ABSTRACT
All-solid-state Z-Scheme photocatalysts have attracted significant attention due to their great potential for solar fuel production. However, delicately coupling two individual semiconductors with a charge shuttle by a material strategy remains a challenge. Herein, we demonstrate a new protocol of natural Z-Scheme heterostructures by strategically engineering the component and interfacial structure of red mud bauxite waste. Advanced characterizations elucidated that the hydrogen-induced formation of metallic Fe enabled the effective Z-Scheme electron transfer from γ-Fe2 O3 to TiO2 , leading to the significantly boosted spatial separation of photo-generated carriers for overall water splitting. To the best of our knowledge, it is the first Z-Scheme heterojunction based on natural minerals for solar fuel production. Thus our work provides a new avenue toward the utilization of natural minerals for advanced catalysis applications.
ABSTRACT
Stable lithiophilic sites in 3D current collectors are the key to guiding the uniform Li deposition and thus suppressing the Li dendrite growth, but such sites created by the conventional surface decoration method are easy to be consumed along with cycling. In this work, carbon fiber (CF)-based 3D porous networks with built-in lithiophilic sites that are stable upon cycling are demonstrated. Such heterostructured architecture is constructed by the introduction of zeolitic imidazolate framework-8-based nanoparticles during the formation of the 3D fibrous carbonaceous network and the following annealing. The introduced Zn species are found to be re-distributed along the entire individual CF in the 3D network, and function as lithiophilic sites that favor the homogenous lithium nucleation and growth. The 3D network also presents a multi-scale porous structure that improves the space utilization of the host. The corresponding symmetric cells adopting such 3D anode demonstrate excellent cycling performance, especially at a high rate (300 cycles at 10 mA cm-2 with a capacity of 5 mA h cm-2 ). A full cell with LiFePO4 cathode shows a capacity retention of 98% after cycling at 1C for 300 cycles. This method provides an effective design strategy for 3D hosting electrodes in dendrite-free alkali metal anode applications.
ABSTRACT
This study explores a bottom-up approach toward negatively curved carbon allotropes from octabenzo[8]circulene, a negatively curved nanographene. Stepwise chemical reduction reactions of octabenzo[8]circulene with alkali metals lead to a unique highly reduced hydrocarbon pentaanion, which is revealed by X-ray crystallography suggesting a local view for the reduction and alkali metal intercalation processes of negatively curved carbon allotropes. Polymerization of the tetrabromo derivative of octabenzo[8]circulene by the nickel-mediated Yamamoto coupling reaction results in a new type of porous carbon-rich material, which consists of a covalent network of negatively curved nanographenes. It has a specific surface area of 732 m2 g-1 and functions as anode material for lithium ion batteries exhibiting a maximum capacity of 830 mAh·g-1 at a current density of 100 mA·g-1. These results indicate that this covalent network presents the key structural and functional features of negatively curved carbon allotropes.
ABSTRACT
Photoelectrochemical (PEC) water splitting serves as one of the promising approaches for producing clean and renewable energy, and their solar-hydrogen energy conversion efficiency depends on the interfacial charge separation and carrier mobility. Herein, we report an effective strategy to promote the PEC performance by fabricating a WO3 photoanode rich in oxygen vacancies (Ov) modified by NiFe-based layered double hydroxide (LDH). When WO3-Ov/NiFe-LDH is used as a photoanode, the maximum photocurrent density at 1.8 V versus RHE has been significantly enhanced to 2.58 mA·cm-2, which is 4.3 times higher than that of WO3. In addition, analogues were studied in controlled experiments without Ov, which further demonstrated that the synergistic effect of NiFe-LDH and Ov resulted in increased carrier concentration and driving force. According to electrical impedance spectroscopy, X-ray photoelectron spectroscopy, and Mott-Schottky analysis, the built-in electronic field in WO3 homojunction, along with the accelerated hole capture by the NiFe-LDH cocatalyst contributes to the improved charge separation and transport in the WO3-Ov/NiFe-LDH electrode. This work proposes an efficient and valuable strategy for designing the structure of WO3-based photoelectrodes.
ABSTRACT
Co-catalyst loading provides an effective way to enhance the efficiency of photocatalysts for solar hydrogen production. From a sustainability point of view, it has immense scientific and technological values to explore more efficient co-catalytic systems by using multi-cocatalysts, because of potential synergetic effects between different components. Herein, the feasibility of using Ti3C2 MXene nanoparticles and Pt nanoclusters as dual co-catalysts to enhance the photoactivity of g-C3N4 for H2 production was investigated. Due to the improved electrical conductivity and increased reactive sites for photoreduction reactions, Ti3C2 and Pt co-modified photocatalysts exhibited a high photocatalytic hydrogen production activity of 5.1 mmol h-1 g-1. Compared to g-C3N4/Ti3C2 and g-C3N4/Pt, the 3- and 5-fold increased photoactivity demonstrated great potential of Ti3C2 MXene nanoparticles to construct high-performance photocatalysts. The synergetic effects between Ti3C2 and Pt were fundamentally investigated, indicating that the specific transfer of electrons not only contributed to the inhibited recombination of charge carriers but also resulted in good stability of heterostructured photocatalysts. Our results have demonstrated an approach worthy for the design and fabrication of high-efficiency heterostructures with superior photoactivity for hydrogen energy production.
ABSTRACT
Homostructure construction has been demonstrated to be an effective way for boosting the photocatalytic activity of polymeric carbon nitride. However, the contribution of the intrinsic activity of molecular fragments in the catalytic performance of homostructured carbon nitride is yet to be explored. In this paper, a facile hydrogen-assisted strategy was used to synthesize triazine/heptazine intermolecular homojunctions (g-C3N4(MU-H)) with an ultrathin and defective structure, via the co-pyrolysis of melamine and urea precursors. Experimental characterizations and theoretical calculations revealed the copolymerization of triazine- and heptazine-based carbon nitride generated a homostructured interface with a large build-in electric field for efficient separation of photogenerated carriers. Due to the synergestic effect between the homostructured interface and nitrogen vacancies, as-synethesized g-C3N4(MU-H) exhibited an outstanding activity for photocatalytic CO2 reduction, with a CO yield rate of 14.45 µmol h-1, which was 23.5 and 3.64 times higher than those of bulk g-C3N4 and g-C3N4(M-H) synthesized from a single precursor, respectively. This study provides a new avenue for optimizing the charge separation efficiency of CO2 photoreduction catalysts by constructing intramolecular homojunction.
ABSTRACT
The characteristics and the functions of Maillard reaction products (MRPs) produced by polydextrose (PD), a new type of prebiotic, and α-lactalbumin (α-LA) were valued. PD and α-LA were incubated at 60 °C and 79% relative humidity for up to 72 h to prepare MRPs. The results showed that the absorbance and fluorescence intensity of heated α-LA-PD increased, and the amount of free amino groups reduced as the reaction progressed, which confirmed the formation of different stages of MRPs. Electrophoresis revealed an increase in molecular mass and the degree of covalent cross-linking. The secondary structure of MRPs experienced no significant changes with the measurement of circular dichroism (CD), while the tertiary structure gradually unfolded, exposing hydrophobic groups. Furthermore, a significant increase was detected in the radical-scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the ferric reducing/antioxidant power (FRAP) of MRPs. The findings offer a foundation for understanding the structural and functional features of MRPs in formula milk powder.
ABSTRACT
Multimodal sentiment analysis is an important area of artificial intelligence. It integrates multiple modalities such as text, audio, video and image into a compact multimodal representation and obtains sentiment information from them. In this paper, we improve two modules, i.e., feature extraction and feature fusion, to enhance multimodal sentiment analysis and finally propose an attention-based two-layer bidirectional GRU (AB-GRU, gated recurrent unit) multimodal sentiment analysis method. For the feature extraction module, we use a two-layer bidirectional GRU network and connect two layers of attention mechanisms to enhance the extraction of important information. The feature fusion part uses low-rank multimodal fusion, which can reduce the multimodal data dimensionality and improve the computational rate and accuracy. The experimental results demonstrate that the AB-GRU model can achieve 80.9% accuracy on the CMU-MOSI dataset, which exceeds the same model type by at least 2.5%. The AB-GRU model also possesses a strong generalization capability and solid robustness.
ABSTRACT
Cu4SnP10, a promising phosphide material for sodium-ion battery anode applications, suffers from poor cycling stability, and its mechanism remains unclear. This is largely due to the amorphous nature of the active materials upon cycling and its possible structural change at a small length scale (e.g., nanometers), making it difficult to access the phase/structural evolution of the electrode. In the present work, we show that the phase/structural change of the Cu4SnP10 nanowire electrode can be systematically investigated using a comprehensive set of ex situ transmission electron microscopy-based techniques, which are ideal for decay mechanism analysis of electrode materials of amorphous nature and with nanoscale structural evolution. The compositional elements of Cu4SnP10 nanowires are found to be spatially redistributed at a nanometer scale upon the initial sodiation, and this is partially reversible in the following desodiation process. Damage accumulates until a critical size of phase separation/segregation is reached, when the active material loss takes place, leading to fast deterioration of the entire Cu4SnP10 nanowire structure and thus its electrochemical performance. The phase segregation driven-active material loss is found to dominate the cycle-dependent capacity decay of the Cu4SnP10 nanowire electrode.
ABSTRACT
In order to overcome the defect that sparrow search algorithm converges very fast but is easy to fall into the trap of local optimization, based on the original mechanism of sparrow algorithm, this paper proposes game predatory mechanism and suicide mechanism, which makes sparrow algorithm more in line with its biological characteristics and enhances the ability of the algorithm to get rid of the attraction of local optimization while retaining the advantages of fast convergence speed. By initializing the population with the good point set strategy, the quality of the initial population is guaranteed and the diversity of the population is enhanced. In view of the current situation that the diversity index evaluation does not consider the invalid search caused by individuals beyond the boundary in the search process, an index to measure the invalid search beyond the boundary in the search process is proposed, and the measurement of diversity index is further improved to make it more accurate. The improved algorithm is tested on six basic functions and CEC2017 test function to verify its effectiveness. Finally, the improved algorithm is applied to the three-dimensional path planning of UAV with threat area. The results show that the improved algorithm has stronger optimization performance, has strong competitiveness compared with other algorithms, and can quickly plan the effective and stable path of UAV, which improves an effective method for the application in this field and other fields.
Subject(s)
Algorithms , Suicide , Accidental Falls , Computer Simulation , Humans , Research DesignABSTRACT
Guided bone regeneration (GBR) therapy demonstrates a prominent curative effect on the management of craniomaxillofacial (CMF) bone defects. In this study, a GBR membrane consisting of a microporous layer and a struvite-nanowire-doped fibrous layer is constructed via non-solvent induced phase separation, followed by an electrospinning procedure to treat critical-sized calvarial defects. The microporous layer shows selective permeability for excluding the rapid-growing non-osteogenic tissues and potential wound stabilization. The nanowire-like struvite is synthesized as the deliverable therapeutic agent within the fibrous layer to facilitate bone regeneration. Such a membrane displays a well-developed heterogeneous architecture, satisfactory mechanical performance, and long-lasting characteristics. The in vitro biological evaluation reveals that apart from being a strong barrier, the bilayer struvite-laden membrane can actively promote cellular adhesion, proliferation, and osteogenic differentiation. Consequently, the multifunctional struvite-doped membranes are applied to treat 5 mm-sized bilateral calvarial defects in rats, resulting in overall improved healing outcomes compared with the untreated or the struvite-free membrane-treated group, which is characterized by enhanced osteogenesis and significantly increased new bone formation. The encouraging preclinical results reveal the great potential of the bilayer struvite-doped membrane as a clinical GBR device for augmenting large-area CMF bone reconstruction.
Subject(s)
Nanowires , Osteogenesis , Animals , Biocompatible Materials/pharmacology , Bone Regeneration , Membranes, Artificial , Rats , Struvite/pharmacologyABSTRACT
Guided bone regeneration (GBR) technique using a barrier membrane holds great potential to allow the single-stage reconstruction of critical-sized bone defects. Here, bioactive nanoneedle-like magnesium oxychloride ceramics (MOCs) are synthesized and recruited as an osteoinductive factor within a polycaprolactone-gelatin A (PCL-GelA) membranous matrix to generate a periosteum-mimicking biphasic GBR membrane (PCL-GelA/MOC) to accelerate calvarial defect repair. The PCL-GelA/MOC membrane acts as a shield for defect areas and a reservoir of osteoinductive molecules, which provides a favorable microenvironment for supporting cell proliferation, infiltration, and differentiation. This membrane leads to accelerated osteogenesis and angiogenesis, effectual defect bridging, and significantly enhanced bone regeneration when applied to a 5 mm sized rat calvarial defect. This makes this innovative and multifunctional GBR membrane a suitable candidate for clinical applications with promising curative efficacy.
Subject(s)
Bone Regeneration , Magnesium , Animals , Ceramics/pharmacology , Osteogenesis , Periosteum , RatsABSTRACT
Glia scar is a hallmark in late-stage of brain stroke disease, which hinder axonal regeneration and neuronal repair. Mitofusin2 (Mfn2) is a newly found cellular proliferation inhibitor. This study is to elucidate the role of Mfn2 in reactive astrocytes induced by oxygen-glucose deprivation/reoxygenation(OGD/R) model in vitro. Up-expression in EdU staining and protein level of GFAP, PCNA and CyclinD1, demonstrates the distinct activation and proliferation of astrocytes after the stimulation of OGD/R. Meanwhile, Mfn2 was proved to be down-regulated both in gene and protein levels. Pretreatment of cells with adenoviral vector encoding Mfn2 gene increased Mfn2 expression and subsequently attenuated OGD-induced astrocyte proliferation. Down-regulation of Ras-p-Raf1-p-ERK1/2 pathway and cell cycle arrest were found to be relevant. Together, these results suggested that overexpression of Mfn2 can effectively inhibit the proliferation of reactive astrogliosis, which might contribute to a promising therapeutic intervention in cerebral ischemic injury.
Subject(s)
Astrocytes/metabolism , Cell Proliferation/physiology , Glucose/metabolism , Membrane Proteins/metabolism , Mitochondrial Proteins/metabolism , Oxygen/metabolism , Animals , Animals, Newborn , Cell Hypoxia/physiology , Cell Survival/physiology , Cells, Cultured , GTP Phosphohydrolases , Membrane Proteins/genetics , Mitochondrial Proteins/genetics , Rats, Sprague-DawleyABSTRACT
Facile and direct synthesis of porous nanorod-type graphitic carbon nitride/CuO composite (CuO-g-C3 N4 ) has been achieved by using a Cu-melamine supramolecular framework as a precursor. The CuO-g-C3 N4 nanocomposite demonstrated improved visible-light-driven photocatalytic activities. The results indicate that metal-melamine supramolecular frameworks can be promising precursors for the preparation of efficient g-C3 N4 nanocomposite photocatalysts.