ABSTRACT
Telomere repeat binding factor 2 (TRF2), a critical element of the shelterin complex, plays a vital role in the maintenance of genome integrity. TRF2 overexpression is found in a wide range of malignant cancers, whereas its down-regulation could cause cell death. Despite its potential role, the selectively small-molecule inhibitors of TRF2 and its therapeutic effects on liver cancer remain largely unknown. Our clinical data combined with bioinformatic analysis demonstrated that TRF2 is overexpressed in liver cancer and that high expression is associated with poor prognosis. Flavokavain B derivative FKB04 potently inhibited TRF2 expression in liver cancer cells while having limited effects on the other five shelterin subunits. Moreover, FKB04 treatment induced telomere shortening and increased the amounts of telomere-free ends, leading to the destruction of T-loop structure. Consequently, FKB04 promoted liver cancer cell senescence without modulating apoptosis levels. In corroboration with these findings, FKB04 inhibited tumor cell growth by promoting telomeric TRF2 deficiency-induced telomere shortening in a mouse xenograft tumor model, with no obvious side effects. These results demonstrate that TRF2 is a potential therapeutic target for liver cancer and suggest that FKB04 may be a selective small-molecule inhibitor of TRF2, showing promise in the treatment of liver cancer.
Subject(s)
Cellular Senescence , Liver Neoplasms , Telomere Shortening , Telomeric Repeat Binding Protein 2 , Telomeric Repeat Binding Protein 2/metabolism , Telomeric Repeat Binding Protein 2/antagonists & inhibitors , Telomeric Repeat Binding Protein 2/genetics , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Animals , Telomere Shortening/drug effects , Cellular Senescence/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Mice , Mice, Nude , Cell Proliferation/drug effects , Mice, Inbred BALB C , Male , Xenograft Model Antitumor AssaysABSTRACT
BACKGROUND: Systemic inflammatory indicators are important in the prognoses of various diseases. Such indicators, including the neutrophil-to-lymphocyte ratio (NLR), can be meaningful in predicting the clinical outcome in patients diagnosed with idiopathic membranous nephropathy (IMN). MATERIALS AND METHODS: 112 IMN patients diagnosed by renal biopsy were recruited retrospectively. The endpoint was defined as a combination of partial and complete remission. Statistical analysis determined the independent factors associated with clinical remission and the predictive utility of NLR. RESULTS: Within the 12-month follow-up period, 72 patients achieved clinical remission after treatment. Univariate analysis identified significant differences in serum albumin, estimated glomerular filtration rate (eGFR), proteinuria, neutrophil count, and NLR between the remission group and the non-remission group (all p < 0.05). Cox proportional hazards indicated that elevated eGFR (HR 1.022, 95% CI (1.009 - 1.035), p = 0.001), lower NLR (HR 0.345, 95% CI (0.237 - 0.501), p = 0.0001), and decreased proteinuria (HR 0.826, 95% CI (0.693 - 0.984), p = 0.032) were protective elements for remission. With an optimal cut-off value of 2.61, the pre-treatment NLR had an excellent ability to identify the remission (area under the curve (AUC), 0.785). Participants were separated into low- and high-NLR groups by using 2.61. Kaplan-Meier survival curves revealed significantly higher remission rates in the lower group (p < 0.0001). CONCLUSION: The NLR is an effective indicator for predicting clinical remission in patients with IMN.
Subject(s)
Glomerulonephritis, Membranous , Humans , Glomerulonephritis, Membranous/drug therapy , Neutrophils , Retrospective Studies , Lymphocytes/pathology , Prognosis , ProteinuriaABSTRACT
Background: Renal anaemia and left ventricular hypertrophy are the main complications of chronic kidney disease and are shared among dialysis patients. This retrospective study aimed to compare the efficacies of the hypoxia-inducible factor prolyl hydroxylase inhibitor roxadustat and recombinant human erythropoietin in reversing ventricular remodeling in dialysis patients with renal anaemia. Methods: A total of 204 participants underwent baseline examinations, including echocardiograms and laboratory tests, before being administered either treatment for at least 24 weeks from January 2018 to October 2021, after which follow-up examinations were conducted at 6 months. Propensity score matching based on key variables included age, gender, cardiovascular diseases, cardiovascular medications, dialysis course and the vascular access at baseline was performed to include populations with similar characteristics between groups. Results: In total, 136 patients were included with roxadustat or recombinant human erythropoietin. The left ventricular mass index after treatment with roxadustat and recombinant human erythropoietin both significantly decreased after 6 months, but there was no significant difference in the change in left ventricular mass index between the two groups. In addition, the left ventricular end-diastolic diameters and left ventricular wall thickness, systolic blood pressure, and diastolic blood pressure significantly decreased in the roxadustat group. Roxadustat and recombinant human erythropoietin also increased haemoglobin significantly, but there was no significant difference in the change in haemoglobin between the two groups. The results of multiple linear regression showed that the change in haemoglobin was independent factor affecting the improvement of left ventricular mass index. Conclusions: The increase of haemoglobin was associated with improving left ventricular hypertrophy in dialysis patients. However, the beneficial effects between roxadustat and recombinant human erythropoietin on left ventricular mass index did not show clear superiority or inferiority in six months.
Subject(s)
Anemia , Erythropoietin , Renal Insufficiency, Chronic , Humans , Anemia/drug therapy , Anemia/etiology , Erythropoietin/therapeutic use , Glycine/therapeutic use , Hemoglobins/analysis , Hypertrophy, Left Ventricular/complications , Hypertrophy, Left Ventricular/drug therapy , Isoquinolines/therapeutic use , Recombinant Proteins/therapeutic use , Renal Dialysis/adverse effects , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/drug therapy , Retrospective Studies , Ventricular RemodelingABSTRACT
Methanol is assimilated through the serine cycle to generate acetyl-CoA without carbon loss. However, a highly active serine cycle requires high consumption of reducing equivalents and ATP, thereby leading to the impaired efficiency of methanol conversion to reduced chemicals. In the present study, a genome-scale flux balance analysis (FBA) predicted that the introduction of the heterologous ribulose monophosphate (RuMP) cycle, a more energy-efficient pathway for methanol assimilation, could theoretically increase growth rate by 31.3% for the model alphaproteobacterial methylotroph Methylorubrum extorquens AM1. Based on this analysis, we constructed a novel synergistic assimilation pathway in vivo by incorporating the RuMP cycle into M. extroquens metabolism with the intrinsic serine cycle. We demonstrated that the operation of the synergistic pathway could increase cell growth rate by 16.5% and methanol consumption rate by 13.1%. This strategy rewired the central methylotrophic metabolism through adjusting core gene transcription, leading to a pool size increase of C2 to C5 central intermediates by 1.2- to 3.6-fold and an NADPH cofactor improvement by 1.3-fold. The titer of 3-hydroxypropionic acid (3-HP), a model product in the newly engineered chassis of M. extorquens AM1, was increased to 91.2 mg/L in shake-flask culture, representing a 3.1-fold increase compared with the control strain with only the serine cycle. The final titer of 3-HP was significantly improved to 0.857 g/L in the fed-batch bioreactor, which was more competitive compared with the other 3-HP producers using methane and CO2 as C1 sources. Collectively, our current study demonstrated that engineering the synergistic methanol assimilation pathway was a promising strategy to increase the carbon assimilation and the yields of reduced chemicals in diverse host strains for C1 microbial cell factories.
Subject(s)
Methanol , Methylobacterium extorquens , Acetyl Coenzyme A , Methylobacterium extorquens/genetics , PentosesABSTRACT
In this paper, we experimentally demonstrate the second harmonic generation of long-range surface plasmon polaritons via quasi-phase matching in lithium niobate. After depositing a 9/13 nm thick Au film on periodically poled lithium niobate, TiO2 of about 2.3 µm in thickness is evaporated on the sample as a refractive-index-matching material. This dielectric (periodically poled lithium niobate)-metal(Au)-dielectric(TiO2) sandwich structure can support the transmission of long-range surface plasmon polaritons through it. By designing a moderate ferroelectric domain period of periodically poled lithium niobate, the phase mismatch between the fundamental wave and second harmonic wave of the long-range surface plasmon polaritons can be compensated and a second harmonic wave can be generated effectively. This can be used to provide integrated plasmonic devices with attractive applications in quantum and classic information processing.
ABSTRACT
Objective To identify the osteogenesis genes whose expression is altered in hypertrophic chondrocytes treated with H2O2. Methods Murine chondrogenitor cells (ATDC5) were differentiated into hypertrophic chondrocytes by Insulin-Transferrin-Selenium (ITS) treatment, and then treated with H2O2. Suitable conditions (concentration, time) were determined by using the MTT assay. After total RNA isolation and cDNA synthesis, the levels of 84 genes were determined using the PCR array, whereas quantitative RT-PCR was carried out to validate the PCR array data. Result We identified 9 up-regulated genes and 12 down-regulated genes, encoding proteins with various functions, such as collagen proteins, transcription factors, proteins involved in skeletal development and bone mineral metabolism, as well as cell adhesion molecules. Quantitative RT-PCR confirmed the altered expression of 5 down-regulated genes (Smad2, Smad4, transforming growth factor $\beta$ receptor 1, transforming growth factor $\beta$ receptor 3, and matrix metalloproteinase 10). Conclusions H2O2 significantly changed the expression of several genes involved in a variety of biological functions. Because of the link between oxidative damage and Kashin-Beck disease, these genes may also be involved in the deep-zone necrosis of the cartilage observed in Kashin-Beck disease.
Subject(s)
Chondrocytes/cytology , Chondrocytes/drug effects , Hydrogen Peroxide/pharmacology , Animals , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Insulin/pharmacology , Kashin-Beck Disease/genetics , Mice , Oxidative Stress , Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Selenium/pharmacology , Signal Transduction/drug effects , Transcriptome/drug effects , Transcriptome/genetics , Transferrin/pharmacologyABSTRACT
As a new type of heterogeneous catalyst with "homogeneous-like" activity, single-site transition-metal materials are usually treated as integrated but separate active centers. A novel grouping effect is reported for single Ni-N4 sites in nitrogen-doped carbon (Ni/NC), where an effective ligand-stabilized polycondensation method endows Ni/NC nanocatalysts with a high content of single-site Ni up to 9.5â wt %. The enhanced electron density at each single Ni-N4 site promotes a highly efficient hydrogen transfer, which is exemplified by the coupling of benzyl alcohol and aniline into N-benzylaniline with a turnover frequency (TOF) value of 7.0â molN-benzylaniline molmetal -1 h-1 ; this TOF outpaces that of reported stable non-noble-metal-based catalysts by a factor of 2.
ABSTRACT
Cognitive ability, as an early human capital, has always been an important research object in modern education and labor economics. Despite growing awareness of the importance of height in individual growth and development, there are few empirical studies on height and cognitive ability. Using the data from the China Education Panel Survey, this paper examined the impact of height on the cognitive ability of adolescents and explored the reasons behind the Chinese pursuit of height growth and the potential impact mechanism. In this paper, comprehensive analysis ability was taken as the representative of cognitive ability. The empirical results showed that height was positively correlated with cognitive ability. From the perspective of the influence mechanism, the hypothesis that height reflected self-esteem, health, non-cognitive ability, and other influences on cognitive ability was excluded. To correct the errors that endogenous problems may cause, we used the PSM method and "age at first menstruation " and "age at first wet dream" as instrumental variables to correct them. The results showed that height still affected cognitive ability, with taller people having higher cognitive ability.
ABSTRACT
To date, glucocorticoids remain the mainstay of treatment of nephrotic syndrome (NS). However, serious side effects and development of drug-resistance following long-term use limit the application of glucocorticoids. Protopanaxadiol (PPD) possesses activity of dissociating transactivation from transrepression by glucocorticoid receptor (GR), which may serve as a potential selective GR modulator. However, steroid-like effects of PPD in vivo are unclear and not defined. How to translate PPD into clinical practice remains to be explored. The current study explored the renoprotection and potential mechanism of PPD and its combination with steroid hormones using adriamycin-induced NS rats. Adriamycin was given intravenously to rats to induce nephropathy. The determination of proteinuria, biochemical changes and inflammatory cytokines were performed, and pathological changes were examined by histopathological examination. Immunostaining and PCR were used to analyze the expression of interesting proteins and genes. The results showed that PPD, alone and in combination with prednisone, efficiently alleviate the symptoms of NS, attenuate nephropathy, improve adriamycin-induced podocyte injury by reducing desmin and increasing synaptopodin expression. In addition, the combined treatment reduced the expression of NF-κB protein and mRNA, as well as cytokine levels, and yet increased the expression of GR protein and mRNA. PPD modulated the transactivation of GR, manifested as repressing TAT, PEPCK and ANGPTL4 mRNA expressions mediated by GR. Meanwhile, PPD inhibited elevation of blood glucose and immune organ atrophy induced by prednisone. In summary, PPD increases the therapeutic effect of prednisone in NS while effectively prevents or decreases the appearance of side effects of glucocorticoids.
ABSTRACT
The proficiency of phyllosphere microbiomes in efficiently utilizing plant-provided nutrients is pivotal for their successful colonization of plants. The methylotrophic capabilities of Methylobacterium/Methylorubrum play a crucial role in this process. However, the precise mechanisms facilitating efficient colonization remain elusive. In the present study, we investigate the significance of methanol assimilation in shaping the success of mutualistic relationships between methylotrophs and plants. A set of strains originating from Methylorubrum extorquens AM1 are subjected to evolutionary pressures to thrive under low methanol conditions. A mutation in the phosphoribosylpyrophosphate synthetase gene is identified, which converts it into a metabolic valve. This valve redirects limited C1-carbon resources towards the synthesis of biomass by up-regulating a non-essential phosphoketolase pathway. These newly acquired bacterial traits demonstrate superior colonization capabilities, even at low abundance, leading to increased growth of inoculated plants. This function is prevalent in Methylobacterium/Methylorubrum strains. In summary, our findings offer insights that could guide the selection of Methylobacterium/Methylorubrum strains for advantageous agricultural applications.
Subject(s)
Methanol , Methylobacterium , Methylobacterium/metabolism , Methylobacterium/genetics , Methylobacterium/enzymology , Methylobacterium/growth & development , Methanol/metabolism , Symbiosis , Mutation , Aldehyde-Lyases/metabolism , Aldehyde-Lyases/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Plant Leaves/microbiology , Plant Leaves/growth & development , Methylobacterium extorquens/genetics , Methylobacterium extorquens/metabolism , Methylobacterium extorquens/growth & development , Methylobacterium extorquens/enzymology , Plant Development , Microbiota/genetics , BiomassABSTRACT
The present study investigates the damages of high intensity focused ultrasound (HIFU) to transplanted hydatid cysts in abdominal cavities of rabbits with aids of ultrasound contrast agent (UCA) and superabsorbent polymer (SAP) alone or in combination. A rabbit model with transplanted hydatid cyst was established by implanting hydatid cyst isolated from infected sheep liver, and HIFU was used to ablate the transplanted cysts with the aid of UCA and SAP alone or in combination. The hydatid cyst with thin wall, good elasticity, approximately spherical, and a diameter of approximately 30 mm was selected for the following experiments. According to our previous studies, a mixture of 0.1 g SAP and 0.5 ml anhydrous ethanol, and the solution of 0.1 ml UCA SonoVue, or both materials were injected into different cyst before HIFU ablation, respectively. The cyst inoculated with the SAP and UCA alone or in combination was immediately implanted into the abdominal cavity of rabbit for HIFU ablation at a dosage of 100 W acoustic powers. The ablation mode was spot scanning at the speed of 3 mm/s. Every target point was scanned three times; every ablating time lasted 3 s. The distance of each ablated layer was 5 mm. The total ablation time depended on the volume of cyst. The comparison of ultrasound image for each layer of hydatid cyst was made before and after HIFU ablation. The protoscolices in ablated cysts were stained by trypan blue exclusion assay, and their structures were observed by light microscopy. To estimate ablation effects of HIFU to the walls of hydatid cysts, the ultrastructure changes of cyst walls were examined by electron microscopy. The pathological changes of rabbits' skins through which ultrasound penetrated were observed to investigate the side effects of HIFU ablation. The results demonstrated that HIFU had some lethal effects to hydatid cysts in vivo, namely, echo enhancements of ultrasound images of cysts, increases in mortality rate of protoscolices from 15.19 % (HIFU alone) to 48.66 % (HIFU + SAP), 38.67 % (HIFU + UCA), and 67.75 % (HIFU + SAP + UCA), respectively, serious structural damages of protoscolices, and destructions or even disappearance of laminated layers and germinal layers in the walls of hydatid cysts ablated by HIFU aided with UCA and SAP alone or in combination. This study demonstrated that destructive effects of HIFU to transplanted hydatid cyst could be enhanced by UCA and SAP alone, but the destruction of HIFU aided with a combination of UCA and SAP to hydatid cysts was more effective than those aided with UCA or SAP alone. The enhanced thermal and cavitation effects of HIFU induced by UCA and SAP might be involved in the enhanced destructive effects of HIFU on hydatid cysts. There were no evidences of pathological changes on rabbits' skins overlying the hydatid cysts after HIFU ablation. The results suggested that the rabbit model with transplanted hydatid cyst may serve as an optional animal model for the experiments of HIFU ablation to hydatid cyst in vivo, and the materials of UCA and SAP were proved as enhancing agents of HIFU ablation to hydatid cysts, and HIFU at a dosage of 100 W acoustic powers was a safe and feasible parameter to ablate the hydatid cysts in this special animal model. These results laid a theoretical foundation for improving HIFU therapy for cystic echinococcosis by inoculation of UCA and SAP into hydatid cysts.
Subject(s)
Abdominal Cavity/diagnostic imaging , Anthelmintics/pharmacology , Contrast Media/pharmacology , Echinococcosis/diagnostic imaging , Echinococcus granulosus/drug effects , High-Intensity Focused Ultrasound Ablation/adverse effects , Polymers/pharmacology , Abdominal Cavity/parasitology , Abdominal Cavity/pathology , Animals , Anthelmintics/administration & dosage , Contrast Media/administration & dosage , Disease Models, Animal , Echinococcosis/pathology , Echinococcus granulosus/ultrastructure , High-Intensity Focused Ultrasound Ablation/statistics & numerical data , Humans , Polymers/administration & dosage , Rabbits , Treatment Outcome , UltrasonographyABSTRACT
Albuminuria and podocyte injury are the key cellular events in the progression of diabetic nephropathy (DN). Acetyl-CoA synthetase 2 (ACSS2) is a nucleocytosolic enzyme responsible for the regulation of metabolic homeostasis in mammalian cells. This study aimed to investigate the possible roles of ACSS2 in kidney injury in DN. We constructed an ACSS2-deleted mouse model to investigate the role of ACSS2 in podocyte dysfunction and kidney injury in diabetic mouse models. In vitro, podocytes were chosen and transfected with ACSS2 siRNA and ACSS2 inhibitor and treated with high glucose. We found that ACSS2 expression was significantly elevated in the podocytes of patients with DN and diabetic mice. ACSS2 upregulation promoted phenotype transformation and inflammatory cytokine expression while inhibiting podocytes' autophagy. Conversely, ACSS2 inhibition improved autophagy and alleviated podocyte injury. Furthermore, ACSS2 epigenetically activated raptor expression by histone H3K9 acetylation, promoting activation of the mammalian target of rapamycin complex 1 (mTORC1) pathway. Pharmacological inhibition or genetic depletion of ACSS2 in the streptozotocin-induced diabetic mouse model greatly ameliorated kidney injury and podocyte dysfunction. To conclude, ACSS2 activation promoted podocyte injury in DN by raptor/mTORC1-mediated autophagy inhibition.
Subject(s)
Acetate-CoA Ligase , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Animals , Humans , Mice , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/metabolism , Disease Models, Animal , Kidney/metabolism , Ligases , Mammals , Mechanistic Target of Rapamycin Complex 1 , Acetate-CoA Ligase/metabolismABSTRACT
OBJECTIVES: Nephrotic syndrome (NS) remains a therapeutic challenge for nephrologists. Piceatannol-3'-O-ß-d-glucopyranoside (PG) is a major active ingredient in Quzha. The purpose of the study was to assess the renoprotection of PG. METHODS: In vitro, the podocyte protection of PG was assessed in MPC-5. SD rats were injected with adriamycin to induce nephropathy in vivo. The determination of biochemical changes and inflammatory cytokines was performed, and pathological changes were examined by histopathological examination. Immunostaining and western blot analyses were used to analyse expression levels of proteins. KEY FINDINGS: The results showed that PG improved adriamycin-induced podocyte injury, attenuated nephropathy, improved hypoalbuminemia and hyperlipidaemia, and lowered cytokine levels. The podocyte protection of PG was further verified by reduction of desmin and increasing synaptopodin expression. Furthermore, treatment with PG down-regulated the expression of HMGB1, TLR4 and NF-κB along with its upstream regulator, IKKß and yet up-regulated IκBα expression by western blot analysis. CONCLUSIONS: Overall, our data showed that PG has a favourable renoprotection in experimental nephrosis, apparently by amelioration of podocyte injury. PG might mediate these effects via modulation of the HMGB1/TLR4/NF-κB signalling pathway. The study first provides a promising leading compound for the treatment of NS.
Subject(s)
HMGB1 Protein , NF-kappa B , Signal Transduction , Animals , Rats , Cytokines , Doxorubicin , NF-kappa B/metabolism , Rats, Sprague-Dawley , Toll-Like Receptor 4/metabolismABSTRACT
BACKGROUND: Diabetic nephropathy (DN) is the leading cause of end-stage renal disease in the developed world. Podocyte injury is a critical cellular event involved in the progression of DN. Our previous studies demonstrated that platelet-derived microparticles (PMPs) mediated endothelial injury in diabetic rats. This study aimed to investigate whether PMPs are deposited in podocytes and to assess their potential effects on podocyte injury in DN. METHODS: The deposition of PMPs in podocytes was assessed by immunofluorescent staining and electron microscopy. The changes in renal pathology and ultra-microstructure were assessed by periodic acid-Schiff staining and electron microscopy, respectively. The expression of inflammatory cytokines and extracellular matrix proteins was measured by immuno-histochemical staining and western blot. RESULTS: PMPs were widely deposited in podocytes of glomeruli in diabetic patients and animal models and closely associated with DN progression. Interestingly, aspirin treatment significantly inhibited the accumulation of PMPs in the glomeruli of diabetic rats, alleviated mesangial matrix expansion and fusion of foot processes, and decreased the protein expression of inflammatory cytokines and extracellular matrix secretion. An in vitro study further confirmed the deposition of PMPs in podocytes. Moreover, PMP stimulation induced the phenotypic transition of podocytes through decreased podocin protein expression and increased protein expression of α-SMA and fibronectin, which was correlated with increased production of inflammatory cytokines. CONCLUSION: Our findings demonstrated for the first time that the deposition of PMPs in podocytes contributed to the development of DN.
Subject(s)
Cell-Derived Microparticles , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Podocytes , Rats , Animals , Diabetic Nephropathies/complications , Podocytes/metabolism , Diabetes Mellitus, Experimental/metabolism , Cell-Derived Microparticles/metabolism , Cell-Derived Microparticles/pathology , Cytokines/metabolismABSTRACT
Background: Heart failure (HF) is a life-threatening complication of cardiovascular disease. HF patients are more likely to progress to acute kidney injury (AKI) with a poor prognosis. However, it is difficult for doctors to distinguish which patients will develop AKI accurately. This study aimed to construct a machine learning (ML) model to predict AKI occurrence in HF patients. Materials and methods: The data of HF patients from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) database was retrospectively analyzed. A ML model was established to predict AKI development using decision tree, random forest (RF), support vector machine (SVM), K-nearest neighbor (KNN), and logistic regression (LR) algorithms. Thirty-nine demographic, clinical, and treatment features were used for model establishment. Accuracy, sensitivity, specificity, and the area under the receiver operating characteristic curve (AUROC) were used to evaluate the performance of the ML algorithms. Results: A total of 2,678 HF patients were engaged in this study, of whom 919 developed AKI. Among 5 ML algorithms, the RF algorithm exhibited the highest performance with the AUROC of 0.96. In addition, the Gini index showed that the sequential organ function assessment (SOFA) score, partial pressure of oxygen (PaO2), and estimated glomerular filtration rate (eGFR) were highly relevant to AKI development. Finally, to facilitate clinical application, a simple model was constructed using the 10 features screened by the Gini index. The RF algorithm also exhibited the highest performance with the AUROC of 0.95. Conclusion: Using the ML model could accurately predict the development of AKI in HF patients.
ABSTRACT
Background: G-protein-coupled receptor 43 (GPR43) is a posttranscriptional regulator involved in cholesterol metabolism. This study aimed to investigate the possible roles of GPR43 activation in podocyte lipotoxicity in diabetic nephropathy (DN) and explore the potential mechanisms. Methods: The experiments were conducted by using diabetic GPR43-knockout mice and a podocyte cell culture model. Lipid deposition and free cholesterol levels in kidney tissues were measured by BODIPY staining and quantitative cholesterol assays, respectively. The protein expression of GPR43, LC3II, p62, beclin1, low-density lipoprotein receptor (LDLR) and early growth response protein 1 (EGR1) in kidney tissues and podocytes was measured by real-time PCR, immunofluorescent staining and Western blotting. Results: There were increased LDL cholesterol levels in plasma and cholesterol accumulation in the kidneys of diabetic mice. However, GPR43 gene knockout inhibited these changes. An in vitro study further demonstrated that acetate treatment induced cholesterol accumulation in high glucose-stimulated podocytes, which was correlated with increased cholesterol uptake mediated by LDLR and reduced cholesterol autophagic degradation, as characterized by the inhibition of LC3 maturation, p62 degradation and autophagosome formation. Gene knockdown or pharmacological inhibition of GPR43 prevented these effects on podocytes. Furthermore, GPR43 activation increased extracellular regulated protein kinases 1/2 (ERK1/2) activity and EGR1 expression in podocytes, which resulted in an increase in cholesterol influx and autophagy inhibition. In contrast, after GPR43 deletion, these changes in podocytes were improved, as shown by the in vivo and in vitro results. Conclusion: GPR43 activation-mediated lipotoxicity contributes to podocyte injury in DN by modulating the ERK/EGR1 pathway.
Subject(s)
Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/metabolism , Early Growth Response Protein 1/metabolism , Lipid Metabolism , MAP Kinase Signaling System , Podocytes/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Disease Models, Animal , Mice , Receptors, LDL/metabolismABSTRACT
This study aimed to report the clinical characteristics of penicilliosis marneffei (PSM) in three children negative to HIV. Three children were diagnosed with PSM in the Department of Emergency Medicine, Hunan Children's Hospital between February 2016 to July 2020. The clinical characteristics, laboratory findings, and concomitant diseases were recorded, and the related literatures were reviewed. The clinical characteristics and treatment of PSM were reported according to our experience and literature review. The initial symptom was right lower limb mass in 1 child (first) who developed fever and cough about 1 month later and then was misdiagnosed with tuberculosis. The other child (second) had a fever, reductions in red blood cells, white blood cells and platelets, hepatosplenomegaly and lymphadenectasis. The third child had fever, jaundice, multiple organ dysfunction syndrome (MODS), hepatosplenomegaly and lymphadenectasis. The first child (Case 1) had STAT1 gene mutation on genetic examination, and the second child (Case 2) had history of onychomycosis and oral ulcer, the third child (Case 3) had STAT3 gene mutation on genetic examination, diagnosed with Hyperimmunoglobulin E syndromes (HIES). PSM was confirmed in all cases by the culture bone marrow. All three cases were diagnosed through medulloculture. Case 1 and Case 2 also had lymph node biopsy. Case 3 had sputum culture and bronchoalveolar lavage fluid (BALF). The first child was intravenously administered with voriconazole and amphotericin B liposomes, and orally administered with itraconazole for maintenance therapy, which was discontinued 1 year later. The second child was administered with voriconazole intravenously and thereafter orally for a total of 7 months. Recurrence was not observed. The third child was given amphotericin B for 2 days (discontinued due to liver dysfunction), and intravenous voriconazole for 4 days. The patient gave up therapy finally. In conclusion, HIV negative children can also develop PSM, and may be related to the STAT1/STAT3 gene mutation. For children having no response to antibiotic or antiviral therapy, bacterial/fungal culture or biopsy should be performed as soon as possible to confirm the diagnosis, and physicians should actively identify the underlying diseases of PSM patients, which is beneficial for the early diagnosis, early treatment and improvement of prognosis.
Subject(s)
HIV Infections , Mycoses , Penicillium , Child , Fever , Humans , PrognosisABSTRACT
ETHNOPHARMACOLOGICAL RELEVANCE: Salvianolic acid A (SAA) is extracted from traditional Chinese medicine Salvia miltiorrhiza and is the main water-soluble and the biologically active ingredient. SAA possesses a variety of pharmacological activities and has an excellent protective effect on kidney disease, especially steroid resistant nephrotic syndrome (SRNS), and has advantages in improving the efficacy of glucocorticoids, but its mechanism needs to be further explored. PURPOSE: The study was designed to explore the effect of suPAR and uPAR in SRNS patients and evaluate the potential effect of SAA in improving podocyte steroid resistance and explore its mechanism. METHODS AND MATERIALS: The ELISA kits were used to detect the levels of suPAR in the blood and urine of subjects. The levels of uPAR, GRα, and GRß expression in renal tissues of SRNS patients was detected by immunohistochemistry and analyzed using the Pearson method. In vitro studies, steroid resistance model was induced by the TNF-α and IFN-γ. The protein and mRNA expression of Nephrin, GR, GRα and GRß were analyzed using western blot and qRT-PCR. The activity of GR-DNA binding was detected by using TransAM™ GR kits. Adriamycin further induced steroid resistance podocyte. Flow cytometry was used to detect the effect of SAA on podocyte apoptosis. ELISA assay was used to detect the suPAR expression in the podocyte supernatant. Western blot and qRT-PCR were used to detect the protein and mRNA expression of uPAR and Nephrin in podocytes. RESULTS: The serum and urine levels of suPAR were conspicuously higher in SRNS patients than healthy volunteers and SSNS patients, and the expression of uPAR in renal tissue of SRNS patients is negatively correlated with GRα, but positively correlated with GRß. The combination of TNF-α and IFN-γ could conspicuously increase the GRß expression and reduce GRα/GRß, and induce steroid resistance in podocytes. Moreover, we found that SAA could reduce the apoptosis of podocytes and suppress the expression of suPAR/uPAR, and increase the expression of Nephrin. CONCLUSION: The level of suPAR and uPAR expression may have important value in predicting glucocorticoids resistance in patients with idiopathic nephrotic syndrome (INS). The combination of TNF-α and IFN-γ induce podocytes can establish steroid resistance model in vitro. SAA could improve glucocorticoids resistance of podocyte which can be attributed in part to regulate the suPAR/uPAR-αvß3 signaling pathway.
Subject(s)
Caffeic Acids/pharmacology , Glucocorticoids/pharmacology , Lactates/pharmacology , Nephrotic Syndrome/drug therapy , Receptors, Urokinase Plasminogen Activator/genetics , Adult , Caffeic Acids/isolation & purification , Case-Control Studies , Female , Humans , Lactates/isolation & purification , Male , Membrane Proteins/genetics , Middle Aged , Nephrotic Syndrome/genetics , Nephrotic Syndrome/physiopathology , Podocytes/drug effects , Podocytes/metabolism , Receptors, Glucocorticoid/genetics , Salvia miltiorrhiza/chemistry , Signal Transduction/drug effects , Young AdultABSTRACT
Ezetimibe is a top-selling hypolipidemic drug for the treatment of cardiovascular diseases. Biosynthesis of (4S)-3-[(5S)-5-(4-fluorophenyl)-5-hydroxypentanoyl]-4-phenyl-1,3-oxazolidin-2-one ((S)-ET-5) using carbonyl reductase has shown advantages including high catalytic efficiency, excellent stereoselectivity, mild reaction conditions, and environmental friendness, and was considered as the key step for ezetimibe production. The regeneration efficiency of the cofactor, nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) is one of the main restricted factor. Recombinant Escherichia coli strain (smCR125) coexpressing carbonyl reductase (CR125) and glucose dehydrogenase were successfully constructed and applied for the production of (S)-ET-5 for the first time. Without extra addition of the coenzyme NADPH, the yield of 99.8% and the enantiomeric excess (e.e.) of 99.9% were achieved under ET-4 concentration of 200 g/L. Using a substrate fed-batch strategy, under the optimal conditions, the substrate ET-4 concentration was increased to 250 g/L with the yield of 98.9% and the e.e. of 99.9% after 12 hr reaction. The space-time yield of 494.5 g L-1 d-1 and the space-time yield per gram biocatalyst of 24.7 g L-1 d-1 g-1 DCW were achieved, which were higher than ever reported for the biosynthesis of the ezetimibe intermediate.