Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters

Publication year range
1.
Int J Mol Sci ; 23(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35163280

ABSTRACT

The rapid identification of bacterial antibiotic susceptibility is pivotal to the rational administration of antibacterial drugs. In this study, cefotaxime (CTX)-derived resistance in Salmonella typhimurium (abbr. CTXr-S. typhimurium) during 3 months of exposure was rapidly recorded using a portable Raman spectrometer. The molecular changes that occurred in the drug-resistant strains were sensitively monitored in whole cells by label-free surface-enhanced Raman scattering (SERS). Various degrees of resistant strains could be accurately discriminated by applying multivariate statistical analyses to bacterial SERS profiles. Minimum inhibitory concentration (MIC) values showed a positive linear correlation with the relative Raman intensities of I990/I1348, and the R2 reached 0.9962. The SERS results were consistent with the data obtained by MIC assays, mutant prevention concentration (MPC) determinations, and Kirby-Bauer antibiotic susceptibility tests (K-B tests). This preliminary proof-of-concept study indicates the high potential of the SERS method to supplement the time-consuming conventional method and help alleviate the challenges of antibiotic resistance in clinical therapy.


Subject(s)
Salmonella Infections/immunology , Salmonella typhimurium/immunology , Spectrum Analysis, Raman/methods , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Drug Resistance, Bacterial/genetics , Drug Resistance, Microbial/drug effects , Humans , Salmonella Infections/diagnosis , Salmonella typhimurium/drug effects , Salmonella typhimurium/pathogenicity
2.
Pharmacol Res ; 167: 105542, 2021 05.
Article in English | MEDLINE | ID: mdl-33711432

ABSTRACT

Depression has become one of the most prevalent neuropsychiatric disorders characterized by anhedonia, anxiety, pessimism, or even suicidal thoughts. Receptor theory has been pointed out to explain the pathogenesis of depression, while it is still subject to debate. Additionally, gene abnormality accounts for nearly 40-50% of depression risk, which is a significant factor contributing to the onset of depression. Accordingly, studying on receptors and their gene abnormality are critical parts of the research on internal causes of depression. This review summarizes the pathogenesis of depression from six of the most related receptors and their associated genes, including N-methyl-D-aspartate receptor, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, glucocorticoid receptor, 5-hydroxytryptamine receptor, GABAA receptor α2, and dopamine receptor; and several "non-classic" receptors, such as metabotropic glutamate receptor, opioid receptor, and insulin receptor. These receptors have received considerable critical attention and are highly implicated in the onset of depression. We begin by providing the biological mechanisms of action of these receptors on the pathogenesis of depression. Then we review the historical and social context about these receptors. Finally, we discuss the limitations of the current state of knowledge and outline insights on future research directions, aiming to provide more novel targets and theoretical basis for the early prevention, accurate diagnosis and prompt treatment of depression.


Subject(s)
Depression/pathology , Depressive Disorder/pathology , Animals , Depression/genetics , Depression/metabolism , Depressive Disorder/genetics , Depressive Disorder/metabolism , Humans , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Receptors, GABA-A/genetics , Receptors, GABA-A/metabolism , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, Serotonin/genetics , Receptors, Serotonin/metabolism
3.
J Integr Plant Biol ; 63(7): 1324-1340, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33605510

ABSTRACT

Mitogen-activated protein kinases (MPKs) play essential roles in guard cell signaling, but whether MPK cascades participate in guard cell ethylene signaling and interact with hydrogen peroxide (H2 O2 ), nitric oxide (NO), and ethylene-signaling components remain unclear. Here, we report that ethylene activated MPK3 and MPK6 in the leaves of wild-type Arabidopsis thaliana as well as ethylene insensitive2 (ein2), ein3, nitrate reductase1 (nia1), and nia2 mutants, but this effect was impaired in ethylene response1 (etr1), nicotinamide adenine dinucleotide phosphate oxidase AtrbohF, mpk kinase1 (mkk1), and mkk3 mutants. By contrast, the constitutive triple response1 (ctr1) mutant had constitutively active MPK3 and MPK6. Yeast two-hybrid, bimolecular fluorescence complementation, and pull-down assays indicated that MPK3 and MPK6 physically interacted with MKK1, MKK3, and the C-terminal region of EIN2 (EIN2 CEND). mkk1, mkk3, mpk3, and mpk6 mutants had typical levels of ethylene-induced H2 O2 generation but impaired ethylene-induced EIN2 CEND cleavage and nuclear translocation, EIN3 protein accumulation, NO production in guard cells, and stomatal closure. These results show that the MKK1/3-MPK3/6 cascade mediates ethylene-induced stomatal closure by functioning downstream of ETR1, CTR1, and H2 O2 to interact with EIN2, thereby promoting EIN3 accumulation and EIN3-dependent NO production in guard cells.


Subject(s)
Arabidopsis Proteins/metabolism , DNA-Binding Proteins/metabolism , Ethylenes/pharmacology , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 3/metabolism , Mitogen-Activated Protein Kinases/metabolism , Plant Stomata/drug effects , Plant Stomata/metabolism , Receptors, Cell Surface/metabolism , Transcription Factors/metabolism , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , DNA-Binding Proteins/genetics , MAP Kinase Kinase 1/genetics , MAP Kinase Kinase 3/genetics , Mitogen-Activated Protein Kinases/genetics , Receptors, Cell Surface/genetics , Transcription Factors/genetics
4.
Proc Natl Acad Sci U S A ; 113(11): 3096-101, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26929345

ABSTRACT

In flowering plants, pollen tubes are guided into ovules by multiple attractants from female gametophytes to release paired sperm cells for double fertilization. It has been well-established that Ca(2+) gradients in the pollen tube tips are essential for pollen tube guidance and that plasma membrane Ca(2+) channels in pollen tube tips are core components that regulate Ca(2+) gradients by mediating and regulating external Ca(2+) influx. Therefore, Ca(2+) channels are the core components for pollen tube guidance. However, there is still no genetic evidence for the identification of the putative Ca(2+) channels essential for pollen tube guidance. Here, we report that the point mutations R491Q or R578K in cyclic nucleotide-gated channel 18 (CNGC18) resulted in abnormal Ca(2+) gradients and strong pollen tube guidance defects by impairing the activation of CNGC18 in Arabidopsis. The pollen tube guidance defects of cngc18-17 (R491Q) and of the transfer DNA (T-DNA) insertion mutant cngc18-1 (+/-) were completely rescued by CNGC18. Furthermore, domain-swapping experiments showed that CNGC18's transmembrane domains are indispensable for pollen tube guidance. Additionally, we found that, among eight Ca(2+) channels (including six CNGCs and two glutamate receptor-like channels), CNGC18 was the only one essential for pollen tube guidance. Thus, CNGC18 is the long-sought essential Ca(2+) channel for pollen tube guidance in Arabidopsis.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/physiology , Calcium/metabolism , Cyclic Nucleotide-Gated Cation Channels/physiology , Pollen Tube/growth & development , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Calcium Channels/physiology , Cyclic GMP/analogs & derivatives , Cyclic GMP/pharmacology , Cyclic Nucleotide-Gated Cation Channels/chemistry , Cyclic Nucleotide-Gated Cation Channels/deficiency , Cyclic Nucleotide-Gated Cation Channels/genetics , Genes, Reporter , Genetic Complementation Test , HEK293 Cells , Humans , Membrane Potentials , Mutation, Missense , Ovule , Patch-Clamp Techniques , Plant Infertility/genetics , Plants, Genetically Modified , Point Mutation , Protein Structure, Tertiary , Recombinant Fusion Proteins/metabolism , Second Messenger Systems
5.
Zhongguo Dang Dai Er Ke Za Zhi ; 21(2): 114-119, 2019 Feb.
Article in Zh | MEDLINE | ID: mdl-30782271

ABSTRACT

OBJECTIVE: To investigate the risk factors for brain injury in preterm infants by a multicenter epidemiological investigation of brain injury in hospitalized preterm infants in Anhui, China. METHODS: Preterm infants who were hospitalized in the department of neonatology in 9 hospitals of Anhui Neonatal Collaboration Network between January 2016 and January 2017 were enrolled as subjects. The data of maternal pregnancy and clinical data of preterm infants were collected, and the logistic regression model was used to analyze the risk factors for brain injury in preterm infants. RESULTS: A total of 3 378 preterm infants were enrolled. Of the 3 378 preterm infants, 798 (23.56%) had periventricular-intraventricular hemorrhage (PVH-IVH), and 88 (2.60%) had periventricular leukomalacia (PVL). Intrauterine distress, anemia, hypoglycemia and necrotizing enterocolitis (NEC) were risk factors for PVH-IVH (OR=1.310, 1.591, 1.835, and 3.310 respectively; P<0.05), while a higher gestational age was a protective factor against PVH-IVH (OR=0.671, P<0.05). PVH-IVH, NEC and mechanical ventilation were risk factors for PVL (OR=4.017, 3.018, and 2.166 respectively; P<0.05), and female sex and use of pulmonary surfactant were protective factors against PVL (OR=0.514 and 0.418 respectively; P<0.05). CONCLUSIONS: Asphyxia/anoxia, infection/inflammation, mechanical ventilation, anemia and hypoglycemia may increase the risk of brain injury in preterm infants.


Subject(s)
Brain Injuries , Cerebral Hemorrhage , China , Gestational Age , Humans , Infant, Newborn , Infant, Premature , Leukomalacia, Periventricular
6.
J Nanosci Nanotechnol ; 18(10): 6776-6785, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29954493

ABSTRACT

Rapid detection of food-borne pathogens is the most critical and urgent issue among all the current food safety problems. As enhanced substrate, nanoparticles are widely used in surface enhanced Raman scattering (SERS) because of unique optical and physicochemical properties. In this study, Au nanoparticles with monodisperse and good reproducibility were synthesized by using sodium citrate reduction method. Applying Au nanoparticles sol as enhanced substrate, a portable Raman spectrometer had been applied for rapid detection of single and mixture pathogenic bacterial contamination by SERS. The results indicated that Escherichia coli, Salmonella typhimirium, Shigella flexner and Staphylococcus aureus showed specific Raman phenotypes at 600∼1700 cm-1. Generally, different bacteria could be easily and instantly recognized by its Raman phenotypes. The PC-LDA classification model was set up by combined bacterial Raman phenotypes with the multivariate statistical analysis. With the short-time inoculation, four enteropathogenic bacteria could be rapidly, precisely, sensitively and specifically identified. Furthermore, the model also had a good ability to predict the mixed contamination. This research provides the possibility of rapid detection in the food and biomedical fields.


Subject(s)
Enterobacteriaceae/isolation & purification , Spectrum Analysis, Raman/methods , Bacterial Typing Techniques/economics , Bacterial Typing Techniques/methods , Enterobacteriaceae Infections/microbiology , Escherichia coli/isolation & purification , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , Salmonella/isolation & purification , Shigella/isolation & purification , Staphylococcus aureus/isolation & purification , Time Factors
7.
Biochem Biophys Res Commun ; 482(4): 1381-1386, 2017 Jan 22.
Article in English | MEDLINE | ID: mdl-27956179

ABSTRACT

Evidence has revealed that some microRNAs play a critical role in tumor proliferation. We demonstrated that miR-141-3p appears to be a novel oncogene miRNA, which promotes prostate tumorigenesis and facilitates the stemness of prostate cancer cells via suppressing a key transcription factor kruppel-like factor-9 (KLF9). KLF9 is the core effector protein that might suppress tumor growth. MiR-141-3p is upregulated in prostate cancer cells and tissues compared to non-tumorigenic prostate epithelial cells and prostate tissues. MiR-141-3p positively regulated proliferation, spheroid formation, and expression of the stemness factors OCT-4, Nanog, SOX-9, Bmil, CCND1, and CD44 in PC-3 cells. Restoration of miR-141-3p suppresses the expression of the transcription factor KLF9 in PC-3 and accelerates prostate tumorigenesis via targeted binding with its 3'-UTR. Downregulation of KLF9 enhances spheres formation of prostate cancer cells. Our results suggest that miR-141-3p/KLF9 may play an important role in regulating the growth of prostate cancer and is a potential target of prevention and therapy.


Subject(s)
Gene Expression Regulation, Neoplastic , Kruppel-Like Transcription Factors/antagonists & inhibitors , MicroRNAs/genetics , Prostatic Neoplasms/genetics , Apoptosis , Cell Line, Tumor , Cell Proliferation , Cyclin D1/metabolism , Epithelial Cells/metabolism , Humans , Hyaluronan Receptors/metabolism , Kruppel-Like Transcription Factors/metabolism , Male , Nanog Homeobox Protein/metabolism , Octamer Transcription Factor-3/metabolism , Polycomb Repressive Complex 1/metabolism , Prostate/metabolism , SOX9 Transcription Factor/metabolism , Spheroids, Cellular/metabolism
8.
Planta ; 243(2): 489-500, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26481009

ABSTRACT

MAIN CONCLUSION: OsSAPK8 is an essential activator of OsSLAC1 by phosphorylation, and OsSLAC1 is a nitrate-selective anion channel. S-type anion channel AtSLAC1 and protein kinase AtOST1 have been well-characterized as two core components of ABA signaling cascade in Arabidopsis guard cells, and AtOST1 functions as a main upstream activator of AtSLAC1 for drought stress- and ABA-induced stomata closure. However, the identity of the ortholog of AtOST1 in rice, the main activator of OsSLAC1, is still unknown. Here, we report that protein kinase OsSAPK8 interacts with and activates OsSLAC1 mainly by phosphorylating serine 129 (S129) of OsSLAC1, and this phosphorylating site corresponds to the specific phosphorylating site serine 120 (S120) of AtSLAC1 for AtOST1. Additionally, we found that OsSLAC1 is a nitrate-selective anion channel without obvious permeability to chloride, malate, and sulfate, and the expression of OsSLAC1 in Arabidopsis slac1-3 (atslac1-3) mutant successfully rescued the hypersensitive phenotype of this mutant to drought stress. Together, this research suggests that OsSAPK8 is a counterpart of AtOST1 for the activation of OsSLAC1, which is a nitrate-selective anion channel.


Subject(s)
Membrane Proteins/physiology , Nitrates/metabolism , Oryza/metabolism , Plant Proteins/physiology , Animals , Arabidopsis/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Permeability , Phosphorylation , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Stomata/metabolism , Plant Stomata/physiology , Xenopus laevis
9.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(9): 2490-4, 2014 Sep.
Article in Zh | MEDLINE | ID: mdl-25532351

ABSTRACT

The simple winter wheat variety was conducted under the low temperature treatment at -2, -4, and -6 °C, the canopy reflectance was measured and the red edge parameters were extracted to study the winter wheat canopy spectral characteristics effected by the low temperature stress and the hyperspectral response to the low temperature stress of winter wheat at jointing stage. The results showed that the canopy reflectance decreased in visible region and increases at near infrared band with the high intensively low temperature stress, and "green peak" was weakened and "red well" was not distinctive. Moreover, the derivate spectrum had the trend of shift to short wavelength direction with the strengthening of low temperature stress and the red edge presented the blue shift. The area of red edge and red edge amplitude exhibit increase. It indicated that the canopy spectrum of winter wheat is sensitive to the low temperature stress, and the hyperspectral technology can be used to monitor the low temperature stress of winter wheat at jointing stage.


Subject(s)
Cold Temperature , Triticum/physiology , Spectrum Analysis , Stress, Physiological
10.
Pharmacol Biochem Behav ; 239: 173757, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574898

ABSTRACT

Depression is a major chronic mental illness worldwide, characterized by anhedonia and pessimism. Exposed to the same stressful stimuli, some people behave normally, while others exhibit negative behaviors and psychology. The exact molecular mechanisms linking stress-induced depressive susceptibility and resilience remain unclear. Connexin 43 (Cx43) forms gap junction channels between the astrocytes, acting as a crucial role in the pathogenesis of depression. Cx43 dysfunction could lead to depressive behaviors, and depression down-regulates the expression of Cx43 in the prefrontal cortex (PFC). Besides, accumulating evidence indicates that inflammation is one of the most common pathological features of the central nervous system dysfunction. However, the roles of Cx43 and peripheral inflammation in stress-susceptible and stress-resilient individuals have rarely been investigated. Thus, animals were classified into the chronic unpredictable stress (CUS)-susceptible group and the CUS-resilient group based on the performance of behavioral tests following the CUS protocol in this study. The protein expression of Cx43 in the PFC, the Cx43 functional changes in the PFC, and the expression levels including interleukin (IL)-1ß, tumor necrosis factor-α, IL-6, IL-2, IL-10, and IL-18 in the peripheral serum were detected. Here, we found that stress exposure triggered a significant reduction in Cx43 protein expression in the CUS-susceptible mice but not in the CUS-resilient mice accompanied by various Cx43 phosphorylation expression and the changes of inflammatory signals. Stress resilience is associated with Cx43 in the PFC and fluctuation in inflammatory signaling, showing that therapeutic targeting of these pathways might promote stress resilience.


Subject(s)
Connexin 43 , Inflammation , Prefrontal Cortex , Stress, Psychological , Animals , Prefrontal Cortex/metabolism , Connexin 43/metabolism , Mice , Stress, Psychological/metabolism , Male , Inflammation/metabolism , Resilience, Psychological , Mice, Inbred C57BL , Depression/metabolism , Cytokines/metabolism , Disease Susceptibility , Behavior, Animal
11.
Int J Ophthalmol ; 16(10): 1595-1600, 2023.
Article in English | MEDLINE | ID: mdl-37854381

ABSTRACT

AIM: To report a novel splicing mutation in the RPGR gene (encoding retinitis pigmentosa GTPase regulator) in a three-generation Chinese family with X-linked retinitis pigmentosa (XLRP). METHODS: Comprehensive ophthalmic examinations including best corrected visual acuity, fundus photography, vision field, and pattern-visual evoked potential were performed to identify the disease phenotype of a six-year-old boy from the family (proband). Genomic DNA was extracted from peripheral blood of five available members of the pedigree. Whole-exome sequencing (WES), Sanger sequencing, and pSPL3-based exon trapping were used to investigate the aberrant splicing of RPGR. Human Splice Finder v3.1 and NNSPLICE v0.9 were used for in silico prediction of splice site variants. RESULTS: The proband was diagnosed as having retinitis pigmentosa (RP). He had severe symptoms with early onset. A novel splicing mutation, c.619+1G>C in RPGR was identified in the proband by WES and in four family members by Sanger sequencing. Minigene splicing assays verified that c.619+1G>C in RPGR would result in the formation of a damaging alternative transcript in which the last 91 bp of exon 6 were skipped, leading to the subsequent deletion of 623 correct amino acids (c.529_619del p.Val177Glnfs*16). CONCLUSION: We identify a novel splice donor site mutation causing aberrant splicing of RPGR. Our findings add to the catalog of pathological mutations of RPGR and further emphasize the functional importance of RPGR in RP pathogenesis and its complex clinical phenotypes.

12.
Front Immunol ; 13: 909979, 2022.
Article in English | MEDLINE | ID: mdl-35990699

ABSTRACT

CD3-engaging bispecific antibodies (BsAbs) enable the formation of an immune synapse between T cells and tumor cells, resulting in robust target cell killing not dependent on a preexisting tumor specific T cell receptor. While recent studies have shed light on tumor cell-specific factors that modulate BsAb sensitivity, the T cell-intrinsic determinants of BsAb efficacy and response durability are poorly understood. To better clarify the genes that shape BsAb-induced T cell responses, we conducted targeted analyses and a large-scale unbiased in vitro CRISPR/Cas9-based screen to identify negative regulators of BsAb-induced T cell proliferation. These analyses revealed that CD8+ T cells are dependent on CD4+ T cell-derived signaling factors in order to achieve sustained killing in vitro. Moreover, the mammalian target of rapamycin (mTOR) pathway and several other candidate genes were identified as intrinsic regulators of BsAb-induced T cell proliferation and/or activation, highlighting promising approaches to enhancing the utility of these potent therapeutics.


Subject(s)
Antibodies, Bispecific , Neoplasms , Antibodies, Bispecific/pharmacology , Antibody Formation , Humans , Lymphocyte Activation/genetics , Receptors, Antigen, T-Cell
13.
Zhonghua Yi Xue Za Zhi ; 91(4): 272-6, 2011 Jan 25.
Article in Zh | MEDLINE | ID: mdl-21418875

ABSTRACT

OBJECTIVE: To explore the role of homocysteine in the pathogenesis of alcoholic cardiomyopathy. METHODS: A total of 69 male Wistar rats were randomly assigned into two groups: alcohol-fed group and the control. Cardiac function was assessed by pulse Doppler. Plasma Hcy levels were examined using automatic biochemical instrument (chemiluminescence). The protein expression of MMP-9 was evaluated using immunohistochemical method, and collagen fiber of myocardium was quantitative analyzed by Masson stain. RESULTS: After heavy drinking, the LVEDd of alcohol-fed group were larger than the control group [(7.0±0.6) mm vs (5.0±0.4) mm, P<0.05], the LVEF and FS were lower in the 4th month (52%±8% vs 78%±4%, 31%±3% vs 47%±2%, P<0.05), the data changed more significantly (P<0.01) in the 6th month. The level of plasma Hcy from alcohol-fed group was significantly higher from the 2nd month than that before the experiment [(18.1±3.1) µmol/L vs (9.8±2.1) µmol/L, P<0.01], and it was higher in 4th month than that in 2nd month [(26.3±4.0) µmol/L vs (18.1±3.1) µmol/L, P<0.05], it was highest in 6 months. After 4-month and 6-month drinking, the expression of MMP-9 protein from alcohol group was higher than before the experiment (0.161%±0.019%, 0.263%±0.014% vs 0.050%±0.008%, P<0.01). Masson staining showed myocardial collagen of alcohol group was more after 4-month and 6-month drinking than those before the experiment (10.23%±1.20% vs 0.50%±0.09%; 22.41%±2.57% vs 0.50%±0.09%, P<0.01). Plasma Hcy and cardiac tissue MMP-9 is a significant positive correlation (r=0.848, P<0.01). CONCLUSION: Long-term and large drink liquor can lead to plasma Hcy levels significantly increased, and participate cardiac remodeling and the pathogenesis of ACM through increasing the expression of myocardial tissue MMP-9 protein.


Subject(s)
Cardiomyopathy, Alcoholic/metabolism , Homocysteine/blood , Myocardium/metabolism , Animals , Cardiomyopathy, Alcoholic/pathology , Cardiomyopathy, Alcoholic/physiopathology , Male , Matrix Metalloproteinase 9/metabolism , Rats , Rats, Wistar
14.
Front Public Health ; 9: 816372, 2021.
Article in English | MEDLINE | ID: mdl-35096759

ABSTRACT

This paper aims to explore the effect and mechanism of rising housing prices on residents' physical and mental health. Using data from the China Family Panel Studies from 2014 to 2018, we investigate the impact and mechanism of rising housing prices on the mental and physical health of urban residents through multiple grouping regression and analysis of variance. The study finds that overall, rising housing prices have a positive effect on residents' mental health but a negative effect on physical health, and those who do not own a house show the greatest adverse effect. The impact of rising housing prices on health is mainly reflected in three aspects: the wealth effect, cost effect, and comprehensive environmental expectation effect. Of these, the wealth effect and comprehensive environmental expectation effect play a role in promoting residents' health, whereas the cost effect has a strong inhibitory effect. This paper also analyzes how house prices impact health and finds that having health insurance reduces residents' active health behavior, thus affecting their physical and mental health levels, which has a positive effect on uninsured residents.


Subject(s)
Housing , Mental Health , China , Health Status
15.
J Ethnopharmacol ; 278: 114212, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34087399

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Panax ginseng C. A. Meyer is a valuable medicinal herb and "alternative" remedy for the prevention and treatment of depression. Dysfunction of connexin43 (Cx43)-gap junction in astrocytes is predisposed to the precipitation of depression. Ginsenoside Rg1 (Rg1), the main bioactive constituent extracted from ginseng, is efficacious in the management of depression by upregulating the content of Cx43. Our previous results indicated that pretreatment with Rg1 significantly improved Cx43-gap junction in corticosterone (CORT)-treated astrocytes. However, the antidepressant mechanism underlying how Rg1 upregulates Cx43-gap junction in astrocytes hasn't been proposed. AIM OF THE STUDY: To dissect the mechanisms of Rg1 controlling Cx43 levels in primary astrocytes. METHODS: We examined the changes of the level of Cx43 mRNA, the degradation of Cx43, as well as the ubiquitin-proteasomal and autophagy-lysosomal degradation pathways of Cx43 followed by Rg1 prior to CORT in rat primary astrocytes isolated from prefrontal cortex and hippocampus. Furthermore, the recognized method of scrape loading/dye transfer was performed to detect Cx43-gap junctional function, an essencial indicator of the antidepressant effect. RESULTS: Pretreatment with Rg1 could reverse CORT-induced downregulation of Cx43 biosynthesis, acceleration of Cx43 degradation, and upregulation of two Cx43 degradation pathways in primary astrocytes. CONCLUSION: The findings in the present study provide the first evidence highlighting that Rg1 increases Cx43 protein levels through the upregulation of Cx43 mRNA and downregulation of Cx43 degradation, which may be attributed to the effect of Rg1 on the ubiquitin-proteasomal and autophagy-lysosomal degradation pathways of Cx43.


Subject(s)
Antidepressive Agents/pharmacology , Astrocytes/drug effects , Connexin 43/metabolism , Ginsenosides/pharmacology , Animals , Antidepressive Agents/isolation & purification , Cells, Cultured , Down-Regulation/drug effects , Ginsenosides/isolation & purification , Hippocampus/drug effects , Hippocampus/metabolism , Panax/chemistry , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Rats , Rats, Sprague-Dawley , Up-Regulation/drug effects
16.
Neurochem Int ; 148: 105110, 2021 09.
Article in English | MEDLINE | ID: mdl-34166749

ABSTRACT

As a subjective mood-related disorder with an unclear mechanism, depression has many problems in its diagnosis, which offers great space and value for research. At present, the methods commonly used to judge whether an animal model of depression has been established are mainly by biochemical index detection and behavioral tests, both of which inevitably cause stress in animals. Stress-induced hair growth inhibition has been widely reported in humans and animals. The simplicity of collecting hair samples and the observable state of hair growth has significant advantages; we tried to explore whether the parameters related to hair growth could be used as auxiliary indicators to evaluate a depression model in animals. The length and weight of the hair were calculated. Correlation analysis was conducted between the depressive behavioral results and the glucocorticoid levels in hair and serum. Learned helplessness combined with chronic restraint stress, and chronic unpredictable stress in the animal were detectable by superficial observation, weight ratio, and length of hair, and follicular development scores were significantly reduced compared to the control. The hair growth parameters of rats with depression, the rise in corticosterone, and the corresponding changes in behavioral parameters were significantly correlated. The neurotrophic factors, glucocorticoid-receptor (GR), brain-derived neurotrophic factor (BDNF), fibroblast growth factor 2 (FGF2), and fibroblast growth factor 5 (FGF5), are associated with depression and hair growth. Significant differences were detected between the stress and control groups, suggesting that the mechanism underlying the stress-phenomenon inhibition of hair growth may be related to growth factor mediation.


Subject(s)
Depression/psychology , Hair/growth & development , Stress, Psychological/psychology , Animals , Brain-Derived Neurotrophic Factor/metabolism , Fibroblast Growth Factor 2/metabolism , Fibroblast Growth Factor 5/metabolism , Glucocorticoids/metabolism , Hair/chemistry , Hair Follicle/growth & development , Helplessness, Learned , Male , Phenotype , Rats , Rats, Sprague-Dawley , Receptors, Glucocorticoid/metabolism , Restraint, Physical
17.
Int J Gen Med ; 14: 9163-9172, 2021.
Article in English | MEDLINE | ID: mdl-34880655

ABSTRACT

OBJECTIVE: To analyze the correlation between site rs962917 of the MYO9B gene and inflammatory bowel disease (IBD) in the Guangxi Zhuang nationality population. METHODS: The intestinal mucosa tissue of 153 IBD subjects (Han and Zhuang patients only) in the Guangxi Zhuang autonomous region comprised the case group, and the intestinal mucosa tissue of 155 healthy subjects (Han and Zhuang patients only) in the same region represented the control group. Deoxyribonucleic acid was extracted from the intestinal mucosa tissue of each experimental group, and the MYO9B gene-target fragment containing the single nucleotide polymorphism (SNP) site rs962917 was designed. Finally, polymerase chain reaction products were obtained by amplification, analyzed, and compared using the sequencing results. RESULTS: The results indicated that the genotype frequency of the MYO9B SNP site rs962917 between Crohn's disease (CD) and control groups of Zhuang and Han participants differed significantly (P < 0.05). Furthermore, the genotype frequency of MYO9B site rs962917 differed significantly between the Zhuang and Han population groups (P < 0.05). CONCLUSION: Site rs962917 of the MYO9B gene is related to CD susceptibility and incidence among the Guangxi Zhuang population.

18.
Cancer Res ; 81(11): 3079-3091, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33504557

ABSTRACT

p53 is a transcription factor that plays a central role in guarding the genomic stability of cells through cell-cycle arrest or induction of apoptosis. However, the effects of p53 in antitumor immunity are poorly understood. To investigate the role of p53 in controlling tumor-immune cell cross-talk, we studied murine syngeneic models treated with HDM201, a potent and selective second-generation MDM2 inhibitor. In response to HDM201 treatment, the percentage of dendritic cells increased, including the CD103+ antigen cross-presenting subset. Furthermore, HDM201 increased the percentage of Tbet+Eomes+ CD8+ T cells and the CD8+/Treg ratio within the tumor. These immunophenotypic changes were eliminated with the knockout of p53 in tumor cells. Enhanced expression of CD80 on tumor cells was observed in vitro and in vivo, which coincided with T-cell-mediated tumor cell killing. Combining HDM201 with PD-1 or PD-L1 blockade increased the number of complete tumor regressions. Responding mice developed durable, antigen-specific memory T cells and rejected subsequent tumor implantation. Importantly, antitumor activity of HDM201 in combination with PD-1/PD-L1 blockade was abrogated in p53-mutated and knockout syngeneic tumor models, indicating the effect of HDM201 on the tumor is required for triggering antitumor immunity. Taken together, these results demonstrate that MDM2 inhibition triggers adaptive immunity, which is further enhanced by blockade of PD-1/PD-L1 pathway, thereby providing a rationale for combining MDM2 inhibitors and checkpoint blocking antibodies in patients with wild-type p53 tumors. SIGNIFICANCE: This study provides a mechanistic rationale for combining checkpoint blockade immunotherapy with MDM2 inhibitors in patients with wild-type p53 tumors.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Colonic Neoplasms/drug therapy , Gene Expression Regulation, Neoplastic , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Stromal Cells/immunology , Tumor Microenvironment/immunology , Tumor Suppressor Protein p53/antagonists & inhibitors , Animals , Apoptosis , Cell Proliferation , Colonic Neoplasms/immunology , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Drug Therapy, Combination , Female , Humans , Imidazoles/pharmacology , Immune Checkpoint Inhibitors/pharmacology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Nude , Pyrimidines/pharmacology , Pyrroles/pharmacology , Stromal Cells/drug effects , Tumor Cells, Cultured , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays
19.
Clin Cancer Res ; 27(7): 2061-2073, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33355204

ABSTRACT

PURPOSE: Targeting RAF for antitumor therapy in RAS-mutant tumors holds promise. Herein, we describe in detail novel properties of the type II RAF inhibitor, LXH254. EXPERIMENTAL DESIGN: LXH254 was profiled in biochemical, in vitro, and in vivo assays, including examining the activities of the drug in a large panel of cancer-derived cell lines and a comprehensive set of in vivo models. In addition, activity of LXH254 was assessed in cells where different sets of RAF paralogs were ablated, or that expressed kinase-impaired and dimer-deficient variants of ARAF. RESULTS: We describe an unexpected paralog selectivity of LXH254, which is able to potently inhibit BRAF and CRAF, but has less activity against ARAF. LXH254 was active in models harboring BRAF alterations, including atypical BRAF alterations coexpressed with mutant K/NRAS, and NRAS mutants, but had only modest activity in KRAS mutants. In RAS-mutant lines, loss of ARAF, but not BRAF or CRAF, sensitized cells to LXH254. ARAF-mediated resistance to LXH254 required both kinase function and dimerization. Higher concentrations of LXH254 were required to inhibit signaling in RAS-mutant cells expressing only ARAF relative to BRAF or CRAF. Moreover, specifically in cells expressing only ARAF, LXH254 caused paradoxical activation of MAPK signaling in a manner similar to dabrafenib. Finally, in vivo, LXH254 drove complete regressions of isogenic variants of RAS-mutant cells lacking ARAF expression, while parental lines were only modestly sensitive. CONCLUSIONS: LXH254 is a novel RAF inhibitor, which is able to inhibit dimerized BRAF and CRAF, as well as monomeric BRAF, while largely sparing ARAF.


Subject(s)
MAP Kinase Signaling System/physiology , Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins c-raf/antagonists & inhibitors , Animals , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , HCT116 Cells , Humans , Mice , Mutation , Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Protein Multimerization , Proto-Oncogene Proteins B-raf/chemistry , Proto-Oncogene Proteins c-raf/chemistry , Proto-Oncogene Proteins p21(ras)/genetics
20.
Sci Rep ; 11(1): 14841, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34290299

ABSTRACT

High-grade serous ovarian cancers (HGSOC) represent the most common subtype of ovarian malignancies. Due to the frequency of late-stage diagnosis and high rates of recurrence following standard of care treatments, novel therapies are needed to promote durable responses. We investigated the anti-tumor activity of CD3 T cell engaging bispecific antibodies (TCBs) directed against the PAX8 lineage-driven HGSOC tumor antigen LYPD1 and demonstrated that anti-LYPD1 TCBs induce T cell activation and promote in vivo tumor growth inhibition in LYPD1-expressing HGSOC. To selectively target LYPD1-expressing tumor cells with high expression while sparing cells with low expression, we coupled bivalent low-affinity anti-LYPD1 antigen-binding fragments (Fabs) with the anti-CD3 scFv. In contrast to the monovalent anti-LYPD1 high-affinity TCB (VHP354), the bivalent low-affinity anti-LYPD1 TCB (QZC131) demonstrated antigen density-dependent selectivity and showed tolerability in cynomolgus monkeys at the maximum dose tested of 3 mg/kg. Collectively, these data demonstrate that bivalent TCBs directed against LYPD1 have compelling efficacy and safety profiles to support its use as a treatment for high-grade serous ovarian cancers.


Subject(s)
Antibodies, Bispecific/therapeutic use , Immunotherapy/methods , Ovarian Neoplasms/pathology , Ovarian Neoplasms/therapy , PAX8 Transcription Factor/immunology , T-Lymphocytes/immunology , Tumor Suppressor Proteins/immunology , Animals , CD3 Complex/immunology , Female , GPI-Linked Proteins/immunology , Macaca fascicularis , Mice , Neoplasm Grading , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL