Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
Add more filters

Country/Region as subject
Publication year range
1.
RNA ; 28(3): 390-399, 2022 03.
Article in English | MEDLINE | ID: mdl-34916333

ABSTRACT

Characterization of RNA-protein interaction is fundamental for understanding the metabolism and function of RNA. UV crosslinking has been widely used to map the targets of RNA-binding proteins, but is limited by low efficiency, requirement for zero-distance contact, and biases for single-stranded RNA structure and certain residues of RNA and protein. Here, we report the development of an RNA-protein crosslinker (AMT-NHS) composed of a psoralen derivative and an N-hydroxysuccinimide ester group, which react with RNA bases and primary amines of protein, respectively. We show that AMT-NHS can penetrate into living yeast cells and crosslink Cbf5 to H/ACA snoRNAs with high specificity. The crosslinker induced different crosslinking patterns than UV and targeted both single- and double-stranded regions of RNA. The crosslinker provides a new tool to capture diverse RNA-protein interactions in cells.


Subject(s)
Cross-Linking Reagents/chemical synthesis , RNA, Small Nucleolar/metabolism , RNA-Binding Proteins/metabolism , Ficusin/chemistry , Protein Binding , RNA, Small Nucleolar/chemistry , RNA-Binding Proteins/chemistry , Saccharomyces cerevisiae
2.
J Biol Chem ; 298(8): 102258, 2022 08.
Article in English | MEDLINE | ID: mdl-35839853

ABSTRACT

Bacteria adapt to their constantly changing environments largely by transcriptional regulation through the activities of various transcription factors (TFs). However, techniques that monitor TF-promoter interactions in situ in living bacteria are lacking. Herein, we developed a whole-cell TF-promoter binding assay based on the intermolecular FRET between an unnatural amino acid, l-(7-hydroxycoumarin-4-yl) ethylglycine, which labels TFs with bright fluorescence through genetic encoding (donor fluorophore) and the live cell nucleic acid stain SYTO 9 (acceptor fluorophore). We show that this new FRET pair monitors the intricate TF-promoter interactions elicited by various types of signal transduction systems, including one-component (CueR) and two-component systems (BasSR and PhoPQ), in bacteria with high specificity and sensitivity. We demonstrate that robust CouA incorporation and FRET occurrence is achieved in all these regulatory systems based on either the crystal structures of TFs or their simulated structures, if 3D structures of the TFs were unavailable. Furthermore, using CueR and PhoPQ systems as models, we demonstrate that the whole-cell FRET assay is applicable for the identification and validation of complex regulatory circuit and novel modulators of regulatory systems of interest. Finally, we show that the FRET system is applicable for single-cell analysis and monitoring TF activities in Escherichia coli colonizing a Caenorhabditis elegans host. In conclusion, we established a tractable and sensitive TF-promoter binding assay, which not only complements currently available approaches for DNA-protein interactions but also provides novel opportunities for functional annotation of bacterial signal transduction systems and studies of the bacteria-host interface.


Subject(s)
Fluorescence Resonance Energy Transfer , Signal Transduction , Transcription Factors , Animals , Caenorhabditis elegans/microbiology , Escherichia coli/genetics , Escherichia coli/metabolism , Fluorescence Resonance Energy Transfer/methods , Host Microbial Interactions/physiology , Organic Chemicals/metabolism , Protein Binding , Single-Cell Analysis/methods , Transcription Factors/genetics , Transcription Factors/metabolism
3.
J Am Chem Soc ; 144(50): 22831-22837, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36417425

ABSTRACT

Phosphine ligands are the most important class of ligands for cross-coupling reactions due to their unique electronic and steric properties. However, metalloproteins generally rely on nitrogen, sulfur, or oxygen ligands. Here, we report the genetic incorporation of P3BF, which contains a biocompatible borane-protected phosphine, into proteins. This step is followed by a straightforward one-pot strategy to perform deboronation and palladium coordination in aqueous and aerobic conditions. The genetically encoded phosphine ligand P3BF should significantly expand our ability to design functional metalloproteins.


Subject(s)
Metalloproteins , Phosphines , Metalloproteins/genetics , Metalloproteins/metabolism , Ligands , Palladium
4.
J Am Chem Soc ; 143(2): 617-622, 2021 01 20.
Article in English | MEDLINE | ID: mdl-33410683

ABSTRACT

Devising artificial photoenzymes for abiological bond-forming reactions is of high synthetic value but also a tremendous challenge. Disclosed herein is the first photobiocatalytic cross-coupling of aryl halides enabled by a designer artificial dehalogenase, which features a genetically encoded benzophenone chromophore and site-specifically modified synthetic NiII(bpy) cofactor with tunable proximity to streamline the dual catalysis. Transient absorption studies suggest the likelihood of energy transfer activation in the elementary organometallic event. This design strategy is viable to significantly expand the catalytic repertoire of artificial photoenzymes for useful organic transformations.


Subject(s)
Genetic Engineering , Hydrocarbons, Halogenated/metabolism , Hydrolases/metabolism , Photosensitizing Agents/metabolism , Biocatalysis , Hydrocarbons, Halogenated/chemistry , Hydrolases/chemistry , Models, Molecular , Molecular Structure , Photosensitizing Agents/chemistry
5.
J Am Chem Soc ; 143(40): 16320-16325, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34596399

ABSTRACT

Due to the lack of genetically encoded probes for fluorine-19 nuclear magnetic resonance spectroscopy (19F NMR), its utility for probing eukaryotic membrane protein dynamics is limited. Here we report an efficient method for the genetic incorporation of an unnatural amino acid (UAA), 3'-trifluoromenthyl-phenylalanine (mtfF), into cannabinoid receptor 1 (CB1) in the Baculovirus Expression System. The probe can be inserted at any environmentally sensitive site, while causing minimal structural perturbation to the target protein. Using 19F NMR and X-ray crystallography methods, we discovered that the allosteric modulator Org27569 and agonists synergistically stabilize a previously unrecognized pre-active state. An allosteric modulation model is proposed to explain Org27569's distinct behavior. We demonstrate that our site-specific 19F NMR labeling method is a powerful tool in decoding the mechanism of GPCR allosteric modulation. This new method should be broadly applicable for uncovering conformational states for many important eukaryotic membrane proteins.


Subject(s)
Indoles , Piperidines
6.
Chembiochem ; 22(20): 2918-2924, 2021 10 13.
Article in English | MEDLINE | ID: mdl-33949764

ABSTRACT

Selenocysteine (Sec), a rare naturally proteinogenic amino acid, is the major form of essential trace element selenium in living organisms. Selenoproteins, with one or several Sec residues, are found in all three domains of life. Many selenoproteins play a role in critical cellular functions such as maintaining cell redox homeostasis. Sec is usually encoded by an in-frame stop codon UGA in the selenoprotein mRNA, and its incorporation in vivo is highly species-dependent and requires the reprogramming of translation. This mechanistic complexity of selenoprotein synthesis poses a big challenge to produce synthetic selenoproteins. To understand the functions of natural as well as engineered selenoproteins, many strategies have recently been developed to overcome the inherent barrier for recombinant selenoprotein production. In this review, we will describe the progress in selenoprotein production methodology.


Subject(s)
Genetic Engineering , Selenocysteine/genetics , Selenoproteins/genetics , Homeostasis , Humans , Oxidation-Reduction , Selenocysteine/metabolism , Selenoproteins/biosynthesis , Selenoproteins/metabolism
7.
Chembiochem ; 22(15): 2535-2539, 2021 08 03.
Article in English | MEDLINE | ID: mdl-32789938

ABSTRACT

Tyrosine plays important roles in many enzymes. To facilitate enzyme design, mechanistic studies and minimize structural perturbation in the active site, here we report the genetic incorporation of a novel unnatural amino acid selenotyrosine (SeHF), which has single-atom replacement in comparison to tyrosine. The arPTE-(Agrobacterium radiobacter Phosphotriesterase) Tyr309SeHF mutant exhibits a significant 12-fold increase in kcat and 3.2-fold enhancement in kcat /KM at pH 7.0. Molecular dynamics simulations show that the SeHF309 mutation results in a conformational switch which opens up the product release pocket and increases the product release rate, thereby elevating the overall enzyme activity. Significant improvement of the catalytic efficiency at neutral pH by single unnatural amino acid (UAA) mutation broadens the application of this enzyme, and provides valuable insights to the mechanism. Our method represents a new approach for designing enzymes with enhanced activity.


Subject(s)
Phosphoric Triester Hydrolases , Agrobacterium tumefaciens
8.
Appl Opt ; 60(15): 4455-4461, 2021 May 20.
Article in English | MEDLINE | ID: mdl-34143138

ABSTRACT

In this paper, a novel photonic crystal fiber (PCF) based on tellurite glass with high birefringence and high nonlinearity is designed. Six small air holes arranged nearly rectangularly are added in the fiber core to form the near-elliptic core. By using the finite-element method with the help of COMSOL Multiphysics software, we investigate and simulate the birefringence, effective mode area, nonlinear coefficient, and the dispersion characteristics. Simulation results show that by optimizing the structure parameters of the core, at the wavelength of 1.55 µm, the birefringence is up to ${5.05} \times {{1}}{{{0}}^{- 2}}$; the nonlinear coefficient can reach a maximum of ${{1896}}\;{{\rm{W}}^{- 1}}\;{\rm{k}}{{\rm{m}}^{- 1}}$; moreover, the zero dispersion points can be obtained around the wavelength 1.55 µm. The proposed structure is easy to fabricate. The advantage of the proposed PCF has potential applications in polarization control, communication systems, and supercontinuum generation.

9.
Angew Chem Int Ed Engl ; 60(20): 11143-11147, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33644946

ABSTRACT

While two-dimensional infrared (2D-IR) spectroscopy is uniquely suitable for monitoring femtosecond (fs) to picosecond (ps) water dynamics around static protein structures, its utility for probing enzyme active-site dynamics is limited due to the lack of site-specific 2D-IR probes. We demonstrate the genetic incorporation of a novel 2D-IR probe, m-azido-L-tyrosine (N3Y) in the active-site of DddK, an iron-dependent enzyme that catalyzes the conversion of dimethylsulfoniopropionate to dimethylsulphide. Our results show that both the oxidation of active-site iron to FeIII , and the addition of denaturation reagents, result in significant decrease in enzyme activity and active-site water motion confinement. As tyrosine residues play important roles, including as general acids and bases, and electron transfer agents in many key enzymes, the genetically encoded 2D-IR probe N3Y should be broadly applicable to investigate how the enzyme active-site motions at the fs-ps time scale direct reaction pathways to facilitating specific chemical reactions.


Subject(s)
Azides/metabolism , Carbon-Sulfur Lyases/metabolism , Ferric Compounds/metabolism , Tyrosine/analogs & derivatives , Azides/chemistry , Carbon-Sulfur Lyases/chemistry , Catalytic Domain , Ferric Compounds/chemistry , Molecular Structure , Spectrophotometry, Infrared , Tyrosine/chemistry , Tyrosine/metabolism
10.
J Biol Chem ; 294(21): 8653-8663, 2019 05 24.
Article in English | MEDLINE | ID: mdl-30979725

ABSTRACT

Protein-tyrosine phosphatase nonreceptor type 22 (PTPN22) is a lymphoid-specific tyrosine phosphatase (LYP), and mutations in the PTPN22 gene are highly correlated with a spectrum of autoimmune diseases. However, compounds and mechanisms that specifically inhibit LYP enzymes to address therapeutic needs to manage these diseases remain to be discovered. Here, we conducted a similarity search of a commercial database for PTPN22 inhibitors and identified several LYP inhibitor scaffolds, which helped identify one highly active inhibitor, NC1. Using noncompetitive inhibition curve and phosphatase assays, we determined NC1's inhibition mode toward PTPN22 and its selectivity toward a panel of phosphatases. We found that NC1 is a noncompetitive LYP inhibitor and observed that it exhibits selectivity against other protein phosphatases and effectively inhibits LYP activity in lymphoid T cells and modulates T-cell receptor signaling. Results from site-directed mutagenesis, fragment-centric topographic mapping, and molecular dynamics simulation experiments suggested that NC1, unlike other known LYP inhibitors, concurrently binds to a "WPD" pocket and a second pocket surrounded by an LYP-specific insert, which contributes to its selectivity against other phosphatases. Moreover, using a newly developed method to incorporate the unnatural amino acid 2-fluorine-tyrosine and 19F NMR spectroscopy, we provide direct evidence that NC1 allosterically regulates LYP activity by restricting WPD-loop movement. In conclusion, our approach has identified a new allosteric binding site in LYP useful for selective LYP inhibitor development; we propose that the 19F NMR probe developed here may also be useful for characterizing allosteric inhibitors of other tyrosine phosphatases.


Subject(s)
Enzyme Inhibitors/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 22/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 22/chemistry , Allosteric Regulation/drug effects , Enzyme Inhibitors/pharmacology , Humans , Jurkat Cells , Protein Tyrosine Phosphatase, Non-Receptor Type 22/metabolism , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/metabolism , Signal Transduction/drug effects , Structure-Activity Relationship , T-Lymphocytes/enzymology
11.
Chembiochem ; 21(11): 1593-1596, 2020 06 02.
Article in English | MEDLINE | ID: mdl-31944493

ABSTRACT

Human indoleamine 2,3-dioxygenase 1 (IDO1) has become an increasingly valuable target for cancer immunotherapy because it promotes immune escape by tumor cells. To date, the function of post-translational modifications (PTMs) on IDO1 has not been fully elucidated. Among the many forms of PTMs, it has been identified that three tyrosine sites (Y15, Y345, and Y353) on IDO1 are nitrated and play important roles in catalytic function. Herein, by genetically encoding 3-nitro-l-tyrosine into the tyrosine nitration sites of IDO1, the homogeneous and native nitrated IDO1 have been obtained. It is found that the nitration of different tyrosine sites has different effects on the IDO1 structure and enzyme activity. Nitration at position Y15 has a negligible effect, but nitration at Y345 or Y353 decreases the enzyme activity, especially Y353. Furthermore, these results demonstrate that the regulation of the catalytic function caused by tyrosine nitration is related to perturbation of the protein structure and heme-binding disruption.


Subject(s)
Indoleamine-Pyrrole 2,3,-Dioxygenase/chemistry , Nitrates/chemistry , Protein Processing, Post-Translational , Tryptophan/chemistry , Tyrosine/analogs & derivatives , Amino Acid Sequence , Binding Sites , Biocatalysis , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Kinetics , Models, Molecular , Nitrates/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Structure-Activity Relationship , Substrate Specificity , Tryptophan/metabolism , Tyrosine/chemistry , Tyrosine/metabolism
12.
Photosynth Res ; 143(2): 221-231, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31317382

ABSTRACT

Visible light-driven redox reactions have been widely adopted for the production of chemicals to combat energy shortage and global warming. Key elements of such a reaction system include a photosensitizer, a catalyst, and an electron source. In this review, we introduce the small molecules and nanoparticles that are widely used as photosensitizers, as well as the development of a photosensitizer protein that is based on the expansion of genetic code, with a fluorescent protein that is used as a scaffold. Visible light-driven enzymes using proteins as photosensitizers or as catalysts such as carbon monoxide dehydrogenase (CODH), formic acid dehydrogenase (FDH), hydrogenase, nitrogenase, cytochrome P450 BM3, and alkane synthase are then described. CODH can be coupled with photosensitizing nanoparticles to reduce CO2 to CO, and hydrogenase can produce H2 using high-energy electrons produced from dye-sensitized nanoparticles. When water-soluble zinc porphyrin is coupled with FDH, visible light drives CO2 to produce formic acid. Nitrogenase can reduce N2 to NH3 using CdS nanoparticle as photosensitizer. Cytochrome P450 BM3 can be enhanced by a visible light-driven redox system and thus by hydroxylate lauric acid or fatty acids. CvFAP, an alkane synthase, can decarboxylate palmitic acid to pentadecane under blue light excitation. Moreover, we describe a genetically encoded photosensitive protein, which mimics the function of natural photosynthesis and catalyzes the conversion of CO2 to CO when covalently attached with a Ni-terpyridine complex.


Subject(s)
Biocatalysis/radiation effects , Chemistry Techniques, Synthetic , Light , Electron Transport/radiation effects , Oxidation-Reduction/radiation effects , Photosensitizing Agents/chemistry
13.
Acc Chem Res ; 52(3): 557-565, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30816694

ABSTRACT

Many artificial enzymes that catalyze redox reactions have important energy, environmental, and medical applications. Native metalloenzymes use a set of redox-active amino acids and cofactors as redox centers, with a potential range between -700 and +800 mV versus standard hydrogen electrode (SHE, all reduction potentials are versus SHE). The redox potentials and the orientation of redox centers in native metalloproteins are optimal for their redox chemistry. However, the limited number and potential range of native redox centers challenge the design and optimization of novel redox chemistry in metalloenzymes. Artificial metalloenzymes use non-native redox centers and could go far beyond the natural range of redox potentials for novel redox chemistry. In addition to designing protein monomers, strategies for increasing the electron transfer rate in self-assembled protein complexes and protein-electrode or -nanomaterial interfaces will be discussed. Redox reactions in proteins occur on redox active amino acid residues (Tyr, Trp, Met, Cys, etc.) and cofactors (iron sulfur clusters, flavin, heme, etc.). The redox potential of these redox centers cover a ∼1.5 V range and is optimized for their specific functions. Despite recent progress, tuning the redox potential for amino acid residues or cofactors remains challenging. Many redox-active unnatural amino acids (UAAs) can be incorporated into protein via genetic codon expansion. Their redox potentials extend the range of physiologically relevant potentials. Indeed, installing new redox cofactors with fined-tuned redox potentials is essential for designing novel redox enzymes. By combining UAA and redox cofactor incorporation, we harnessed light energy to reduce CO2 in a fluorescent protein, mimicking photosynthetic apparatus in nature. Manipulating the position and reduction potential of redox centers inside proteins is important for optimizing the electron transfer rate and the activity of artificial enzymes. Learning from the native electron transfer complex, protein-protein interactions can be enhanced by increasing the electrostatic interaction between proteins. An artificial oxidase showed close to native enzyme activity with optimized interaction with electron transfer partner and increased electron transfer efficiency. In addition to the de novo design of protein-protein interaction, protein self-assembly methods using scaffolds, such as proliferating cell nuclear antigen, to efficiently anchor enzymes and their redox partners. The self-assembly process enhances electron transfer efficiency and enzyme activity by bringing redox centers into close proximity of each other. In addition to protein self-assembly, protein-electrode or protein-nanomaterial self-assembly can also promote efficient electron transfer from inorganic materials to enzyme active sites. Such hybrid systems combine the efficiency of enzyme reactions and the robustness of electrodes or nanomaterials, often with advantageous catalytic activities. By combining these strategies, we can not only mimic some of nature's most fascinating reactions, such as photosynthesis and aerobic respiration, but also transcend nature toward environmental, energy, and health applications.


Subject(s)
Metalloproteins/chemistry , Catalysis , Coenzymes/chemistry , Electron Transport , Metalloproteins/genetics , Oxidation-Reduction , Photosynthesis , Protein Engineering
14.
Nat Chem Biol ; 14(9): 853-860, 2018 09.
Article in English | MEDLINE | ID: mdl-29942080

ABSTRACT

Cysteine dioxygenase (CDO) plays an essential role in sulfur metabolism by regulating homeostatic levels of cysteine. Human CDO contains a post-translationally generated Cys93-Tyr157 cross-linked cofactor. Here, we investigated this Cys-Tyr cross-linking by incorporating unnatural tyrosines in place of Tyr157 via a genetic method. The catalytically active variants were obtained with a thioether bond between Cys93 and the halogen-substituted Tyr157, and we determined the crystal structures of both wild-type and engineered CDO variants in the purely uncross-linked form and with a mature cofactor. Along with mass spectrometry and 19F NMR, these data indicated that the enzyme could catalyze oxidative C-F or C-Cl bond cleavage, resulting in a substantial conformational change of both Cys93 and Tyr157 during cofactor assembly. These findings provide insights into the mechanism of Cys-Tyr cofactor biogenesis and may aid the development of bioinspired aromatic carbon-halogen bond activation.


Subject(s)
Carbon/metabolism , Cysteine Dioxygenase/metabolism , Fluorine/metabolism , Protein Engineering , Biocatalysis , Carbon/chemistry , Crystallography, X-Ray , Cysteine Dioxygenase/analysis , Fluorine/chemistry , Humans , Models, Molecular
15.
Nat Chem Biol ; 14(9): 876-886, 2018 09.
Article in English | MEDLINE | ID: mdl-30120361

ABSTRACT

Signals from 800 G-protein-coupled receptors (GPCRs) to many SH3 domain-containing proteins (SH3-CPs) regulate important physiological functions. These GPCRs may share a common pathway by signaling to SH3-CPs via agonist-dependent arrestin recruitment rather than through direct interactions. In the present study, 19F-NMR and cellular studies revealed that downstream of GPCR activation engagement of the receptor-phospho-tail with arrestin allosterically regulates the specific conformational states and functional outcomes of remote ß-arrestin 1 proline regions (PRs). The observed NMR chemical shifts of arrestin PRs were consistent with the intrinsic efficacy and specificity of SH3 domain recruitment, which was controlled by defined propagation pathways. Moreover, in vitro reconstitution experiments and biophysical results showed that the receptor-arrestin complex promoted SRC kinase activity through an allosteric mechanism. Thus, allosteric regulation of the conformational states of ß-arrestin 1 PRs by GPCRs and the allosteric activation of downstream effectors by arrestin are two important mechanisms underlying GPCR-to-SH3-CP signaling.


Subject(s)
Allosteric Regulation , Arrestin/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , src Homology Domains , Cells, Cultured , HEK293 Cells , Humans
16.
Anal Chem ; 91(23): 14936-14942, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31670502

ABSTRACT

Förster resonance energy transfer (FRET) is a well-established method for studying macromolecular interactions and conformational changes within proteins. Such a method normally uses fluorescent proteins or chemical-labeling methods which are often only accessible to surface-exposed residues and risk-disturbing target protein structures. Here, we demonstrate that the genetic incorporation of a synthetic fluorescent amino acid, L-(7-hydroxycoumarin-4-yl) ethylglycine (Cou) and natural endogenous fluorophore Tryptophan (Trp) residues of a protein could serve as an efficient FRET pair to monitor protein interactions, using the signaling transducer ß-arrestin-1 as a model system. We used this technology to record the dynamic spectra in both binding and competition experiments of ß-arrestin-1, the contribution of each specific phosphate in ternary complex formation, in a rapid and efficient manner. The determined Kd value for the association between the active arrestin and Fab30 is 0.68 µM in the three-component interaction system. Moreover, we were able to determine the contributions of the site 3 phospho-site and the site 6 phospho-site binding, each contributing to the high affinity ternary complex assembly as 2.7 fold and 15.5 fold, respectively, which were never determined before. These results thus highlighted the potential usage of this new method in measurement of the allosteric-induced enhanced affinity with small amount proteins and in a fast manner and in a complex system. Collectively, our newly developed Trp:Cou FRET system based on genetic expansion technology has extended the molecular toolboxes available for biochemical and structural biology studies.


Subject(s)
Amino Acids/chemistry , Fluorescence Resonance Energy Transfer/methods , Fluorescent Dyes/chemistry , Protein Engineering/methods , Binding Sites , Glycine/analogs & derivatives , Glycine/chemistry , Glycine/genetics , Protein Binding , Tryptophan/chemistry , Umbelliferones/chemistry , beta-Arrestin 1
17.
Angew Chem Int Ed Engl ; 58(46): 16480-16484, 2019 11 11.
Article in English | MEDLINE | ID: mdl-31584750

ABSTRACT

Electrochemical sensors are essential for point-of-care testing (POCT) and wearable sensing devices. Establishing an efficient electron transfer route between redox enzymes and electrodes is key for converting enzyme-catalyzed reactions into electrochemical signals, and for the development of robust, sensitive, and selective biosensors. We demonstrate that the site-specific incorporation of a novel synthetic amino acid (2-amino-3-(4-mercaptophenyl)propanoic acid) into redox enzymes, followed by an S-click reaction to wire the enzyme to the electrode, facilitates electron transfer. The fabricated biosensor demonstrated real-time and selective monitoring of tryptophan (Trp) in blood and sweat samples, with a linear range of 0.02-0.8 mm. Further developments along this route may result in dramatic expansion of portable electrochemical sensors for diverse health-determination molecules.


Subject(s)
Oxidoreductases/metabolism , Biosensing Techniques/methods , Electrochemical Techniques , Electrodes , Electron Transport , HeLa Cells , Humans , Oxidoreductases/chemistry , Point-of-Care Systems , Sweat/metabolism , Tryptophan/analysis , Tryptophan/blood , Tryptophan Oxygenase/chemistry , Tryptophan Oxygenase/metabolism , Wearable Electronic Devices
18.
J Am Chem Soc ; 140(13): 4604-4612, 2018 04 04.
Article in English | MEDLINE | ID: mdl-29544051

ABSTRACT

Ovothiol is a histidine thiol derivative. The biosynthesis of ovothiol involves an extremely efficient trans-sulfuration strategy. The nonheme iron enzyme OvoA catalyzed oxidative coupling between cysteine and histidine is one of the key steps. Besides catalyzing the oxidative coupling between cysteine and histidine, OvoA also catalyzes the oxidation of cysteine to cysteine sulfinic acid (cysteine dioxygenase activity). Thus far, very little mechanistic information is available for OvoA-catalysis. In this report, we measured the kinetic isotope effect (KIE) in OvoA-catalysis using the isotopically sensitive branching method. In addition, by replacing an active site tyrosine (Tyr417) with 2-amino-3-(4-hydroxy-3-(methylthio)phenyl)propanoic acid (MtTyr) through the amber suppressor mediated unnatural amino acid incorporation method, the two OvoA activities (oxidative coupling between cysteine and histidine, and cysteine dioxygenase activity) can be modulated. These results suggest that the two OvoA activities branch out from a common intermediate and that the active site tyrosine residue plays some key roles in controlling the partitioning between these two pathways.


Subject(s)
Cysteine/chemistry , Methylhistidines/chemistry , Nonheme Iron Proteins/chemistry , Sulfhydryl Compounds/chemistry , Tyrosine/chemistry , Catalysis , Catalytic Domain , Molecular Structure , Oxidation-Reduction
19.
Biochemistry ; 56(48): 6325-6328, 2017 Dec 05.
Article in English | MEDLINE | ID: mdl-29125735

ABSTRACT

Resveratrol is a promising chemical agent that treats multiple aging-related diseases and improves life span. While reactive oxygen species undoubtedly play ubiquitous roles in the aging process and resveratrol has been shown to be an effective antioxidant, the mechanism through which resveratrol acts against oxidative stress remains unknown. Here we show that resveratrol activates SIRT2 to deacetylate Prx1, leading to an increased H2O2 reduction activity and a decreased cellular H2O2 concentration. Knockdown of SIRT2 or Prx1 by RNA interference abrogates resveratrol's ability to reduce the H2O2 level in HepG2 cells. Using purified SIRT2 and a Prx1 mutant harboring acetyllysine at position 27 (Prx1-27AcK), we show that resveratrol enhances SIRT2's activity to deacetylate Prx1-27AcK, resulting in a significantly increased H2O2 reducing activity. Thus, SIRT2 and Prx1 are targets for modulating intracellular redox status in the therapeutic strategies for the treatment of aging-related disorders.


Subject(s)
Antioxidants/pharmacology , Homeodomain Proteins/metabolism , Sirtuin 2/metabolism , Stilbenes/pharmacology , Antioxidants/chemistry , Gene Expression Regulation/drug effects , Hep G2 Cells , Homeodomain Proteins/genetics , Humans , Hydrogen Peroxide , Resveratrol , Sirtuin 2/genetics , Stilbenes/chemistry
20.
Nucleic Acids Res ; 43(11): e73, 2015 Jun 23.
Article in English | MEDLINE | ID: mdl-25765642

ABSTRACT

With the aim of broadening the versatility of lentiviral vectors as a tool in nucleic acid research, we expanded the genetic code in the propagation of lentiviral vectors for site-specific incorporation of chemical moieties with unique properties. Through systematic exploration of the structure-function relationship of lentiviral VSVg envelope by site-specific mutagenesis and incorporation of residues displaying azide- and diazirine-moieties, the modifiable sites on the vector surface were identified, with most at the PH domain that neither affects the expression of envelope protein nor propagation or infectivity of the progeny virus. Furthermore, via the incorporation of such chemical moieties, a variety of fluorescence probes, ligands, PEG and other functional molecules are conjugated, orthogonally and stoichiometrically, to the lentiviral vector. Using this methodology, a facile platform is established that is useful for tracking virus movement, targeting gene delivery and detecting virus-host interactions. This study may provide a new direction for rational design of lentiviral vectors, with significant impact on both basic research and therapeutic applications.


Subject(s)
Genetic Code , Genetic Vectors , Lentivirus/genetics , Amino Acids/chemistry , Azides/chemistry , Cell Line , Diazomethane/chemistry , Gene Targeting , Genetic Vectors/chemistry , Humans , Membrane Glycoproteins/chemistry , Mutagenesis, Site-Directed , Polyethylene Glycols/chemistry , Transfection , Viral Envelope Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL