Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 283
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(7): e2218813120, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36745798

ABSTRACT

Efficient H2 harvesting from wastewater instead of pure water can minimize fresh water consumption, which is expected to solve the problem of water shortage in H2 production process and contribute to carbon neutrality in the environmental remediation, but the inevitable electron depletion caused by electron-consuming pollutants will result in an exhausted H2 evolution reaction (HER) performance. In this paper, by coupling piezocatalysis and advanced oxidation processes (AOPs) by a MoS2/Fe0/peroxymonosulfate (PMS) ternary system, extensive types of wastewater achieved considerable H2 generation, which exceeded the yield in pure water with synchronous advanced degradation of organic pollutants. In addition, profiting from the crucial bridging role of PMS, the H2 yield in nitrobenzene wastewater after the introduction of PMS-based AOPs increased 3.37-fold from 267.7 µmol·g-1·h-1 to 901.0 µmol·g-1·h-1 because the presence of PMS both thermodynamically benefited MoS2 piezocatalytic H2 evolution and eliminated the electron depletion caused by organic pollutants. By this way, the original repressed H2 evolution performance in substrate of wastewater not only was regained but even showed a significant enhancement than that in pure water (505.7 µmol·g-1·h-1). Additionally, the cyclonic piezoelectric reactor was preliminarily designed for future industrialization. This strategy provided a valuable path for the recycling of actual wastewater by fuel production and synchronous advanced treatment.

2.
J Virol ; 98(1): e0156823, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38054738

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease with high case mortality rates, which is caused by Dabie bandavirus (DBV), a novel pathogen also termed as SFTS virus (SFTSV). Currently, no specific therapeutic drugs or vaccines are available for SFTS. Myxovirus resistance protein A (MxA) has been shown to inhibit multiple viral pathogens; however, the role of MxA in DBV infection is unknown. Here, we demonstrated that DBV stimulates MxA expression which, in turn, restricts DBV infection. Mechanistic target analysis revealed that MxA specifically interacts with the viral nucleocapsid protein (NP) in a manner independent of RNA. Minigenome reporter assay showed that in agreement with its targeting of NP, MxA inhibits DBV ribonucleoprotein (RNP) activity. In detail, MxA interacts with the NP N-terminal and disrupts the interaction of NP with the viral RNA-dependent RNA polymerase (RdRp) but not NP multimerization, the critical activities of NP for RNP formation and function. Furthermore, MxA N-terminal domain was identified as the functional domain inhibiting DBV infection, and, consistently, then was shown to interact with NP and obstruct the NP-RdRp interaction. Additionally, threonine 103 within the N-terminal domain is important for MxA inhibition to DBV, and its mutation (T103A) attenuates MxA binding to NP and obstruction of the NP-RdRp interaction. This study uncovers MxA inhibition of DBV with a series of functional and mechanistical analyses, providing insights into the virus-host interactions and probably helping inform the development of antiviral agents in the future.IMPORTANCEDBV/SFTSV is an emerging high-pathogenic virus. Since its first identification in China in 2009, cases of DBV infection have been reported in many other countries, posing a significant threat to public health. Uncovering the mechanisms of DBV-host interactions is necessary to understand the viral pathogenesis and host response and may advance the development of antiviral therapeutics. Here, we found that host factor MxA whose expression is induced by DBV restricts the virus infection. Mechanistically, MxA specifically interacts with the viral NP and blocks the NP-RdRp interaction, inhibiting the viral RNP activity. Further studies identified the key domain and amino acid residue required for MxA inhibition to DBV. Consistently, they were then shown to be important for MxA targeting of NP and obstruction of the NP-RdRp association. These findings unravel the restrictive role of MxA in DBV infection and the underlying mechanism, expanding our knowledge of the virus-host interactions.


Subject(s)
Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Humans , Nucleocapsid Proteins , Ribonucleoproteins/metabolism , RNA-Dependent RNA Polymerase , Severe Fever with Thrombocytopenia Syndrome/metabolism , Severe Fever with Thrombocytopenia Syndrome/virology , Phlebovirus/physiology , Host-Pathogen Interactions
3.
Arterioscler Thromb Vasc Biol ; 44(1): 177-191, 2024 01.
Article in English | MEDLINE | ID: mdl-38150518

ABSTRACT

BACKGROUND: The heart relies heavily on external fatty acid (FA) for energy production. VEGFB (vascular endothelial growth factor B) has been shown to promote endothelial FA uptake by upregulating FA transporters. However, its impact on LPL (lipoprotein lipase)-mediated lipolysis of lipoproteins, a major source of FA for cardiac use, is unknown. METHODS: VEGFB transgenic (Tg) rats were generated by using the α-myosin heavy chain promoter to drive cardiomyocyte-specific overexpression. To measure coronary LPL activity, Langendorff hearts were perfused with heparin. In vivo positron emission tomography imaging with [18F]-triglyceride-fluoro-6-thia-heptadecanoic acid and [11C]-palmitate was used to determine cardiac FA uptake. Mitochondrial FA oxidation was evaluated by high-resolution respirometry. Streptozotocin was used to induce diabetes, and cardiac function was monitored using echocardiography. RESULTS: In Tg hearts, the vectorial transfer of LPL to the vascular lumen is obstructed, resulting in LPL buildup within cardiomyocytes, an effect likely due to coronary vascular development with its associated augmentation of insulin action. With insulin insufficiency following fasting, VEGFB acted unimpeded to facilitate LPL movement and increase its activity at the coronary lumen. In vivo PET imaging following fasting confirmed that VEGFB induced a greater FA uptake to the heart from circulating lipoproteins as compared with plasma-free FAs. As this was associated with augmented mitochondrial oxidation, lipid accumulation in the heart was prevented. We further examined whether this property of VEGFB on cardiac metabolism could be useful following diabetes and its associated cardiac dysfunction, with attendant loss of metabolic flexibility. In Tg hearts, diabetes inhibited myocyte VEGFB gene expression and protein secretion together with its downstream receptor signaling, effects that could explain its lack of cardioprotection. CONCLUSIONS: Our study highlights the novel role of VEGFB in LPL-derived FA supply and utilization. In diabetes, loss of VEGFB action may contribute toward metabolic inflexibility, lipotoxicity, and development of diabetic cardiomyopathy.


Subject(s)
Diabetic Cardiomyopathies , Insulin , Rats , Animals , Insulin/pharmacology , Vascular Endothelial Growth Factor B/genetics , Vascular Endothelial Growth Factor B/metabolism , Rats, Wistar , Myocytes, Cardiac/metabolism , Fatty Acids/metabolism , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/metabolism , Triglycerides/metabolism , Lipoprotein Lipase/metabolism , Myocardium/metabolism
4.
J Nutr ; 154(9): 2772-2783, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38880175

ABSTRACT

BACKGROUND: The incongruity between dietary patterns and the circadian clock poses an elevated risk for metabolic health issues, particularly obesity and associated metabolic disorders. The intestinal microflora engages in regulating various physiological functions of the host through its metabolites. OBJECTIVES: This study aimed to investigate the impact of reversed feeding schedules during the day and night on intestinal flora and lipid metabolism in high-fat diet-induced obese mice. METHODS: Mice aged 8-10 wk were subjected to either daytime or nighttime feeding and were administered a control or high-fat diet for 18 wk. At the end of the experiment, various assessments were conducted, including analysis of serum biochemic indices, histologic examination, evaluation of gene and protein expression in adipose tissue, and scrutiny of changes in intestinal microbial composition. RESULTS: The results showed that day-night reversed feeding caused an increase in fasting blood glucose and exacerbated the high-fat diet-induced weight gain and lipid abnormalities. The mRNA expression levels of Leptin and Dgat1 were increased by day-night reversed feeding, which also reduced the expression level of adiponectin under the high-fat diet. Additionally, there was a significant increase in the protein concentrations of PPARγ, SREBP1c, and CD36. Inverted feeding schedules led to a reduction in intestinal microbial diversity, an increase in the abundance of inflammation-related bacteria, such as Coriobacteriaceae_UCG-002, and a suppression of beneficial bacteria, including Akkermansia, Candidatus_Saccharimonas, Anaeroplasma, Bifidobacterium, Carnobacterium, and Odoribacter. Acinetobacter exhibited a significant negative correlation with Leptin and Fasn, suggesting potential involvement in the regulation of lipid metabolism. CONCLUSIONS: The results elucidated the abnormalities of lipid metabolism and intestinal flora caused by day-night reversed feeding, which exacerbates the adverse effects of a high-fat diet on lipid metabolism and intestinal microflora. This reversal in feeding patterns may disrupt both intestinal and lipid metabolism homeostasis by altering the composition and abundance of intestinal microflora in mice.


Subject(s)
Adipose Tissue , Diet, High-Fat , Gastrointestinal Microbiome , Lipid Metabolism , Animals , Diet, High-Fat/adverse effects , Mice , Adipose Tissue/metabolism , Male , Mice, Inbred C57BL , Circadian Rhythm , Obesity/metabolism , Obesity/etiology , Obesity/microbiology , Weight Gain
5.
Environ Res ; 261: 119728, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39098714

ABSTRACT

The environmental changes from climatic, terrestrial and anthropogenic drivers can significantly influence the groundwater quality that may pose a threat to human health. However, the driving mechanism of groundwater quality and potential health risk still remains to be studied. In this paper, 165 groundwater samples were analyzed to evaluate the groundwater quality, driving mechanism, and probabilistic health risk in the central Yinchuan Plain by applying fuzzy comprehensive evaluation method (FCEM), redundance analysis (RDA) and Monte Carlo simulation. The results showed that hydrochemical evolution of groundwater were strongly influenced by water-rock interaction, evaporation and human activities. While 55.2% of groundwater samples reached the drinking water quality standard (Class I, II and III), 44.8% of samples exceeded the standard limits of Class III water quality (Class IV and V), indicating a high pollution level of groundwater. Mn, TDS, NH4+, NO3-, Fe, F-, NO2-, As were among major indicators that influence the groundwater quality due to the natural and anthropogenic processes. The RDA analysis revealed that climatic factors (PE: 10.9%, PRE: 1.1%), GE chemical properties (ORP: 20.7%, DO: 2.4%), hydrogeological factors (BD: 16.5%, K: 4.1%), and terrestrial factors (elevation: 1.2%; distanced: 5.6%, distancerl: 1.5%, NDVI: 1.2%) were identified as major driving factors influencing the groundwater quality in the study area. The HHRA suggested that TCR values of arsenic in infants, children and teens greatly exceeded the acceptable risk threshold of 1E-4, indicating a high cancer risk with a basic trend: infants > children > teens, while TCR values of adults were within the acceptable risk level. THI values of four age groups in the RME scenario were nearly ten times higher than those in the CTE scenario, displaying a great health effect on all age groups (HQ > 1). The present study provides novel insights into the driving mechanism of groundwater quality and potential health hazard in arid and semi-arid regions.


Subject(s)
Groundwater , Water Pollutants, Chemical , Water Quality , Groundwater/analysis , Groundwater/chemistry , Humans , China , Risk Assessment , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Child , Adolescent , Adult , Infant , Child, Preschool , Young Adult , Drinking Water/analysis , Drinking Water/chemistry
6.
BMC Pediatr ; 24(1): 522, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138455

ABSTRACT

INTRODUCTION: Physical activity (PA) is believed to play an important part in many aspects during childhood and adolescence, especially cardiorespiratory fitness and cardiometabolic health. However, whether different levels of PA in daily life influence the structure or function of heart in school-aged children remains unknown. We aimed to investigate the association between PA and cardiovascular parameters in 7-year-old children. METHODS: Follow-up data from the Shanghai Prenatal Cohort Study and the Shanghai Birth Cohort was analyzed. Perinatal information including both maternal and offspring datum was recorded. A refined questionnaire was used to evaluate the frequency and duration of children's PA levels. Blood pressure, echocardiography, and anthropometry assessment were conducted during the follow-up of 7-year-old children. RESULTS: Overall, high PA level was associated with higher left ventricle posterior wall thickness in diastole (LVPWd, ß coefficient: 0.36, 95% CI: 0.12, 0.61), higher left ventricle mass index (LVMI, ß = 0.28, 95% CI: 0.07, 0.48), mitral E/a ratio (ß = 0.47, 95% CI: 0.22, 0.71) and slower heart rate (ß = -0.32, 95% CI: -0.57, -0.07), compared to low PA level. Medium PA level was associated with lower diastolic blood pressure (DBP, ß = -0.18, 95% CI: -0.35, -0.01). In subgroup analysis, increased relative wall thickness (RWT) was found in high PA level boys (ß = 0.36, 95% CI: 0.05, 0.67), and systolic blood pressure (SBP) showed a significant decrease in high PA level girls (ß = -0.42, 95% CI: -0.78, -0.06). CONCLUSIONS: This study suggested non-athlete children having higher PA level were associated with thicker left ventricle (LV) walls and better LV diastolic function, as well as slower heart rate and DBP at the age of 7. Furthermore, disparity in the association between PA level with morphological heart patterns and blood pressure existed in different sex category.


Subject(s)
Blood Pressure , Echocardiography , Exercise , Humans , Female , Child , Male , Cross-Sectional Studies , China , Exercise/physiology , Blood Pressure/physiology , Heart Rate/physiology , Heart Ventricles/diagnostic imaging , Heart Ventricles/anatomy & histology , Follow-Up Studies , Cardiorespiratory Fitness/physiology , East Asian People
7.
Ecotoxicol Environ Saf ; 274: 116220, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38513531

ABSTRACT

Previous research investigating the correlation between prenatal exposure to per- and polyfluoroalkyl substances (PFAS) and subsequent blood pressure (BP) in offspring has yielded limited and contradictory findings. This study was conducted to investigate the potential relationship between maternal PFAS levels during pregnancy and subsequent BP in early childhood. A total of 129 expectant mothers from the Shanghai Birth Cohort were included in the study. Using high-performance liquid chromatography/tandem mass spectrometry, we measured ten PFAS compounds in maternal plasma throughout the pregnancy. When the children reached the age of 4, we examined their systolic BP (SBP) and diastolic BP (DBP), along with mean arterial pressure (MAP) and pulse pressure (PP). Data interpretation employed multiple linear and logistic regression models, complemented by Bayesian kernel machine regression (BKMR).We found that the majority of PFAS concentrations remained stable during pregnancy. The linear and BKMR models indicated a positive relationship between the PFAS mixture in maternal plasma and offspring's DBP and MAP, with perfluorohexanesulphonic acid (PFHxS) having the most significant influence (PFHxS and DBP [first trimester:ß=3.03, 95%CI: (1.01,5.05); second trimester: ß=2.35, 95%CI: (0.94,3.75); third trimester: ß=2.57, 95%CI:(0.80,4.34)]; MAP [first trimester:ß=2.55, 95%CI: (0.64,4.45); second trimester: ß=2.28, 95%CI: (0.95,3.61); third trimester: ß=2.35, 95%CI:(0.68,4.01)]). Logistic regression highlighted an increased risk of prehypertension and hypertension in offspring with higher maternal PFHxS concentrations during all three trimesters [first trimester: OR=2.53, 95%CI:(1.11,5.79), second trimester: OR=2.05, 95%CI:(1.11,3.78), third trimester: OR=3.08, 95%CI:(1.40,6.79)]. A positive correlation was identified between the half-lives of PFAS and the odds ratio (OR) of prehypertension and hypertension in childhood (ß=0.139, P=0.010). In conclusion, this research found maternal plasma PFAS concentrations to be positively associated with BP in offspring, with PFHxS showing the most significant influence. This correlation remained consistent throughout pregnancy, and this effect was proportional to the half-lives of PFAS.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Hypertension , Prehypertension , Child , Pregnancy , Female , Humans , Child, Preschool , Blood Pressure , Prehypertension/chemically induced , Bayes Theorem , Environmental Pollutants/toxicity , Fluorocarbons/toxicity , China , Hypertension/chemically induced , Alkanesulfonic Acids/toxicity
8.
BMC Med ; 21(1): 103, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36941582

ABSTRACT

BACKGROUND: Current evidence relating birthweight and gestational age to cardiovascular risk is conflicting. Whether these factors have independent or interactive impacts on cardiovascular parameters during early childhood remains unclear. The goal of this study was to explore whether there were any independent and interactive effects of gestational age and birthweight on blood pressure, left ventricle (LV) structure, and function in 4 years old. METHODS: This study included 1194 children in the Shanghai Birth Cohort from 2013 to 2016. Information about the mothers and children was recorded at time of birth using a questionnaire. Follow-up measurements, including anthropometric, blood pressure, and echocardiography, were taken between 2018 and 2021, when the children were 4 years old. Multiple linear or logistic regressions and restricted cubic spline were used to explore the association of birthweight and gestational age with cardiovascular measurements. RESULTS: Gestational age had a significant negative correlation with both systolic blood pressure [ß = - 0.41, 95% CI: (- 0.76, - 0.07)] and mean arterial pressure [ß = - 0.36, 95%CI: (- 0.66, - 0.07)]. The risk of prehypertension decreased with increased gestational age [OR = 0.54, 95% CI: (0.32, 0.93)]. The relationship between birthweight with blood pressure was U-shape (P for non-linear < 0.001). The wall thickness, volume, mass, and cardiac output of LV increased with birthweight, though the ejection fraction [ß = - 1.02, 95% CI: (- 1.76, - 0.27)] and shorten fraction [ß = 0.72, 95% CI: (- 1.31, - 0.14)] decreased with birthweight. The risk of LV hypertrophy was not associated with birthweight [OR = 1.59, 95% CI: (0.68, 3.73)]. CONCLUSIONS: In this study, we found different associations of birthweight and gestational age with cardiovascular measurements in the offspring at 4 years old. Gestational age influenced blood pressure independent of birthweight. Heart size and function at 4 years old was influenced mostly by birthweight and not by gestational age.


Subject(s)
Birth Weight , Child , Female , Humans , Child, Preschool , Blood Pressure , Cohort Studies , Gestational Age , Prospective Studies , China
9.
Small ; : e2308002, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38084459

ABSTRACT

In order to reveal the dynamic response characteristic of thin film thermocouples (TFTCs), the nichrome/nisil (NiCr/NiSi) TFTCs are prepared onto the glass substrate. With short pulse infrared laser system, NiCr/NiSi TFTCs are dynamically calibrated. The thermoelectric electromotive force (TEF) curves of NiCr/NiSi TFTCs are recorded by the memory hicorder system, which could reflect TEF signals with resolution ratio in nanosecond and microvolt, simultaneously. With increasing laser energy from 15.49 to 29.59 mJ, TEF curves display more and more violent oscillation, even negative value. The results show that the bounce of thermal energy happens between two interfaces of TFTCs because the thermal conductivity of glass and air is significantly lower than that of NiSi/NiCr TFTCs. The bounce of thermal energy results in the obvious decrease of nNiCr and nNiSi , as well as oscillation of TEF. For laser energy in 29.59 mJ, the bounce of thermal energy in NiCr film could result in nNiCr < nNiSi . Then, TEF value appears abnormal negative value. Based on the results, the complex thermal energy transport process in TFTCs dynamic calibration is revealed, which results in the oscillation of thermal energy and TEF signal.

10.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: mdl-34169968

ABSTRACT

BACKGROUND: There are ever increasing researches implying that noncoded RNAs (ncRNAs) specifically circular RNAs (circRNAs) and microRNAs (miRNAs) in exosomes play vital roles in respiratory disease. However, the detailed mechanisms persist to be unclear in mycobacterial infection. METHODS: In order to detect circRNAs and miRNAs expression pattern and potential biological function in tuberculosis, we performed immense parallel sequencing for exosomal ncRNAs from THP-1-derived macrophages infected by Mycobacterium tuberculosis H37Ra, Mycobacterium bovis BCG and control Streptococcus pneumonia, respectively and uninfected normal cells. Besides, THP-1-derived macrophages were used to verify the validation of differential miRNAs, and monocytes from PBMCs and clinical plasma samples were used to further validate differentially expressed miR-185-5p. RESULTS: Many exosomal circRNAs and miRNAs associated with tuberculosis infection were recognized. Extensive enrichment analyses were performed to illustrate the major effects of altered ncRNAs expression. Moreover, the miRNA-mRNA and circRNA-miRNA networks were created and expected to reveal their interrelationship. Further, significant differentially expressed miRNAs based on Exo-BCG, Exo-Ra and Exo-Control, were evaluated, and the potential target mRNAs and function were analyzed. Eventually, miR-185-5p was collected as a promising potential biomarker for tuberculosis. CONCLUSION: Our findings provide a new vision for exploring biological functions of ncRNAs in mycobacterial infection and screening novel potential biomarkers. To sum up, exosomal ncRNAs might represent useful functional biomarkers in tuberculosis pathogenesis and diagnosis.


Subject(s)
Biomarkers , Exosomes , Gene Expression Profiling , MicroRNAs/genetics , Mycobacterium tuberculosis , RNA, Untranslated , Tuberculosis/genetics , Biological Transport , Cell Line , Exosomes/metabolism , Exosomes/ultrastructure , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing , Humans , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , RNA Transport , RNA, Circular , RNA, Messenger/genetics , ROC Curve , Tuberculosis/metabolism , Tuberculosis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL