ABSTRACT
Beige fat plays key roles in the regulation of systemic energy homeostasis; however, detailed mechanisms and safe strategy for its activation remain elusive. In this study, we discovered that local hyperthermia therapy (LHT) targeting beige fat promoted its activation in humans and mice. LHT achieved using a hydrogel-based photothermal therapy activated beige fat, preventing and treating obesity in mice without adverse effects. HSF1 is required for the effects since HSF1 deficiency blunted the metabolic benefits of LHT. HSF1 regulates Hnrnpa2b1 (A2b1) transcription, leading to increased mRNA stability of key metabolic genes. Importantly, analysis of human association studies followed by functional analysis revealed that the HSF1 gain-of-function variant p.P365T is associated with improved metabolic performance in humans and increased A2b1 transcription in mice and cells. Overall, we demonstrate that LHT offers a promising strategy against obesity by inducing beige fat activation via HSF1-A2B1 transcriptional axis.
Subject(s)
Adipose Tissue, Beige , Adipose Tissue, White , Hyperthermia, Induced , Obesity/therapy , Adipose Tissue, Beige/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Animals , Mice , Mice, Inbred C57BL , Obesity/metabolismABSTRACT
Although fat is a crucial source of energy in diets, excessive intake leads to obesity. Fat absorption in the gut is prevailingly thought to occur organ-autonomously by diffusion1-3. Whether the process is controlled by the brain-to-gut axis, however, remains largely unknown. Here we demonstrate that the dorsal motor nucleus of vagus (DMV) plays a key part in this process. Inactivation of DMV neurons reduces intestinal fat absorption and consequently causes weight loss, whereas activation of the DMV increases fat absorption and weight gain. Notably, the inactivation of a subpopulation of DMV neurons that project to the jejunum shortens the length of microvilli, thereby reducing fat absorption. Moreover, we identify a natural compound, puerarin, that mimics the suppression of the DMV-vagus pathway, which in turn leads to reduced fat absorption. Photoaffinity chemical methods and cryogenic electron microscopy of the structure of a GABAA receptor-puerarin complex reveal that puerarin binds to an allosteric modulatory site. Notably, conditional Gabra1 knockout in the DMV largely abolishes puerarin-induced intestinal fat loss. In summary, we discover that suppression of the DMV-vagus-jejunum axis controls intestinal fat absorption by shortening the length of microvilli and illustrate the therapeutic potential of puerarin binding to GABRA1 in fat loss.
Subject(s)
Brain-Gut Axis , Fats , Intestinal Absorption , Animals , Male , Mice , Brain-Gut Axis/drug effects , Brain-Gut Axis/physiology , Fats/metabolism , Intestinal Absorption/drug effects , Isoflavones/metabolism , Isoflavones/pharmacology , Jejunum/drug effects , Jejunum/innervation , Jejunum/metabolism , Mice, Inbred C57BL , Microvilli/drug effects , Microvilli/metabolism , Neurons/drug effects , Neurons/metabolism , Obesity/metabolism , Receptors, GABA-A/deficiency , Receptors, GABA-A/genetics , Receptors, GABA-A/metabolism , Vagus Nerve/metabolism , Vagus Nerve/drug effects , Vagus Nerve/physiology , Weight Gain/drug effects , Weight Loss/drug effects , Medulla Oblongata/cytology , Medulla Oblongata/drug effects , Medulla Oblongata/metabolismABSTRACT
Sirt3, as a major mitochondrial nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, is required for mitochondrial metabolic adaption to various stresses. However, how to regulate Sirt3 activity responding to metabolic stress remains largely unknown. Here, we report Sirt3 as a SUMOylated protein in mitochondria. SUMOylation suppresses Sirt3 catalytic activity. SUMOylation-deficient Sirt3 shows elevated deacetylation on mitochondrial proteins and increased fatty acid oxidation. During fasting, SUMO-specific protease SENP1 is accumulated in mitochondria and quickly de-SUMOylates and activates Sirt3. SENP1 deficiency results in hyper-SUMOylation of Sirt3 and hyper-acetylation of mitochondrial proteins, which reduces mitochondrial metabolic adaption responding to fasting. Furthermore, we find that fasting induces SENP1 translocation into mitochondria to activate Sirt3. The studies on mice show that Sirt3 SUMOylation mutation reduces fat mass and antagonizes high-fat diet (HFD)-induced obesity via increasing oxidative phosphorylation and energy expenditure. Our results reveal that SENP1-Sirt3 signaling modulates Sirt3 activation and mitochondrial metabolism during metabolic stress.
Subject(s)
Cysteine Endopeptidases/metabolism , Mitochondria/metabolism , Mutation , Obesity/metabolism , Signal Transduction , Sirtuin 3/metabolism , Sumoylation , Acetylation , Animals , Cysteine Endopeptidases/genetics , Dietary Fats/adverse effects , Dietary Fats/pharmacology , HEK293 Cells , Humans , Male , Mice , Mice, Mutant Strains , Mitochondria/genetics , Mitochondria/pathology , Obesity/chemically induced , Obesity/genetics , Obesity/pathology , Sirtuin 3/geneticsABSTRACT
Adipose tissue macrophages (ATM) are key players in the development of obesity and associated metabolic inflammation which contributes to systemic metabolic dysfunction. We here found that fibroblast activation protein α (FAP), a well-known marker of cancer-associated fibroblast, is selectively expressed in murine and human ATM among adipose tissue-infiltrating leukocytes. Macrophage FAP deficiency protects mice against diet-induced obesity and proinflammatory macrophage infiltration in obese adipose tissues, thereby alleviating hepatic steatosis and insulin resistance. Mechanistically, FAP specifically mediates monocyte chemokine protein CCL8 expression by ATM, which is further upregulated upon high-fat-diet (HFD) feeding, contributing to the recruitment of monocyte-derived proinflammatory macrophages with no effect on their classical inflammatory activation. CCL8 overexpression restores HFD-induced metabolic phenotypes in the absence of FAP. Moreover, macrophage FAP deficiency enhances energy expenditure and oxygen consumption preceding differential body weight after HFD feeding. Such enhanced energy expenditure is associated with increased levels of norepinephrine (NE) and lipolysis in white adipose tissues, likely due to decreased expression of monoamine oxidase, a NE degradation enzyme, by Fap-/- ATM. Collectively, our study identifies FAP as a previously unrecognized regulator of ATM function contributing to diet-induced obesity and metabolic inflammation and suggests FAP as a potential immunotherapeutic target against metabolic disorders.
Subject(s)
Adipose Tissue , Insulin Resistance , Animals , Humans , Mice , Adipose Tissue/metabolism , Diet, High-Fat , Inflammation/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Obesity/metabolismABSTRACT
Beige adipocytes have a discrete developmental origin and possess notable plasticity in their thermogenic capacity in response to various environmental cues, but the transcriptional machinery controlling beige adipocyte development and thermogenesis remains largely unknown. By analyzing beige adipocyte-specific knockout mice, we identified a transcription factor, forkhead box P4 (FOXP4), that differentially governs beige adipocyte differentiation and activation. Depletion of Foxp4 in progenitor cells impaired beige cell early differentiation. However, we observed that ablation of Foxp4 in differentiated adipocytes profoundly potentiated their thermogenesis capacity upon cold exposure. Of note, the outcome of Foxp4 deficiency on UCP1-mediated thermogenesis was confined to beige adipocytes, rather than to brown adipocytes. Taken together, we suggest that FOXP4 primes beige adipocyte early differentiation, but attenuates their activation by potent transcriptional repression of the thermogenic program.
Subject(s)
Adipocytes, Beige , Adipocytes, Brown , Animals , Cell Differentiation/genetics , Gene Expression Regulation , Mice , Thermogenesis/geneticsABSTRACT
BACKGROUND AND AIMS: Deregulation of RNA N6-methyladenosine (m6A) modification in intestinal epithelial cells (IECs) influences intestinal immune cells and leads to intestinal inflammation. We studied the function of fat mass-and obesity-associated protein (FTO), one of the m6A demethylases, in patients with ulcerative colitis (UC). METHODS: We analysed colon tissues of Ftoflox/flox; Villin-cre mice and their Ftoflox/flox littermates with dextran sulfate sodium (DSS) using real-time PCR and 16s rRNA sequencing. RNA and methylated RNA immunoprecipitation sequencing were used to analyse immunocytes and IECs. Macrophages were treated with conditioned medium of FTO-knockdown MODE-K cells or sphingosine-1-phosphate (S1P) and analysed for gene expression. Liquid chromatograph mass spectrometry identified C16-ceramide. RESULTS: FTO downregulation was identified in our in-house cohort and external cohorts of UC patients. Dysbiosis of gut microbiota, increased infiltration of proinflammatory macrophages, and enhanced differentiation of Th17 cells were observed in Ftoflox/flox;Villin-cre mice under DSS treatment. FTO deficiency resulted in an increase in m6A modification and a decrease in mRNA stability of CerS6, the gene encoding ceramide synthetase, leading to the downregulation of CerS6 and the accumulation of S1P in IECs. Subsequentially, the secretion of S1P by IECs triggered proinflammatory macrophages to secrete serum amyloid A protein 1/3, ultimately inducing Th17 cell differentiation. In addition, through bioinformatic analysis and experimental validation, we identified UC patients with lower FTO expression might respond better to vedolizumab treatment. CONCLUSIONS: FTO downregulation promoted UC by decreasing CerS6 expression, leading to increased S1P accumulation in IECs and aggravating colitis via m6A-dependent mechanisms. Lower FTO expression in UC patients may enhance their response to vedolizumab treatment.
Subject(s)
Colitis, Ulcerative , Colitis , Humans , Animals , Mice , Colitis, Ulcerative/metabolism , RNA, Ribosomal, 16S/metabolism , Intestinal Mucosa/metabolism , Colitis/chemically induced , Colitis/genetics , Colon/metabolism , Sphingolipids/metabolism , Dextran Sulfate , Disease Models, Animal , Mice, Inbred C57BL , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolismABSTRACT
Beneficial effects of resistance exercise on metabolic health and particularly muscle hypertrophy and fat loss are well established, but the underlying chemical and physiological mechanisms are not fully understood. Here, we identified a myometabolite-mediated metabolic pathway that is essential for the beneficial metabolic effects of resistance exercise in mice. We showed that substantial accumulation of the tricarboxylic acid cycle intermediate α-ketoglutaric acid (AKG) is a metabolic signature of resistance exercise performance. Interestingly, human plasma AKG level is also negatively correlated with BMI. Pharmacological elevation of circulating AKG induces muscle hypertrophy, brown adipose tissue (BAT) thermogenesis, and white adipose tissue (WAT) lipolysis in vivo. We further found that AKG stimulates the adrenal release of adrenaline through 2-oxoglutarate receptor 1 (OXGR1) expressed in adrenal glands. Finally, by using both loss-of-function and gain-of-function mouse models, we showed that OXGR1 is essential for AKG-mediated exercise-induced beneficial metabolic effects. These findings reveal an unappreciated mechanism for the salutary effects of resistance exercise, using AKG as a systemically derived molecule for adrenal stimulation of muscle hypertrophy and fat loss.
Subject(s)
Ketoglutaric Acids/blood , Muscular Atrophy/genetics , Receptors, Purinergic P2/genetics , Resistance Training/methods , Adult , Aged , Animals , Cell Line , Female , Gene Knockout Techniques , Humans , Male , Mice , Middle Aged , Models, Animal , Muscular Atrophy/metabolism , Receptors, Purinergic P2/metabolismABSTRACT
Obesity has become a serious global public health problem, affecting over 988 million people worldwide. Nevertheless, current pharmacotherapies have proven inadequate. Natural compounds have garnered significant attention due to their potential antiobesity effects. Over the past three decades, ca. 50 natural compounds have been evaluated for the preventive and/or therapeutic effects on obesity in animals and humans. However, variations in the antiobesity efficacies among these natural compounds have been substantial, owing to differences in experimental designs, including variations in animal models, dosages, treatment durations, and administration methods. The feasibility of employing these natural compounds as pharmacotherapies for obesity remained uncertain. In this review, we systematically summarized the antiobesity efficacy and mechanisms of action of each natural compound in animal models. This comprehensive review furnishes valuable insights for the development of antiobesity medications based on natural compounds.
Subject(s)
Anti-Obesity Agents , Obesity , Humans , Animals , Obesity/drug therapy , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic useABSTRACT
BACKGROUND: Heart failure is a global public health issue that is associated with increasing morbidity and mortality. Previous studies have suggested that mitochondrial dysfunction plays critical roles in the progression of heart failure; however, the underlying mechanisms remain unclear. Because kinases have been reported to modulate mitochondrial function, we investigated the effects of DYRK1B (dual-specificity tyrosine-regulated kinase 1B) on mitochondrial bioenergetics, cardiac hypertrophy, and heart failure. METHODS: We engineered DYRK1B transgenic and knockout mice and used transverse aortic constriction to produce an in vivo model of cardiac hypertrophy. The effects of DYRK1B and its downstream mediators were subsequently elucidated using RNA-sequencing analysis and mitochondrial functional analysis. RESULTS: We found that DYRK1B expression was clearly upregulated in failing human myocardium and in hypertrophic murine hearts, as well. Cardiac-specific DYRK1B overexpression resulted in cardiac dysfunction accompanied by a decline in the left ventricular ejection fraction, fraction shortening, and increased cardiac fibrosis. In striking contrast to DYRK1B overexpression, the deletion of DYRK1B mitigated transverse aortic constriction-induced cardiac hypertrophy and heart failure. Mechanistically, DYRK1B was positively associated with impaired mitochondrial bioenergetics by directly binding with STAT3 to increase its phosphorylation and nuclear accumulation, ultimately contributing toward the downregulation of PGC-1α (peroxisome proliferator-activated receptor gamma coactivator-1α). Furthermore, the inhibition of DYRK1B or STAT3 activity using specific inhibitors was able to restore cardiac performance by rejuvenating mitochondrial bioenergetics. CONCLUSIONS: Taken together, the findings of this study provide new insights into the previously unrecognized role of DYRK1B in mitochondrial bioenergetics and the progression of cardiac hypertrophy and heart failure. Consequently, these findings may provide new therapeutic options for patients with heart failure.
Subject(s)
Heart Failure , Ventricular Function, Left , Animals , Cardiomegaly/metabolism , Energy Metabolism , Heart Failure/etiology , Humans , Mice , Mice, Knockout , Mitochondria/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Stroke Volume , Dyrk KinasesABSTRACT
RATIONALE: Macrophages are critically involved in wound healing following myocardial infarction (MI). Lgr4, a member of LGR (leucine-rich repeat-containing G protein-coupled receptor) family, is emerging as a regulator of macrophage-associated immune responses. However, the contribution of Lgr4 to macrophage phenotype and function in the context of MI remains unclear. OBJECTIVE: To determine the role of macrophage Lgr4 in MI and to dissect the underlying mechanisms. METHODS AND RESULTS: During early inflammatory phase of MI, infarct macrophages rather than neutrophils expressed high level of Lgr4. Macrophage-specific Lgr4 knockout mice had no baseline cardiovascular defects but manifested improved heart function, modestly reduced infarct size, decreased early mortality due to cardiac rupture, and ameliorated adverse remodeling after MI. Improved outcomes in macrophage-specific Lgr4 knockout mice subjected to MI were associated with mitigated ischemic injury and optimal infarct healing, as determined by reduction of cardiac apoptosis in the peri-infarct zone, attenuation of local myocardial inflammatory response, decrease of matrix metalloproteinase expression in the infarct, enhancement of angiogenesis, myofibroblast proliferation, and collagen I deposition in reparative granulation tissue as well as formation of collagen-rich scar. More importantly, macrophage-specific Lgr4 knockout infarcts had reduced numbers of infiltrating leukocytes and inflammatory macrophages but harbored abundant reparative macrophage subsets. Lgr4-null infarct macrophages exhibited a less inflammatory transcriptional signature. These findings were further supported by transcriptomic profiling data showing repression of multiple pathways and broad-spectrum genes associated with proinflammatory responses in macrophage-specific Lgr4 knockout infarcts. Notably, we discovered that Lgr4-mediated functional phenotype programing in infarct macrophages was at least partly attributed to regulation of AP (activator protein)-1 activity. We further demonstrated that the synergistic effects of Lgr4 on AP-1 activation in inflammatory macrophages occurred via enhancing CREB (cAMP response element-binding protein)-mediated c-Fos, Fosl1, and Fosb transactivation. CONCLUSIONS: Together, our data highlight the significance of Lgr4 in governing proinflammatory phenotype of infarct macrophages and postinfarction repair.
Subject(s)
Inflammation Mediators/metabolism , Inflammation/metabolism , Macrophages/metabolism , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardium/metabolism , Receptors, G-Protein-Coupled/metabolism , Ventricular Function, Left , Ventricular Remodeling , Aged , Animals , Apoptosis , Cyclic AMP Response Element-Binding Protein/metabolism , Disease Models, Animal , Female , Humans , Inflammation/genetics , Inflammation/pathology , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocardium/pathology , Phenotype , Proto-Oncogene Proteins c-fos/metabolism , RAW 264.7 Cells , Receptors, G-Protein-Coupled/genetics , Signal Transduction , Transcription Factor AP-1/metabolismABSTRACT
Dipeptidyl peptidase-4 (DPP4) plays a crucial role in regulating the bioactivity of glucagon-like peptide-1 (GLP-1) that enhances insulin secretion and pancreatic ß-cell proliferation, making it a therapeutic target for type 2 diabetes. Although the crystal structure of DPP4 has been determined, its structure-function mechanism is largely unknown. Here, we examined the biochemical properties of sporadic human DPP4 mutations distal from its catalytic site, among which V486M ablates DPP4 dimerization and causes loss of enzymatic activity. Unbiased molecular dynamics simulations revealed that the distal V486M mutation induces a local conformational collapse in a ß-propeller loop (residues 234-260, defined as the flap) and disrupts the dimerization of DPP4. The "open/closed" conformational transitions of the flap whereby capping the active site, are involved in the enzymatic activity of DPP4. Further site-directed mutagenesis guided by theoretical predictions verified the importance of the conformational dynamics of the flap for the enzymatic activity of DPP4. Therefore, the current studies that combined theoretical modeling and experimental identification, provide important insights into the biological function of DPP4 and allow for the evaluation of directed DPP4 genetic mutations before initiating clinical applications and drug development.
Subject(s)
Diabetes Mellitus, Type 2 , Dipeptidyl Peptidase 4 , Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl Peptidase 4/genetics , Glucagon-Like Peptide 1 , Humans , MutationABSTRACT
The main concern of this paper is finite-time stability (FTS) for uncertain discrete-time stochastic nonlinear systems (DSNSs) with time-varying delay (TVD) and multiplicative noise. First, a Lyapunov-Krasovskii function (LKF) is constructed, using the forward difference, and less conservative stability criteria are obtained. By solving a series of linear matrix inequalities (LMIs), some sufficient conditions for FTS of the stochastic system are found. Moreover, FTS is presented for a stochastic nominal system. Lastly, the validity and improvement of the proposed methods are shown with two simulation examples.
ABSTRACT
AIMS/HYPOTHESIS: High-energy diets are among the main causes of the global epidemic of metabolic disorders, including obesity and type 2 diabetes. The mechanisms of high-energy-diet-induced metabolic disorders are complex and largely unknown. The non-receptor tyrosine kinase c-Abl plays an important role in adipogenesis in vitro but its role in vivo in the regulation of metabolism is still elusive. Hence, we sought to address the role of c-Abl in diet-induced obesity and obesity-associated insulin resistance. METHODS: The expression of c-Abl in different fat tissues from obese humans or mice fed a high-fat diet (HFD) were first analysed by western blotting and quantitative PCR. We employed conditional deletion of the c-Abl gene (also known as Abl1) in adipose tissue using Fabp4-Cre and 6-week-old mice were fed with either a chow diet (CD) or an HFD. Age-matched wild-type mice were treated with the c-Abl inhibitor nilotinib or with vehicle and exposed to either CD or HFD, followed by analysis of body mass, fat mass, glucose and insulin tolerance. Histological staining, ELISA and biochemical analysis were used to clarify details of changes in physiology and molecular signalling. RESULTS: c-Abl was highly expressed in subcutaneous fat from obese humans and HFD-induced obese mice. Conditional knockout of c-Abl in adipose tissue improved insulin sensitivity and mitigated HFD-induced body mass gain, hyperglycaemia and hyperinsulinaemia. Consistently, treatment with nilotinib significantly reduced fat mass and improved insulin sensitivity in HFD-fed mice. Further biochemical analyses suggested that c-Abl inhibition improved whole-body insulin sensitivity by reducing HFD-triggered insulin resistance and increasing adiponectin in subcutaneous fat. CONCLUSIONS/INTERPRETATION: Our findings define a new biological role for c-Abl in the regulation of diet-induced obesity through improving insulin sensitivity of subcutaneous fat. This suggests it may become a novel therapeutic target in the treatment of metabolic disorders.
Subject(s)
Adipose Tissue/metabolism , Obesity/metabolism , Proto-Oncogene Proteins c-abl/metabolism , Subcutaneous Fat/metabolism , Adipose Tissue/drug effects , Animals , Diet, High-Fat/adverse effects , Energy Intake/drug effects , Energy Metabolism/drug effects , Glucose Tolerance Test , Insulin Resistance/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Obesity/drug therapy , Obesity/etiology , Proto-Oncogene Proteins c-abl/antagonists & inhibitors , Proto-Oncogene Proteins c-abl/deficiency , Proto-Oncogene Proteins c-abl/genetics , Pyrimidines/therapeutic use , Subcutaneous Fat/drug effectsABSTRACT
Although single-nucleotide polymorphisms (SNPs) have become extremely useful in the study of geneticvariation, triallelic SNPs are still not fully understood. Next-generation sequencing (NGS) is a promising approach to identify triallelic sites in large populations. In this study, we explored exome sequencing data from 221 Chinese individuals, with an average depth of 70-fold. We identified 382,901 SNPs in the study samples, including 2,002 (0.52%) triallelic sites. Among the triallelic SNPs, 17.3% were coding SNPs (cSNPs) and 78.3% were novel. Comparison and analysis revealed that the variant alleles were more likely to result in nonsynonymous variation at triallelic sites. In addition, natural selection seemed to influence triallelic SNPs. However, with the limited sample size assessed, more studies will be required in order to fully characterize the features of triallelic SNPs.
Subject(s)
Asian People/genetics , Polymorphism, Single Nucleotide , Gene Frequency , High-Throughput Nucleotide Sequencing , Humans , Selection, Genetic , Sequence Analysis, DNAABSTRACT
Leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is a newfound obese-associated gene. Previous study reveals that heterozygous mutation of Lgr4 correlates with decreased body weight in human. In our recent study, we demonstrate that Lgr4 ablation promotes browning of white adipose tissue and improves whole-body metabolic status. However little is known about its role in other metabolic tissues. Herein, we show that Lgr4 homozygous mutant (Lgr4(m/m)) mice show increased respiratory exchange ratio (RER, closer to 1.0) than wild-type mice at 12:00 AM (food-intake time for mice) while decreased RER (closer to 0.75) at 12:00 PM (fasting for mice), indicating a glucose-prone versus fatty acid-prone metabolic pattern, respectively. Furthermore, Lgr4 ablation increases lipid oxidation-related gene expression while suppresses glucose transporter type 4 (Glut4) levels in skeletal muscle under fasting condition. These data suggest that Lgr4 ablation enhances the flexibility of skeletal muscle to switch energy provider from glucose to fatty acid in response to glucose depletion. We further reveal the activation of Ampk/Sirt1/Pgc1α pathway during this adaptive fuel shift due to Lgr4 ablation. This study suggests that Lgr4 might serve as an adaptive regulator between glucose and lipid metabolism in skeletal muscle and reveals a potentially new regulator for a well-established adaptive network.
Subject(s)
Adenylate Kinase/metabolism , Energy Metabolism , Muscle, Skeletal/metabolism , Receptors, G-Protein-Coupled/physiology , Sirtuin 1/metabolism , Transcription Factors/metabolism , Animals , Fasting , Insulin/metabolism , Mice , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Receptors, G-Protein-Coupled/geneticsABSTRACT
Background: Lipodystrophy is a rare disease that is poorly diagnosed due to its low prevalence and frequent phenotypic heterogeneity. The main therapeutic measures for patients with clinical lipodystrophy are aimed at improving general metabolic complications such as diabetes mellitus, insulin resistance, and hypertriglyceridemia. Therefore, there is an urgent need to find new biomarkers to aid in the diagnosis and targeted treatment of patients with congenital generalized lipodystrophy (CGL). Methods: Dataset GSE159337 was obtained via the Gene Expression Omnibus database. First, differentially expressed genes (DEGs) between CGL and control samples were yielded via differential expression analysis and were analyzed for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment to explore the functional pathways. Next, protein-protein interaction analysis and the MCC algorithm were implemented to yield candidate genes, which were then subjected to receiver operating characteristic (ROC) analysis to identify biomarkers with an area under the curve value exceeding 0.8. Moreover, random forest (RF), logistic regression, and support vector machine (SVM) analyses were carried out to assess the diagnostic ability of biomarkers for CGL. Finally, the small-molecule drugs targeting biomarkers were predicted, and ibuprofen was further validated in lipodystrophy mice. Results: A total of 71 DEGs in GSE159337 were sifted out and were involved in immune receptor activity, immune response-regulating signaling pathway, and secretory granule membrane. Moreover, CXCR2, TNFSF10, NLRC4, CCR2, CEACAM3, TLR10, TNFAIP3, and JUN were considered as biomarkers by performing ROC analysis on 10 candidate genes. Meanwhile, RF, logistic regression, and SVM analyses further described that those biomarkers had an excellent diagnosis capability for CGL. Eventually, the drug-gene network included ibuprofen-CXCR1, ibuprofen-CXCR1, cenicriviroc-CCR2, fenofibrate-JUN, and other relationship pairs. Ibuprofen treatment was also validated to downregulate CXCR1 and CXCR2 in peripheral blood mononuclear cells (PBMCs) and improve glucose tolerance, hypertriglyceridemia, hepatic steatosis, and liver inflammation in lipodystrophy mice. Conclusion: Eight biomarkers, namely, CXCR2, TNFSF10, NLRC4, CCR2, CEACAM3, TLR10, TNFAIP3, and JUN, were identified through bioinformatic analyses, and ibuprofen targeting CXCR1 and CXCR2 in PBMCs was shown to improve metabolic disturbance in lipodystrophy, contributing to studies related to the diagnosis and treatment of lipodystrophy.
Subject(s)
Computational Biology , Animals , Mice , Computational Biology/methods , Humans , Lipodystrophy/genetics , Lipodystrophy/drug therapy , Lipodystrophy/metabolism , Biomarkers/metabolism , Biomarkers/analysis , Male , Protein Interaction Maps , Gene Expression Profiling , Mice, Inbred C57BLABSTRACT
Patients with gain-of-function mutations of Dyrk1b have higher fasting blood glucose (FBG) levels. However, the role of Dyrk1b in glucose metabolism is not fully elucidated. Herein, we found that hepatic Dyrk1b overexpression in mice impaired systemic glucose tolerance and hepatic insulin signaling. Dyrk1b overexpression in vitro attenuated insulin signaling in a kinase activity-dependent manner, and its kinase activity was required for its effect on systemic glucose homeostasis and hepatic insulin signaling in vivo. Dyrk1b ablation improved systemic glucose tolerance and hepatic insulin signaling in mice. Quantitative proteomic analyses showed that Dyrk1b downregulated WW domain-binding protein 2 (Wbp2) protein abundance. Mechanistically, Dyrk1b enhanced Wbp2 ubiquitylation and proteasomal degradation. Restoration of hepatic Wbp2 partially rescued the impaired glucose homeostasis in Dyrk1b overexpression mice. In addition, Dyrk1b inhibition with AZ191 moderately improved systemic glucose homeostasis. Our study uncovers that hepatic Dyrk1b impairs systemic glucose homeostasis via its modulation of Wbp2 expression in a kinase activity-dependent manner.
ABSTRACT
OBJECTIVE: The molecular control of feeding after fasting is essential for maintaining energy homeostasis, while overfeeding usually leads to obesity. Identifying non-coding microRNAs (miRNAs) that control food intake could reveal new oligonucleotide-based therapeutic targets for treating obesity and its associated diseases. This study aims to identify a miRNA modulating food intake and its mechanism in neuronal regulation of food intake and energy homeostasis. METHODS: A comprehensive genome-wide miRNA screening in the arcuate nucleus of the hypothalamus (ARC) of fasted mice and ad libitum mice was performed. Through stereotactic virus injections, intracerebroventricular injections, and miRNA sponge technology, miR-7a-5p was inhibited specifically in AgRP neurons and the central nervous system, and metabolic phenotypes were monitored. Quantitative real-time PCR, Western blotting, immunofluorescence, whole-cell patch-clamp recording, and luciferase reporter assay were used to investigate the mechanisms underlying miR-7a-5p's regulation of food intake. RESULTS: We found a significant increase in miR-7a-5p levels after fasting. miR-7a-5p was highly expressed in the ARC, and inhibition of miR-7a-5p specifically in AgRP neurons reduced food intake and body weight gain. miR-7a-5p inhibited S6K1 gene expression by binding to its 3'-UTR. Furthermore, the knockdown of ribosomal S6 kinase 1 (S6K1) in AgRP neurons can partially reverse the effects caused by miR-7a-5p inhibition. Importantly, intracerebroventricular administration of the miR-7a-5p inhibitor could also reduce food intake and body weight gain. CONCLUSION: Our findings suggest that miR-7a-5p responds to energy deficit and regulates food intake by fine-tuning mTOR1/S6K1 signaling in the AgRP neurons, which could be a promising oligonucleotide-based therapeutic target for treating obesity and its associated diseases.