Dystrophia Myotonica protein kinase gene. In this study, we explored therapeutic genome editing using CRISPR/Cas9 via targeted deletion of expanded CTG repeats and targeted insertion of polyadenylation signals in the 3' UTR upstream of the CTG repeats to eliminate toxic RNA CUG repeats. We found paired SpCas9 or SaCas9 guide RNA induced deletion of expanded CTG repeats. However, this approach incurred frequent inversion in both the mutant and normal alleles. In contrast, the insertion of polyadenylation signals in the 3' UTR upstream of the CTG repeats eliminated toxic RNA CUG repeats, which led to phenotype reversal in differentiated neural stem cells, forebrain neurons, cardiomyocytes, and skeletal muscle myofibers. We concluded that targeted insertion of polyadenylation signals in the 3' UTR is a viable approach to develop therapeutic genome editing for DM1.


Subject(s)
Myotonic Dystrophy/genetics , Myotonin-Protein Kinase/genetics , Neural Stem Cells/physiology , Trinucleotide Repeat Expansion/genetics , 3' Untranslated Regions , CRISPR-Cas Systems/genetics , Cell Differentiation/genetics , Gene Editing/methods , Genetic Therapy/methods , HEK293 Cells , Humans , Muscle, Skeletal/growth & development , Myocytes, Cardiac/physiology , Myotonic Dystrophy/pathology , Myotonic Dystrophy/therapy , Neurons/physiology , RNA 3' Polyadenylation Signals/genetics , RNA, Guide, Kinetoplastida , Transfection
12.
Neurol Sci ; 40(6): 1255-1265, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30891637

ABSTRACT

Myotonic dystrophy type 1 (DM1) is caused by CTG nucleotide repeat expansions in the 3'-untranslated region (3'-UTR) of the dystrophia myotonica protein kinase (DMPK) gene. The expanded CTG repeats encode toxic CUG RNAs that cause disease, largely through RNA gain-of-function. DM1 is a fatal disease characterized by progressive muscle wasting, which has no cure. Regenerative medicine has emerged as a promising therapeutic modality for DM1, especially with the advancement of induced pluripotent stem (iPS) cell technology and therapeutic genome editing. However, there is an unmet need to identify in vitro outcome measures to demonstrate the therapeutic effects prior to in vivo clinical trials. In this study, we examined the muscle regeneration (myotube formation) in normal and DM1 myoblasts in vitro to establish outcome measures for therapeutic monitoring. We found normal proliferation of DM1 myoblasts, but abnormal nuclear aggregation during the early stage myotube formation, as well as myotube degeneration during the late stage of myotube formation. We concluded that early abnormal nuclear aggregation and late myotube degeneration offer easy and sensitive outcome measures to monitor therapeutic effects in vitro.


Subject(s)
Cell Nucleus/pathology , Cell Nucleus/physiology , Muscle Fibers, Skeletal/pathology , Muscle Fibers, Skeletal/physiology , Myotonic Dystrophy/pathology , Myotonic Dystrophy/physiopathology , Regeneration , Cell Proliferation , Cells, Cultured , Humans , In Vitro Techniques , Myoblasts/physiology
13.
Int J Urol ; 25(8): 710-715, 2018 08.
Article in English | MEDLINE | ID: mdl-29862568

ABSTRACT

OBJECTIVES: To explore the efficacy of psychotherapy combined with drug therapy in patients with category III chronic prostatitis/chronic pelvic pain syndrome. METHODS: A total of 156 patients with category III chronic prostatitis/chronic pelvic pain syndrome were randomly divided into two groups: the control group of 78 patients receiving routine medication; and the intervention group of 78 patients receiving psychological intervention therapy combined with routine medications. Treatment courses were for 3 months. The end-points were the response rate of the National Institutes of Health Chronic Prostatitis Symptom Index, International Index of Erectile Function-5, Self-Rating Anxiety Scale, Self-Rating Depression Scale and expressed prostatic secretion-white blood cells. RESULTS: After 3 months, the average scores of the National Institutes of Health Chronic Prostatitis Symptom Index decreased to 10.1 ± 5.0 in the control group compared with 14.1 ± 4.9 in the intervention group; thus, significant differences were observed between the two groups in the study (P < 0.001). The average scores of the International Index of Erectile Function-5 were improved in the two groups, but compared with the control group, a more marked improvement was detected in the psychological intervention group, and there was a significant difference between the two groups (P < 0.001). There was significant difference between the two groups in terms of the Self-Rating Anxiety Scale and Self-Rating Depression Scale scores (P < 0.001). Expressed prostatic secretion-white blood cell counts significantly decreased to 4.4 ± 3.5 in the control group compared with 9.8 ± 3.4 in the intervention group (P < 0.001). CONCLUSIONS: Psychological intervention therapy can effectively improve the psychological status and sexual function in patients with category III chronic prostatitis/chronic pelvic pain syndrome than the routine medication.


Subject(s)
Chronic Pain/therapy , Pelvic Pain/therapy , Prostatitis/therapy , Psychotherapy , Severity of Illness Index , Adult , Anxiety/psychology , Anxiety/therapy , Chronic Pain/complications , Combined Modality Therapy , Depression/psychology , Depression/therapy , Drug Therapy , Erectile Dysfunction/physiopathology , Erectile Dysfunction/therapy , Humans , Male , Middle Aged , Pelvic Pain/complications , Prospective Studies , Prostatitis/complications , Psychiatric Status Rating Scales
14.
Article in English | MEDLINE | ID: mdl-28438942

ABSTRACT

Sequence analysis of 79 ciprofloxacin-resistant Campylobacter jejuni isolates collected in China showed resistance-related sequence variations in gyrA and CmeR-Box. All the isolates contain an identical Thr-86-Ile substitution in GyrA. Several novel CmeR-Box variations, including point substitutions, deletion, and insertion, were identified. The point insertion or deletion led to dramatically reduced binding of CmeR to the cmeABC promoter, which significantly increases the expression of cmeABC and contributes to the high fluoroquinolone resistance.


Subject(s)
Bacterial Proteins/genetics , Campylobacter jejuni/drug effects , Campylobacter jejuni/genetics , DNA Gyrase/genetics , Fluoroquinolones/pharmacology , Anti-Bacterial Agents/pharmacology , Campylobacter jejuni/pathogenicity , Drug Resistance, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics , Microbial Sensitivity Tests , Mutation , Polymorphism, Genetic/genetics
15.
Cell Biochem Funct ; 35(7): 472-476, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29052243

ABSTRACT

Temporal lobe epilepsy is a chronic disorder of nerve system, mainly characterized by hippocampal sclerosis with massive neuronal loss and severe gliosis. Aberrant neurogenesis has been shown in the epileptogenesis process of temporal lobe epilepsy. However, the molecular mechanisms underlying aberrant neurogenesis remain unclear. The roles of Wnt signalling cascade have been well established in neurogenesis during multiple aspects. Here, we used kainic acid-induced rat epilepsy model to investigate whether Wnt/ß-catenin signalling pathway is involved in the aberrant neurogenesis in temporal lobe epilepsy. Immunostaining and western blotting results showed that the expression levels of ß-catenin, Wnt3a, and cyclin D1, the key regulators in Wnt signalling pathway, were up-regulated during acute epilepsy induced by the injection of kainic acids, indicating that Wnt signalling pathway was activated in kainic acid-induced temporal lobe epilepsy. Moreover, BrdU labelling results showed that blockade of the Wnt signalling by knocking down ß-catenin attenuated aberrant neurogenesis induced by kainic acids injection. Altogether, Wnt/ß-catenin signalling pathway mediated hippocampal neurogenesis during epilepsy, which might provide new strategies for clinical treatment of temporal lobe epilepsy. Temporal lobe epilepsy is a chronic disorder of nerve system, mainly characterized by hippocampal sclerosis. Aberrant neurogenesis has been shown to involve in the epileptogenesis process of temporal lobe epilepsy. In the present study, we discovered that Wnt3a/ß-catenin signalling pathway serves as a link between aberrant neurogenesis and underlying remodelling in the hippocampus, leading to temporal lobe epilepsy, which might provide new strategies for clinical treatment of temporal lobe epilepsy.


Subject(s)
Epilepsy, Temporal Lobe/pathology , Hippocampus/metabolism , Wnt3A Protein/metabolism , beta Catenin/metabolism , Animals , Cyclin D1/metabolism , Disease Models, Animal , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/metabolism , Hippocampus/pathology , Kainic Acid/toxicity , Male , RNA Interference , RNA, Small Interfering/metabolism , Rats , Rats, Wistar , Up-Regulation , Wnt Signaling Pathway , beta Catenin/antagonists & inhibitors , beta Catenin/genetics
16.
J Microencapsul ; 34(1): 104-110, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28152634

ABSTRACT

Three series of solid lipid are formulated in nanostructured lipid carriers (NLC) system, which encapsulated with sun filter to evaluate the effect on the physicochemical properties of the nanocarriers. Production is performed by ultrasonication-homogenisation, analysis by particle size, zeta potential (ZP), transmission electron microscope, Fourier transform infrared spectroscopy, differential scanning calorimetry (DSC), X-ray diffraction (XRD). Moreover, the encapsulation efficiency, ultraviolet performance and in vitro release are also investigated. The particle sizes of NLCs are between 185 and 225 nm and the polydispersity index is lower than 0.4, ZP from -56.4 to -78.6 mV, and the particles are spherical and in homogenous shading. All prepared NCLs encapsulated the sun filter and the EE are higher than 73%. DSC analysis revealed α- to ß-polymorphic modification existed in the system of fatty alcohol and fatty acid. However, α, ß and ß'-polymorphic modifications are exist in the system of cetyl palmitate (PC). Compared with conventional emulsion, all NLCs displayed perfect photo-protective property, especially for the alcohol system. The photo-stability studies showed that the all NLCs have the ability to improve the photo-stability of sunscreens. The in vitro release study suggested all three NLCs displayed sustained release profile and they were fit well with Higuchi equation.


Subject(s)
Drug Carriers/chemistry , Lipids/chemistry , Nanostructures/chemistry , Sunscreening Agents/administration & dosage , Calorimetry, Differential Scanning , Drug Liberation , Drug Stability , Nanostructures/ultrastructure , Particle Size , Spectroscopy, Fourier Transform Infrared , Sunscreening Agents/chemistry , X-Ray Diffraction
17.
J Gen Virol ; 96(Pt 6): 1219-1228, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25626679

ABSTRACT

Thermostable Newcastle disease virus (NDV) vaccines have been used widely to control Newcastle disease for village poultry flocks, due to their independence of cold chains for delivery and storage. To explore the potential use of thermostable NDV as a vaccine vector, an infectious clone of thermostable avirulent NDV strain TS09-C was developed using reverse genetics technology. The GFP gene, along with the self-cleaving 2A gene of foot-and-mouth disease virus and ubiquitin monomer (2AUbi), were inserted immediately upstream of the NP (nucleocapsid protein), M (matrix protein) or L (large polymerase protein) gene translation start codon in the TS09-C infectious clone. Detection of GFP expression in the recombinant virus-infected cells showed that the recombinant virus, rTS-GFP/M, with the GFP gene inserted into the M gene expressed the highest level of GFP. The rTS-GFP/M virus retained the same thermostability, growth dynamics and pathogenicity as its parental rTS09-C virus. Vaccination of specific-pathogen-free chickens with the rTS-GFP/M virus conferred complete protection against virulent NDV challenge. Taken together, the data suggested that the rTS09-C virus could be used as a vaccine vector to develop bivalent thermostable vaccines against Newcastle disease and the target avian diseases for village chickens, especially in the developing and least-developed countries.


Subject(s)
Drug Carriers , Genetic Vectors , Genomic Instability , Newcastle disease virus/genetics , Viral Vaccines/immunology , Animals , Chickens , Gene Expression , Genes, Reporter , Green Fluorescent Proteins/genetics , Newcastle Disease/prevention & control , Reverse Genetics , Survival Analysis , Ubiquitin/genetics , Vaccination/methods , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Vaccines, Attenuated/isolation & purification , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Vaccines, Synthetic/isolation & purification , Viral Proteins/genetics , Viral Vaccines/administration & dosage , Viral Vaccines/genetics , Viral Vaccines/isolation & purification
18.
J Environ Sci (China) ; 38: 14-23, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26702964

ABSTRACT

Ammonia (NH3) volatilization is a major pathway of nitrogen (N) loss from soil-crop systems. As vegetable cultivation is one of the most important agricultural land uses worldwide, a deeper understanding of NH3 volatilization is necessary in vegetable production systems. We therefore conducted a 3-year (2010-2012) field experiment to characterize NH3 volatilization and evaluate the effect of different N fertilizer treatments on this process during the growth period of Chinese cabbage. Ammonia volatilization rate, rainfall, soil water content, pH, and soil NH4(+) were measured during the growth period. The results showed that NH3 volatilization was significantly and positively correlated to topsoil pH and NH4(+) concentration. Climate factors and fertilization method also significantly affected NH3 volatilization. Specifically, organic fertilizer (OF) increased NH3 volatilization by 11.77%-18.46%, compared to conventional fertilizer (CF, urea), while organic-inorganic compound fertilizer (OIF) reduced NH3 volatilization by 8.82%-12.67% compared to CF. Furthermore, slow-release fertilizers had significantly positive effects on controlling NH3 volatilization, with a 60.73%-68.80% reduction for sulfur-coated urea (SCU), a 71.85%-78.97% reduction for biological Carbon Power® urea (BCU), and a 77.66%-83.12% reduction for bulk-blend controlled-release fertilizer (BBCRF) relative to CF. This study provides much needed baseline information, which will help in fertilizer choice and management practices to reduce NH3 volatilization and encourage the development of new strategies for vegetable planting.


Subject(s)
Ammonia/metabolism , Brassica/metabolism , Nitrogen/metabolism , China , Fertilizers/analysis , Soil/chemistry , Volatilization
19.
Genome ; 57(5): 253-7, 2014 May.
Article in English | MEDLINE | ID: mdl-25166511

ABSTRACT

Previous studies have indicated that non-SMC condensin I complex, subunit D2 (NCAPD2), an important protein in chromosome condensation, gene polymorphisms are associated with Alzheimer's disease. But no study has shown the relationship between NCAPD2 polymorphisms and Parkinson's disease. Here, we conducted a case-control study to investigate the relationship between NCAPD2 polymorphisms and the risk of Parkinson's disease in a Han Chinese population. Two single nuclear polymorphisms (SNPs) of NCAPD2 (rs7311174 and rs2072374) showed significant p values (p = 0.046 and p = 0.043, respectively) in 265 patients and 267 controls. Further analysis showed an effect of age and gender on the relationship between the two SNPs and the risk for Parkinson's disease. The A allele of rs7311174 and the T allele of rs2072374 were protective in the male patients (p = 0.016 and p = 0.019, respectively). The frequencies of the T allele of rs7311174 and the C allele of rs2072374 were significantly associated with late-onset Parkinson's disease (p = 0.048 and p = 0.044, respectively). This research demonstrates a positive relationship between the NCAPD2 gene and the risk for Parkinson's disease in a Han Chinese population and provides a potential genetic marker for sporadic Parkinson's disease.


Subject(s)
Asian People/genetics , Cell Cycle Proteins/genetics , Nuclear Proteins/genetics , Parkinson Disease/genetics , Adult , Age Factors , Aged , Asian People/ethnology , Case-Control Studies , Chromosomal Proteins, Non-Histone , Female , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Poly-ADP-Ribose Binding Proteins , Polymorphism, Single Nucleotide , Sex Factors
20.
Brain Inj ; 28(12): 1491-503, 2014.
Article in English | MEDLINE | ID: mdl-25111457

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) contributes to a substantial number of deaths and cases of disability. Despite well-established experimental models and years of carefully conducted research, a clinical therapeutic breakthrough in TBI has lagged. This may be due, in part, to the discrepancies between commonly used experimental models and clinical scenarios. METHOD: Secondary insults, such as hypotension and hypoxemia, have been well demonstrated as powerful determinants of outcomes from TBI. Despite the frequency of secondary insults in patients with TBI, they are rarely incorporated into most existing models of TBI. This review focuses on the combined injury models, especially coupled with systemic secondary insults, and aims to provide a new view to guiding future research endeavors in this field. RESULTS: A growing number of experimental models of TBI complicated by certain secondary insult have been gradually introduced and characterized. Correspondingly, the pathophysiological changes following combined injuries and the interactive effects of primary injury with secondary insults can be studied more in-depth. CONCLUSION: A more complete understanding of the interactions between the injured brain and secondary insults represents a potentially fruitful avenue that may increase the likelihood of developing effective therapies. Experimental models of TBI should not only attempt to model the focal or diffuse changes resulting from external forces, but also integrate, when appropriate, secondary insults reminiscent of human situations.


Subject(s)
Brain Injuries/pathology , Brain Ischemia/etiology , Brain/pathology , Hypotension/complications , Hypoxia/complications , Neuroprotective Agents/therapeutic use , Animals , Biomedical Research , Controlled Clinical Trials as Topic , Disease Models, Animal , Humans , Reproducibility of Results , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL