Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Nano Lett ; 24(23): 6939-6947, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38814180

ABSTRACT

The risk of harmful microorganisms to ecosystems and human health has stimulated exploration of singlet oxygen (1O2)-based disinfection. It can be potentially generated via an electrocatalytic process, but is limited by the low production yield and unclear intermediate-mediated mechanism. Herein, we designed a two-site catalyst (Fe/Mo-N/C) for the selective 1O2 generation. The Mo sites enhance the generation of 1O2 precursors (H2O2), accompanied by the generation of intermediate •HO2/•O2-. The Fe site facilitates activation of H2O2 into •OH, which accelerates the •HO2/•O2- into 1O2. A possible mechanism for promoting 1O2 production through the ROS-mediated chain reaction is reported. The as-developed electrochemical disinfection system can kill 1 × 107 CFU mL-1 of E. coli within 8 min, leading to cell membrane damage and DNA degradation. It can be effectively applied for the disinfection of medical wastewater. This work provides a general strategy for promoting the production of 1O2 through electrocatalysis and for efficient electrochemical disinfection.


Subject(s)
Disinfection , Escherichia coli , Hydrogen Peroxide , Oxidation-Reduction , Singlet Oxygen , Singlet Oxygen/chemistry , Singlet Oxygen/metabolism , Disinfection/methods , Catalysis , Escherichia coli/metabolism , Hydrogen Peroxide/chemistry , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/chemistry , Electrochemical Techniques , Molybdenum/chemistry , Iron/chemistry , Wastewater/chemistry , Wastewater/microbiology
2.
Chembiochem ; 25(16): e202400406, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-38850275

ABSTRACT

The use of traditional Ag-based antibacterial agents is usually accompanied by uncontrollable silver release, which makes it difficult to find a balance between antibacterial performance and biosafety. Herein, we prepared a core-shell system of ZIF-8-derived amorphous carbon-coated Ag nanoparticles (Ag@C) as an ideal research model to reveal the synergistic effect and structure-activity relationship of the structural transformation of carbon shell and Ag core on the regulation of silver release behavior. It is found that Ag@C prepared at 600 °C (AC6) exhibits the best ion release kinetics due to the combination of relatively simple shell structure and lower crystallinity of the Ag core, thereby exerting stronger antibacterial properties (>99.999 %) at trace doses (20 µg mL-1) compared with most other Ag-based materials. Meanwhile, the carbon shell prevents the metal Ag from being directly exposed to the organism and thus endows AC6 with excellent biocompatibility. In animal experiments, AC6 can effectively promote wound healing by inactivating drug-resistant bacteria while regulating the expression of TNF-α and CD31. This work provides theoretical support for the scientific design and clinical application of controllable ion-releasing antibacterial agents.


Subject(s)
Anti-Bacterial Agents , Metal Nanoparticles , Microbial Sensitivity Tests , Silver , Silver/chemistry , Silver/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , Metal Nanoparticles/chemistry , Mice , Wound Healing/drug effects , Drug Resistance, Bacterial/drug effects , Carbon/chemistry , Carbon/pharmacology , Wound Infection/drug therapy , Wound Infection/microbiology , Wound Infection/pathology , Drug Liberation , Humans , Staphylococcus aureus/drug effects
3.
Phytother Res ; 37(3): 848-859, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36484427

ABSTRACT

Isoliquiritigenin (ISL) is a flavonoid with numerous pharmacological properties, including anti-inflammation, yet its role in Parkinson's disease (PD) with microglia-mediated neuroinflammation remains unknown. In this study, the effects of ISL on inhibiting microglia-mediated neuroinflammation in PD were evaluated in the 1-methyl-4-phenylpyridinium (MPTP)-induced mouse model of PD and in lipopolysaccharide (LPS)-stimulated BV-2 microglia. Our results showed that ISL prevented behavioral deficits and excessive microglial activation in MPTP-treated mice. Moreover, ISL was found to prevent the elevation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and mitigate the phosphorylation of c-Jun N-terminal protein kinase (JNK), protein kinase B (AKT), nuclear factor kappa light-chain enhancer of activated B cells (NFκB), and inhibitor of NFκB protein ɑ (IκBɑ) in the substantia nigra and striatum of MPTP-treated mice and LPS-stimulated BV-2 cells. Meanwhile, in LPS-stimulated BV-2 cells, ISL inhibited the production of inflammatory mediators such as interleukin (IL)-1ß, IL-6 and tumor necrosis factor alpha (TNF-α). In addition, the agonist of JNK partly abolished the inhibitory effects of ISL in LPS-treated BV-2 cells. Our results demonstrated that ISL inhibits microglia-mediated neuroinflammation in PD models probably through deactivating JNK/AKT/NFκB signaling pathways. The novel findings suggest the therapeutic potential of ISL for microglia-mediated neuroinflammation in PD.


Subject(s)
Parkinson Disease , Proto-Oncogene Proteins c-akt , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Parkinson Disease/pathology , Microglia , Lipopolysaccharides/pharmacology , Neuroinflammatory Diseases , Cell Line , Signal Transduction , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide/metabolism
4.
J Vis ; 22(1): 11, 2022 01 04.
Article in English | MEDLINE | ID: mdl-35044435

ABSTRACT

In primates, stimulus-driven changes in visual attention can facilitate or hinder perceptual performance, depending on the location and timing of the stimulus event. Mice have emerged as a powerful model for studying visual circuits and behavior; however, it is unclear whether mice show similar interactions between stimulus events and visual attention during perceptual decisions. To investigate this, we trained head-fixed mice to detect a near-threshold change in visual orientation and tested how performance was altered by task-irrelevant stimuli that occurred at different times and locations with respect to the orientation change. We found that task-irrelevant stimuli strongly affected mouse performance. Specifically, stimulus-driven attention in mice followed a similar time course as that in other species: The decreases in reaction times fully emerged between 250 and 400 ms after the stimulus event, and detection accuracy was not affected. However, the effects of stimulus-driven attention on behavior in mice were insensitive to stimulus-event location, an aspect different from what is known in primates. In contrast, reaction times in mice were reduced at longer delays after the task-irrelevant stimulus event regardless of its spatial congruence to the target. These results highlight the strengths and limitations of using mice as a model for studying higher-order visual functions.


Subject(s)
Vision, Ocular , Visual Perception , Animals , Mice , Reaction Time
5.
J Neurosci ; 40(19): 3768-3782, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32253361

ABSTRACT

The superior colliculus (SC) is arguably the most important visual structure in the mouse brain and is well known for its involvement in innate responses to visual threats and prey items. In other species, the SC plays a central role in voluntary as well as innate visual functions, including crucial contributions to selective attention and perceptual decision-making. In the mouse, the possible role of the SC in voluntary visual choice behaviors has not been established. Here, we demonstrate that the mouse SC of both sexes plays a causal role in visual perceptual decision-making by transiently inhibiting SC activity during an orientation change detection task. First, unilateral SC inhibition-induced spatially specific deficits in detection. Hit rates were reduced, and reaction times increased for orientation changes in the contralateral but not ipsilateral visual field. Second, the deficits caused by SC inhibition were specific to a temporal epoch coincident with early visual burst responses in the SC. Inhibiting SC during this 100-ms period caused a contralateral detection deficit, whereas inhibition immediately before or after did not. Third, SC inhibition reduced visual detection sensitivity. Psychometric analysis revealed that inhibiting SC visual activity significantly increased detection thresholds for contralateral orientation changes. In addition, effects on detection thresholds and lapse rates caused by SC inhibition were larger in the presence of a competing visual stimulus, indicating a role for the mouse SC in visual target selection. Together, our results demonstrate that the mouse SC is necessary for the normal performance of voluntary visual choice behaviors.SIGNIFICANCE STATEMENT The mouse superior colliculus (SC) has become a popular model for studying the circuit organization and development of the visual system. Although the SC is a fundamental component of the visual pathways in mice, its role in visual perceptual decision-making is not clear. By investigating how temporally precise SC inhibition influenced behavioral performance during a visually guided orientation change detection task, we identified a 100-ms temporal epoch of SC visual activity that is crucial for the ability of mice to detect behaviorally relevant visual changes. In addition, we found that SC inhibition also caused deficits in visual target selection. Thus, our findings highlight the importance of the SC for visual perceptual choice behavior in the mouse.


Subject(s)
Choice Behavior/physiology , Superior Colliculi/physiology , Visual Perception/physiology , Animals , Attention/physiology , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/physiology
6.
J Neurosci ; 35(35): 12281-6, 2015 Sep 02.
Article in English | MEDLINE | ID: mdl-26338338

ABSTRACT

Topographic maps are a fundamental feature of the brain's representations of the sensory environment as well as an efficient way to organize motor control networks. Although great progress has been made in our understanding of sensory map development, very little is known about how topographic representations for motor control develop and interface with sensory maps. Here we map the representation for eye movements in the superior colliculus (SC) in awake mice. As stimulation sites were sampled along the anterior-posterior axis, small amplitude, nasally directed (ipsiversive) saccadic eye movements were evoked by microstimulation in anterior SC, followed by a smooth progression to large, temporally directed (contraversive) movements in posterior SC. This progressive change of movement amplitude and direction is consistent with the global polarity of the retinotopic map in the superficial SC, just as in primates and cats. We then investigated the role of visual experience in the development of eye movement map by studying mice reared in complete darkness. Saccades evoked by SC stimulation as well as spontaneous saccadic eye movements were larger in the dark-reared mice, indicating that visual experience is required to fine-tune the gain of saccades and to establish normal eye movement maps in the SC. Our experiments provide a foundation for future studies to investigate the synaptic organization and developmental mechanisms of sensorimotor transformations in mice. SIGNIFICANCE STATEMENT: The superior colliculus (SC) is a midbrain structure important for multisensory integration and sensorimotor transformation. Here we have studied eye movement representations in the SC of mice, a species that has become a popular model in vision research because of available genetic tools. Our studies show mice make saccadic eye movements spontaneously and in response to SC stimulation. The mouse SC contains an eye movement map that has the same global polarity as the overlaying visual map, just like in cats and primates. Furthermore, we show that visual experience is required for establishing the normal eye movement map. Our study provides a necessary basis for future mechanistic studies of how SC motor maps develop and become aligned with sensory maps.


Subject(s)
Brain Mapping , Eye Movements/physiology , Neural Pathways/physiology , Photic Stimulation , Superior Colliculi/physiology , Vision, Ocular/physiology , Action Potentials/physiology , Animals , Electric Stimulation , Female , Male , Mice , Mice, Inbred C57BL , Reaction Time , Sensory Deprivation , Superior Colliculi/cytology , Wakefulness
7.
Biosens Bioelectron ; 253: 116169, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38442620

ABSTRACT

Nanozymes have been regarded as the ideal alternatives to natural enzymes in bioassays due to their good stability and low cost. However, their applications in sensing usually suffer from poor selectivity. For example, Au-based nanozymes, as a kind of classical glucose oxidase mimic enzyme, could catalyze diverse monosaccharides. Therefore, it is of great necessity and urgency to endow the Au-based nanozymes with enhanced selectivity for the construction of specific glucose sensing platform. In our study, easily recyclable polydopamine (PDA)-supported Au-based nanozymes (PDA@Au NPs) were successfully prepared and could catalyze diverse monosaccharides including glucose, xylose, mannose, and sucrose. To enhance the selectivity of PDA@Au NPs, molecularly imprinted polymers (MIPs) were constructed on the surface of PDA@Au NPs using glucose and boronic acid derivatives as template and functional monomer. Impressively, the catalytic activity of the obtained molecularly imprinted nanozyme (PDA@Au NPs-MIPs) only shows a slight decrease (6.3%) while their selectivity is obviously enhanced (≥230%). Accordingly, the as-prepared sensor achieved the sensitive and selective detection of glucose in the concentration range of 10 µM-1 mM and a low detection limit (LOD) of 0.227 µM (S/N = 3), avoiding the influence of other monosaccharides exited in the sensing solutions to a great extent. As expected, the as-prepared sensors also showed good recovery, and long-term stability.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Nanospheres , Gold , Glucose
8.
Water Res ; 252: 121219, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38309067

ABSTRACT

Exploring and developing promising biomass composite membranes for the water purification and waste resource utilization is of great significance. The modification of biomass has always been a focus of research in its resource utilization. In this study, we successfully prepare a functional composite membrane, activated graphene oxide/seaweed residue-zirconium dioxide (GOSRZ), with fluoride removal, uranium extraction, and antibacterial activity by biomimetic mineralization of zirconium dioxide nanoparticles (ZrO2 NPs) on seaweed residue (SR) grafted with oxidized graphene (GO). The GOSRZ membrane exhibits highly efficient and specific adsorption of fluoride. For the fluoride concentrations in the range of 100-400 mg/L in water, the removal efficiency can reach over 99 %, even in the presence of interfering ions. Satisfactory extraction rates are also achieved for uranium by the GOSRZ membrane. Additionally, the antibacterial performance studies show that this composite membrane efficiently removes Escherichia coli (E. coli) and Methicillin-resistant Staphylococcus aureus (MRSA). The high adsorption of F- and U(VI) to the composite membrane is ascribed to the ionic exchange and coordination interactions, and its antibacterial activity is caused by the destruction of bacterial cell structure. The sustainability of the biomass composite membranes is further evaluated using the Sustainability Footprint method. This study provides a simple preparation method of biomass composite membrane, expands the water purification treatment technology, and offers valuable guidance for the resource utilization of seaweed waste and the removal of pollutants in wastewater.


Subject(s)
Graphite , Methicillin-Resistant Staphylococcus aureus , Uranium , Water Purification , Zirconium , Uranium/analysis , Fluorine , Escherichia coli , Fluorides , Biomimetics , Water Purification/methods , Adsorption , Anti-Bacterial Agents
9.
Anal Chim Acta ; 1291: 342225, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38280783

ABSTRACT

Endotoxin detection is important for determining bacterial contamination and infection in fields of food, pharmaceutical and clinical disease diagnosis. The horseshoe crab deformed cell lysate analysis is regarded as the gold-standard method, but the endangered and high-cost horseshoe crab animals required in sensing process further raise animal ethical issues and hinder their applications. The colorimetric methods based on nanozymes are simple and economical, but the low selectivity and sensitivity are still the bottleneck for their further application. Herein, we successfully developed a phenylboronic acid functionalized iron-based nanozyme with higher selectivity and highly catalytic activity for endotoxin sensing. The as-prepared colorimetric sensor using the obtained nanozyme as sensing probes shows a good linear relationship for endotoxin sensing in the range of 1-20 µg mL-1, with a LOD = 0.42 µg mL-1, along with good selectivity and reproducibility. The sensor can also be well applied to detecting endotoxin in practical samples such as beer and serum. Moreover, the parameters including time and temperature which could affect the endotoxin release from E. coli were also studied and optimized, based on the relationship between endotoxin and Gram-negative bacteria, the as-prepared sensor achieves the qualitative and quantification of E. coli.


Subject(s)
Endotoxins , Escherichia coli , Animals , Endotoxins/analysis , Reproducibility of Results , Bacteria , Gram-Negative Bacteria , Colorimetry
10.
Biomaterials ; 311: 122695, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38954960

ABSTRACT

Integrating immunotherapy with nanomaterials-based chemotherapy presents a promising avenue for amplifying antitumor outcomes. Nevertheless, the suppressive tumor immune microenvironment (TIME) and the upregulation of cyclooxygenase-2 (COX-2) induced by chemotherapy can hinder the efficacy of the chemoimmunotherapy. This study presents a TIME-reshaping strategy by developing a steric-hindrance effect tuned zinc-based metal-organic framework (MOF), designated as CZFNPs. This nanoreactor is engineered by in situ loading of the COX-2 inhibitor, C-phycocyanin (CPC), into the framework building blocks, while simultaneously weakening the stability of the MOF. Consequently, CZFNPs achieve rapid pH-responsive release of zinc ions (Zn2+) and CPC upon specific transport to tumor cells overexpressing folate receptors. Accordingly, Zn2+ can induce reactive oxygen species (ROS)-mediated cytotoxicity therapy while synchronize with mitochondrial DNA (mtDNA) release, which stimulates mtDNA/cGAS-STING pathway-mediated innate immunity. The CPC suppresses the chemotherapy-induced overexpression of COX-2, thus cooperatively reprogramming the suppressive TIME and boosting the antitumor immune response. In xenograft tumor models, the CZFNPs system effectively modulates STING and COX-2 expression, converting "cold" tumors into "hot" tumors, thereby resulting in ≈ 4-fold tumor regression relative to ZIF-8 treatment alone. This approach offers a potent strategy for enhancing the efficacy of combined nanomaterial-based chemotherapy and immunotherapy.


Subject(s)
Cyclooxygenase 2 Inhibitors , Cyclooxygenase 2 , Immunotherapy , Membrane Proteins , Metal-Organic Frameworks , Animals , Immunotherapy/methods , Cyclooxygenase 2/metabolism , Humans , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Membrane Proteins/metabolism , Cell Line, Tumor , Mice , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/therapeutic use , Mice, Inbred BALB C , Reactive Oxygen Species/metabolism , Nanoparticles/chemistry , Neoplasms/drug therapy , Neoplasms/therapy , Female , Tumor Microenvironment/drug effects
11.
bioRxiv ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38915717

ABSTRACT

Striatonigral neurons, known to promote locomotion, reside in both the patch and matrix compartments of the dorsal striatum. However, their compartment-specific contributions to locomotion remain largely unexplored. Using molecular identifier Kremen1 and Calb1 , we showed in mouse models that patch and matrix striatonigral neurons exert opposite influences on locomotion. Matrix striatonigral neurons reduced their activity before the cessation of self-paced locomotion, while patch striatonigral neuronal activity increased, suggesting an inhibitory function. Indeed, optogenetic activation of patch striatonigral neurons suppressed ongoing locomotion with reduced striatal dopamine release, contrasting with the locomotion-promoting effect of matrix striatonigral neurons, which showed an initial increase in dopamine release. Furthermore, genetic deletion of the GABA-B receptor in Aldehyde dehydrogenase 1A1-positive (ALDH1A1 + ) nigrostriatal dopaminergic neurons completely abolished the locomotion-suppressing effect of patch striatonigral neurons. Our findings unravel a compartment-specific mechanism governing locomotion in the dorsal striatum, where patch striatonigral neurons suppress locomotion by inhibiting ALDH1A1 + nigrostriatal dopaminergic neurons.

12.
Res Sq ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38978598

ABSTRACT

The striatonigral neurons are known to promote locomotion1,2. These neurons reside in both the patch (also known as striosome) and matrix compartments of the dorsal striatum3-5. However, the specific contribution of patch and matrix striatonigral neurons to locomotion remain largely unexplored. Using molecular identifier Kringle-Containing Protein Marking the Eye and the Nose (Kremen1) and Calbidin (Calb1)6, we showed in mouse models that patch and matrix striatonigral neurons exert opposite influence on locomotion. While a reduction in neuronal activity in matrix striatonigral neurons precedes the cessation of locomotion, fiber photometry recording during self-paced movement revealed an unexpected increase of patch striatonigral neuron activity, indicating an inhibitory function. Indeed, optogenetic activation of patch striatonigral neurons suppressed locomotion, contrasting with the locomotion-promoting effect of matrix striatonigral neurons. Consistently, patch striatonigral neuron activation markedly inhibited dopamine release, whereas matrix striatonigral neuron activation initially promoted dopamine release. Moreover, the genetic deletion of inhibitory GABA-B receptor Gabbr1 in Aldehyde dehydrogenase 1A1-positive (ALDH1A1+) nigrostriatal dopaminergic neurons (DANs) completely abolished the locomotion-suppressing effect caused by activating patch striatonigral neurons. Together, our findings unravel a compartment-specific mechanism governing locomotion in the dorsal striatum, where patch striatonigral neurons suppress locomotion by inhibiting the activity of ALDH1A1+ nigrostriatal DANs.

13.
Wiley Interdiscip Rev Cogn Sci ; 14(1): e1570, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34169668

ABSTRACT

We define attention as "the set of evolved brain processes that leads to adaptive and effective behavioral selection." Our emphasis is on understanding the biological and neural mechanisms that make the behavioral properties of attention possible. Although much has been learned about the functional operation of attention by postulating and testing different aspects of attention, our view is that the distinctions most frequently relied upon are much less useful for identifying the detailed biological mechanisms and brain circuits. Instead, we adopt an evolutionary perspective that, while speculative, generates a different set of guiding principles for understanding the form and function of attention. We then provide a thought experiment, introducing a device that we intend to serve as an intuition pump for thinking about how the brain processes for attention might be organized, and that illustrates the features of the biological processes that might ultimately answer the question. This article is categorized under: Cognitive Biology > Evolutionary Roots of Cognition Psychology > Attention Philosophy > Psychological Capacities.


Subject(s)
Brain , Cognition , Humans , Learning , Philosophy
14.
Chin J Nat Med ; 21(9): 710-720, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37777320

ABSTRACT

Parkinson's disease (PD) is a common neurodegenerative disease in middle-aged and elderly people. In particular, increasing evidence has showed that astrocyte-mediated neuroinflammation is involved in the pathogenesis of PD. As a precious traditional Chinese medicine, bear bile powder (BBP) has a long history of use in clinical practice. It has numerous activities, such as clearing heat, calming the liver wind and anti-inflammation, and also exhibits good therapeutic effect on convulsive epilepsy. However, whether BBP can prevent the development of PD has not been elucidated. Hence, this study was designed to explore the effect and mechanism of BBP on suppressing astrocyte-mediated neuroinflammation in a mouse model of PD. PD-like behavior was induced in the mice by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (30 mg·kg-1) for five days, followed by BBP (50, 100, and 200 mg·kg-1) treatment daily for ten days. LPS stimulated rat C6 astrocytic cells were used as a cell model of neuroinflammation. THe results indicated that BBP treatment significantly ameliorated dyskinesia, increased the levels of tyrosine hydroxylase (TH) and inhibited astrocyte hyperactivation in the substantia nigra (SN) of PD mice. Furthermore, BBP decreased the protein levels of glial fibrillary acidic protein (GFAP), cyclooxygenase 2 (COX2) and inducible nitric oxide synthase (iNOS), and up-regulated the protein levels of takeda G protein-coupled receptor 5 (TGR5) in the SN. Moreover, BBP significantly activated TGR5 in a dose-dependent manner, and decreased the protein levels of GFAP, iNOS and COX2, as well as the mRNA levels of GFAP, iNOS, COX2, interleukin (IL) -1ß, IL-6 and tumor necrosis factor-α (TNF-α) in LPS-stimulated C6 cells. Notably, BBP suppressed the phosphorylation of protein kinase B (AKT), inhibitor of NF-κB (IκBα) and nuclear factor-κB (NF-κB) proteins in vivo and in vitro. We also observed that TGR5 inhibitor triamterene attenuated the anti-neuroinflammatory effect of BBP on LPS-stimulated C6 cells. Taken together, BBP alleviates the progression of PD mice by suppressing astrocyte-mediated inflammation via TGR5.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Ursidae , Humans , Mice , Rats , Animals , Aged , Middle Aged , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinson Disease/pathology , Astrocytes/metabolism , Astrocytes/pathology , Powders/metabolism , Powders/pharmacology , Powders/therapeutic use , Ursidae/metabolism , NF-kappa B/metabolism , Neuroinflammatory Diseases , Neurodegenerative Diseases/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Lipopolysaccharides/pharmacology , Bile , Mice, Inbred C57BL , Microglia , Disease Models, Animal
15.
Immunobiology ; 228(3): 152388, 2023 05.
Article in English | MEDLINE | ID: mdl-37079985

ABSTRACT

OBJECTIVE: Multiple sclerosis (MS) is an immune regulatory disease that affects the central nervous system (CNS). The main pathological features include demyelination and neurodegeneration, and the pathogenesis is associated with astrocytic neuroinflammation. Taurochenodeoxycholic acid (TCDCA) is one of the conjugated bile acids in animal bile, and it is not clear whether TCDCA could improve MS by inhibiting the activation of astrocytes. This study was aimed to evaluate the effects of TCDCA on experimental autoimmune encephalomyelitis (EAE)-a classical animal model of MS, and to probe its mechanism from the aspect of suppressing astrocytic neuroinflammation. It is expected to prompt the potential application of TCDCA for the treatment of MS. RESULTS: TCDCA effectively alleviated the progression of EAE and improved the impaired neurobehavior in mice. It mitigated the hyperactivation of astrocytes and down-regulated the mRNA expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2), tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and IL-6 in the brain cortex. In the C6 astrocytic cell line induced by lipopolysaccharide (LPS), TCDCA treatment dose-dependently decreased the production of NO and the protein expression of iNOS and glial fibrillary acidic protein (GFAP). TCDCA consistently inhibited the mRNA expressions of COX2, iNOS and other inflammatory mediators. Furthermore, TCDCA decreased the protein expression of phosphorylated serine/threonine kinase (AKT), inhibitor of NFκB α (IκBα) and nuclear factor κB (NFκB). And TCDCA also inhibited the nuclear translocation of NFκB. Conversely, as an inhibitor of the G-protein coupled bile acid receptor Gpbar1 (TGR5), triamterene eliminated the effects of TCDCA in LPS-stimulated C6 cells. CONCLUSION: TCDCA improves the progress of EAE by inhibiting the astrocytic neuroinflammation, which might be exerted by the regulation of TGR5 mediated AKT/NFκB signaling pathway. These findings may prompt the potential application of TCDCA for MS therapy by suppressing astrocyte inflammation.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Mice , Animals , Astrocytes/metabolism , Astrocytes/pathology , Taurochenodeoxycholic Acid/metabolism , Taurochenodeoxycholic Acid/pharmacology , Neuroinflammatory Diseases , Proto-Oncogene Proteins c-akt/metabolism , Lipopolysaccharides/pharmacology , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/pharmacology , NF-kappa B/metabolism , RNA, Messenger/genetics , Mice, Inbred C57BL , Receptors, G-Protein-Coupled/metabolism
16.
Nat Prod Res ; 37(9): 1491-1497, 2023 May.
Article in English | MEDLINE | ID: mdl-34986726

ABSTRACT

Chemical investigation of the edible mushroom Sarcomyxa edulis led to the isolation of one new highly degraded sterol (1), and one new ß-carboline alkaloid (2), along with nine known compounds (3-11) for the first time from this mushroom. The structures of new compounds were elucidated using HR-ESI-MS data and NMR spectroscopy. In addition, anti-inflammatory activity of new compounds was evaluated against lipopolysaccharide-induced NO production in RAW 264.7 macrophages. Compound 2 exhibited a good anti-inflammatory activity with IC50 value of 9.88 ± 0.48 µM, and compound 1 exhibited a weak inhibitory effect with IC50 value of 71.36 ± 5.11 µM.


Subject(s)
Agaricales , Alkaloids , Animals , Mice , Agaricales/chemistry , Macrophages , Alkaloids/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , RAW 264.7 Cells , Molecular Structure
17.
Sci Rep ; 12(1): 2482, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35169189

ABSTRACT

Covert visual attention is accomplished by a cascade of mechanisms distributed across multiple brain regions. Visual cortex is associated with enhanced representations of relevant stimulus features, whereas the contributions of subcortical circuits are less well understood but have been associated with selection of relevant spatial locations and suppression of distracting stimuli. As a step toward understanding these subcortical circuits, here we identified how neuronal activity in the intermediate layers of the superior colliculus (SC) of head-fixed mice is modulated during covert visual attention. We found that spatial cues modulated both firing rate and spike-count correlations. Crucially, the cue-related modulation in firing rate was due to enhancement of activity at the cued spatial location rather than suppression at the uncued location, indicating that SC neurons in our task were modulated by an excitatory or disinhibitory circuit mechanism focused on the relevant location, rather than broad inhibition of irrelevant locations. This modulation improved the neuronal discriminability of visual-change-evoked activity, but only when assessed for neuronal activity between the contralateral and ipsilateral SC. Together, our findings indicate that neurons in the mouse SC can contribute to covert visual selective attention by biasing processing in favor of locations expected to contain task-relevant information.


Subject(s)
Attention/physiology , Superior Colliculi/physiology , Visual Cortex/physiology , Visual Perception/physiology , Animals , Cues , Evoked Potentials, Visual/physiology , Mice, Inbred C57BL , Neurons/physiology , Photic Stimulation
18.
Front Plant Sci ; 13: 917010, 2022.
Article in English | MEDLINE | ID: mdl-35783955

ABSTRACT

The cultivation of Pleurotus eryngii was studied by different methods, such as puncturing and fixed-point mushroom production, shading treatment at the top of the bag, and pulling the top of the bag. The agronomic characters, yield, nutritional components, and antioxidant activities in vitro of fruiting bodies of P. eryngii were determined. The results showed that the number of buds in the perforated treatment was less than that in the production method of traditional fruiting bodies to a certain extent. When a circular hole with a diameter of 1.5 cm was drilled in the perforated treatment, the number of buds was 5, which was less than that in the control group. The efficiency of artificial removal of buds was significantly higher than that of the control group, but the harvesting date was longer than that of other methods. The number of buds in shading treatment and bag opening treatment was significantly less than that in the control group, which could effectively control the number of buds and reduce the cost of manpower and material resources. In terms of nutritional components, the A3 treatment group with a hole diameter of 1.0 cm and a quantity of one had the highest crude protein content of 151.34 g, and a significant difference was observed in crude fiber content compared with other treatments. The extraction rate of B5 crude polysaccharide was the highest, and the extraction rate was 12.90%. The antioxidant activities in vitro increased with the increase of crude polysaccharide concentration. Using A3 treatment to cultivate fruiting bodies is conducive to meeting people's requirements for improving quality of life.

19.
J Ethnopharmacol ; 289: 115063, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35149130

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: According to the Tang Dynasty classics Dietetic Material Medica and the Ming Dynasty classics Compendium of Materia Medica records, bear bile powder (BBP) has been used to treat a variety of diseases, such as febrile seizures, the pathogenesis of which is associated to neuroinflammation. However, the mechanism of BBP on alleviating neuroinflammation remains unclear. AIMS OF THE STUDY: Microglia can be activated by peripheral lipopolysaccharide (LPS) and play an important role in the pathogenesis of neuroinflammation. The purpose of this study is to investigate the effects and mechanism of BBP in inhibiting LPS-induced microglia inflammation in vitro and in vivo. MATERIALS AND METHODS: The anti-microglia inflammatory effects and mechanism of BBP were assessed in LPS-treated BV2 microglial cells and in LPS-treated mice. The mRNA expression levels of the inflammatory factor and the protein expressions of cyclooxygenase-2 (COX2), inducible nitric oxide synthase (iNOS), takeda G-protein coupled receptor 5 (TGR5), nuclear factor-κB (NF-κB), inhibitor of NF-κB (IκBɑ), protein kinase B (AKT) in BV2 cells, mouse hippocampus and cortex were detected. The NF-κB transcription activity and NF-κB nuclear translocation were observed. RESULTS: Our findings showed that BBP reduces branched process retraction and NO in LPS-treated BV2 cells, inhibits the protein expression of ionized calcium binding adaptor molecule 1 in the hippocampus of LPS-treated mice. Moreover, we observed that BBP decreases tumor necrosis factor α, interleukin (IL)-6 and IL-1ß mRNA levels, deceases iNOS and COX-2 protein levels, increases TGR5 protein levels, suppresses the phosphorylation of AKT, NF-κB and IκBɑ protein in microglia both in vitro and in vivo. Further, we found that triamterene, the inhibitor of TGR5, abolishes the effects of BBP in LPS- treated BV2 cells. CONCLUSION: BBP inhibits LPS-induced microglia activation, and the mechanism of its action is partly through TGR5/AKT/NF-κB signaling pathway.


Subject(s)
Bile/chemistry , Biological Products/pharmacology , Medicine, Chinese Traditional , Neuroinflammatory Diseases/drug therapy , Animals , Cell Line , Lipopolysaccharides , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , NF-kappa B/metabolism , Powders , Proto-Oncogene Proteins c-akt/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects , Ursidae
20.
J Psychopharmacol ; 36(7): 849-859, 2022 07.
Article in English | MEDLINE | ID: mdl-35475391

ABSTRACT

BACKGROUND: Hyodeoxycholic acid (HDCA) is a natural secondary bile acid with enormous pharmacological effects, such as modulating inflammation in neuron. However, whether HDCA could suppress microglial inflammation has not been elucidated yet. AIMS: To determine the anti-microglial inflammatory effect of HDCA in lipopolysaccharide (LPS) models and its mechanisms. METHODS: The effect of HDCA was evaluated in LPS-stimulated BV2 microglial cells in vitro and the cortex of LPS-treated mice in vivo. Immunohistochemistry and immunofluorescence were used to visualize the localization of nuclear factor kappa light-chain enhancer of activated B cells (NF-κB) and ionized calcium-binding adaptor protein-1 (Iba-1), respectively. The mRNA expression of inflammatory cytokines was measured by RT-qPCR. The protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), takeda G-coupled protein receptor 5 (TGR5), and the phosphorylation of protein kinase B (AKT), NF-κB, and inhibitor of NF-κB protein α (IκBα) was examined by Western blot. RESULTS: HDCA inhibited the inflammatory responses in LPS-treated BV2 cells and in the cortex of LPS-treated mice, evidenced by decreased production of inflammatory mediators such as iNOS, COX-2, tumor necrosis factor (TNF-α), interleukin (IL)-6, and IL-1ß. Further study demonstrated that HDCA repressed the phosphorylation, nuclear translocation, and transcriptional activity of NF-κB and inhibited the activation of AKT in BV-2 cells induced by LPS. Meanwhile, addition of TGR5 inhibitor, triamterene, abolished the effects of HDCA on TGR5, AKT, and NF-κB. CONCLUSION: The present study demonstrated that HDCA prevents LPS-induced microglial inflammation in vitro and in vivo, the action of which is via regulating TGR5/AKT/NF-κB signaling pathway.


Subject(s)
Deoxycholic Acid , NF-kappa B , Proto-Oncogene Proteins c-akt , Receptors, G-Protein-Coupled , Signal Transduction , Animals , Cyclooxygenase 2/metabolism , Deoxycholic Acid/pharmacology , Inflammation/metabolism , Lipopolysaccharides , Mice , Microglia , NF-kappa B/metabolism , Nitric Oxide/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, G-Protein-Coupled/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL