ABSTRACT
Flat bands (FBs), presenting a strongly interacting quantum system, have drawn increasing interest recently. However, experimental growth and synthesis of FB materials have been challenging and have remained elusive for the ideal form of monolayer materials where the FB arises from destructive quantum interference as predicted in 2D lattice models. Here, we report surface growth of a self-assembled monolayer of 2D hydrogen-bond (H-bond) organic frameworks (HOFs) of 1,3,5-tris(4-hydroxyphenyl)benzene (THPB) on Au(111) substrate and the observation of FB. High-resolution scanning tunneling microscopy or spectroscopy shows mesoscale, highly ordered, and uniform THPB HOF domains, while angle-resolved photoemission spectroscopy highlights a FB over the whole Brillouin zone. Density-functional-theory calculations and analyses reveal that the observed topological FB arises from a hidden electronic breathing-kagome lattice without atomically breathing bonds. Our findings demonstrate that self-assembly of HOFs provides a viable approach for synthesis of 2D organic topological materials, paving the way to explore many-body quantum states of topological FBs.
ABSTRACT
The study of topological materials possessing nontrivial band structures enables exploitation of relativistic physics and development of a spectrum of intriguing physical phenomena. However, previous studies of Weyl physics have been limited exclusively to semimetals. Here, via systematic magnetotransport measurements, two representative topological transport signatures of Weyl physics, the negative longitudinal magnetoresistance and the planar Hall effect, are observed in the elemental semiconductor tellurium. More strikingly, logarithmically periodic oscillations in both the magnetoresistance and Hall data are revealed beyond the quantum limit and found to share similar characteristics with those observed in ZrTe5 and HfTe5 The log-periodic oscillations originate from the formation of two-body quasi-bound states formed between Weyl fermions and opposite charge centers, the energies of which constitute a geometric series that matches the general feature of discrete scale invariance (DSI). Our discovery reveals the topological nature of tellurium and further confirms the universality of DSI in topological materials. Moreover, introduction of Weyl physics into semiconductors to develop "Weyl semiconductors" provides an ideal platform for manipulating fundamental Weyl fermionic behaviors and for designing future topological devices.
ABSTRACT
A charge density wave (CDW) is a collective quantum phenomenon in metals and features a wavelike modulation of the conduction electron density. A microscopic understanding and experimental control of this many-body electronic state in atomically thin materials remain hot topics in materials physics. By means of material engineering, we realized a dimensionality and Zr intercalation induced semiconductor-metal phase transition in 1T-ZrX2 (X = Se, Te) ultrathin films, accompanied by a commensurate 2 × 2 CDW order. Furthermore, we observed a CDW energy gap of up to 22 meV around the Fermi level. Fourier-transformed scanning tunneling microscopy and angle-resolved photoemission spectroscopy reveal that 1T-ZrX2 films exhibit the simplest Fermi surface among the known CDW materials in TMDCs, consisting only of a Zr 4d derived elliptical electron conduction band at the corners of the Brillouin zone.
ABSTRACT
The isotopic fractionation factor and element partition coefficient can be calculated only after the geometric optimization of the molecular clusters is completed. Optimization directly affects the accuracy of some parameters, such as the average bond length, molecular volume, harmonic vibrational frequency, and other thermodynamic parameters. Here, we used the improved volume variable cluster model (VVCM) method to optimize the molecular clusters of a typical oxide, quartz. We documented the average bond length and relative volume change. Finally, we extracted the harmonic vibrational frequencies and calculated the equilibrium fractionation factor of the silicon and oxygen isotopes. Given its performance in geometrical optimization and isotope fractionation factor calculation, we further applied the improved VVCM method to calculate isotope equilibrium fractionation factors of Cd and Zn between the hydroxide (Zn-Al layered double hydroxide), carbonate (cadmium-containing calcite) and their aqueous solutions under superficial conditions. We summarized a detailed procedure and used it to re-evaluate published theoretical results for cadmium-containing hydroxyapatite, emphasizing the relative volume change for all clusters and confirming the optimal point charge arrangement (PCA). The results showed that the average bond length and isotope fractionation factor are consistent with those published in previous studies, and the relative volume changes are considerably lower than the results calculated using the periodic boundary method. Specifically, the average Si-O bond length of quartz was 1.63 Å, and the relative volume change of quartz centered on silicon atoms was - 0.39%. The average Zn-O bond length in the Zn-Al-layered double hydroxide was 2.10 Å, with a relative volume change of 1.96%. Cadmium-containing calcite had an average Cd-O bond length of 2.28 Å, with a relative volume change of 0.45%. At 298 K, the equilibrium fractionation factors between quartz, Zn-Al-layered double hydroxide, cadmium-containing calcite, and their corresponding aqueous solutions were [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] respectively. These results strongly support the reliability of the improved VVCM method for geometric optimization of molecular clusters.
ABSTRACT
A flatband representing a highly degenerate and dispersionless manifold state of electrons may offer unique opportunities for the emergence of exotic quantum phases. To date, definitive experimental demonstrations of flatbands remain to be accomplished in realistic materials. Here, we present the first experimental observation of a striking flatband near the Fermi level in the layered Fe_{3}Sn_{2} crystal consisting of two Fe kagome lattices separated by a Sn spacing layer. The band flatness is attributed to the local destructive interferences of Bloch wave functions within the kagome lattices, as confirmed through theoretical calculations and modelings. We also establish high-temperature ferromagnetic ordering in the system and interpret the observed collective phenomenon as a consequence of the synergetic effect of electron correlation and the peculiar lattice geometry. Specifically, local spin moments formed by intramolecular exchange interaction are ferromagnetically coupled through a unique network of the hexagonal units in the kagome lattice. Our findings have important implications to exploit emergent flat-band physics in special lattice geometries.
ABSTRACT
The current strategies for building 2D organic-inorganic heterojunctions involve mostly wet-chemistry processes or exfoliation and transfer, leading to interface contaminations, poor crystallizing, or limited size. Here we show a bottom-up procedure to fabricate 2D large-scale heterostructure with clean interface and highly-crystalline sheets. As a prototypical example, a well-ordered hydrogen-bonded organic framework is self-assembled on the highly-oriented-pyrolytic-graphite substrate. The organic framework adopts a honeycomb lattice with faulted/unfaulted halves in a unit cell, resemble to molecular "graphene". Interestingly, the topmost layer of substrate is self-lifted by organic framework via strong interlayer coupling, to form effectively a floating organic framework/graphene heterostructure. The individual layer of heterostructure inherits its intrinsic property, exhibiting distinct Dirac bands of graphene and narrow bands of organic framework. Our results demonstrate a promising approach to fabricate 2D organic-inorganic heterostructure with large-scale uniformity and highly-crystalline via the self-lifting effect, which is generally applicable to most of van der Waals materials.
ABSTRACT
Tracking the dynamic surface evolution of metal halide perovskite is crucial for understanding the corresponding fundamental principles of photoelectric properties and intrinsic instability. However, due to the volatility elements and soft lattice nature of perovskites, several important dynamic behaviors remain unclear. Here, an ultra-high vacuum (UHV) interconnection system integrated by surface-sensitive probing techniques has been developed to investigate the freshly cleaved surface of CH3NH3PbBr3 in situ under given energy stimulation. On this basis, the detailed three-step chemical decomposition pathway of perovskites has been clarified. Meanwhile, the evolution of crystal structure from cubic phase to tetragonal phase on the perovskite surface has been revealed under energy stimulation. Accompanied by chemical composition and crystal structure evolution, electronic structure changes including energy level position, hole effective mass, and Rashba splitting have also been accurately determined. These findings provide a clear perspective on the physical origin of optoelectronic properties and the decomposition mechanism of perovskites.
ABSTRACT
The van der Waals layered material MnBi2Te4, as a magnetic topological insulator, has attracted tremendous interest for novel physics research in the fields of condensed matter physics and materials science. However, the nonlinear optical properties of MnBi2Te4 and its applications in ultrafast optics have rarely been explored. In this study, high-quality MnBi2Te4 nanosheets have been successfully synthesized by the self-flux method. The morphology, chemical composition, magnetic properties, and nonlinear optical characteristics were systematically investigated. The magnetic transition of MnBi2Te4 was confirmed by a low-temperature spatially resolved spectroscopic technique. The saturable absorption property of MnBi2Te4 was measured by a balanced twin-detector system with a modulation depth of 4.5% and a saturation optical intensity of 2.35 GW/cm2. Furthermore, by inserting the MnBi2Te4-based saturable absorber, a soliton mode-locking laser operating at 1558.8 nm was obtained with a pulse duration of 331 fs. This research will pave the way for applications of the magnetic TI MnBi2Te4 in nonlinear optics and photonics.
ABSTRACT
Kagome metal CsV3Sb5 has attracted unprecedented attention due to the charge density wave (CDW), Z2 topological surface states and unconventional superconductivity. However, how the paramagnetic bulk CsV3Sb5 interacts with magnetic doping is rarely explored. Here we report a Mn-doped CsV3Sb5 single crystal successfully achieved by ion implantation, which exhibits obvious band splitting and enhanced CDW modulation via angle-resolved photoemission spectroscopy (ARPES). The band splitting is anisotropic and occurs in the entire Brillouin region. We observed a Dirac cone gap at the K point but it closed at 135 K ± 5 K, much higher than the bulk value of â¼94 K, suggesting enhanced CDW modulation. According to the facts of the transferred spectral weight to the Fermi level and weak antiferromagnetic order at low temperature, we ascribe the enhanced CDW to the polariton excitation and Kondo shielding effect. Our study not only offers a simple method to realize deep doping in bulk materials, but also provides an ideal platform to explore the coupling between exotic quantum states in CsV3Sb5.
ABSTRACT
The phenomenon of oxygen incorporation-induced superconductivity in iron telluride (Fe1+yTe, with antiferromagnetic (AFM) orders) is intriguing and quite different from the case of FeSe. Until now, the microscopic origin of the induced superconductivity and the role of oxygen are far from clear. Here, by combining in situ scanning tunneling microscopy/spectroscopy (STM/STS) and X-ray photoemission spectroscopy (XPS) on oxygenated FeTe, we found physically adsorbed O2 molecules crystallized into c (2/3 × 2) structure as an oxygen overlayer at low temperature, which was vital for superconductivity. The O2 overlayer were not epitaxial on the FeTe lattice, which implied weak O2 -FeTe interaction but strong molecular interactions. The energy shift observed in the STS and XPS measurements indicated a hole doping effect from the O2 overlayer to the FeTe layer, leading to a superconducting gap of 4.5 meV opened across the Fermi level. Our direct microscopic probe clarified the role of oxygen on FeTe and emphasized the importance of charge transfer effect to induce superconductivity in iron-chalcogenide thin films.
ABSTRACT
Selective C(sp3) -H activation is of fundamental importance in processing alkane feedstocks to produce high-value-added chemical products. By virtue of an on-surface synthesis strategy, we report selective cascade dehydrogenation of n-alkane molecules under surface constraints, which yields monodispersed all-trans conjugated polyenes with unprecedented length controllability. We are also able to demonstrate the generality of this concept for alkyl-substituted molecules with programmable lengths and diverse functionalities, and more importantly its promising potential in molecular wiring.
ABSTRACT
The dangling-bond-free surfaces of van der Waals (vdW) materials make it possible to build ultrathin junctions. Fundamentally, the interfacial phenomena and related optoelectronic properties of vdW junctions are modulated by the interlayer coupling effect. However, the weak interlayer coupling of vdW heterostructures limits the interlayer charge transfer efficiency, resulting in low photoresponsivity. Here, a bilayer MoS2 homogeneous junction is constructed by stacking the as-grown onto the self-healed monolayer MoS2. The homojunction barrier of â¼165 meV is obtained by the electronic structure modulation of defect self-healing. This homojunction reveals the stronger interlayer coupling effect in comparison with vdW heterostructures. This ultrastrong interlayer coupling effect is experimentally verified by Raman spectra and angle-resolved photoemission spectroscopy. The ultrafast interlayer charge transfer takes place within â¼447 fs, which is faster than those of most vdW heterostructures. Furthermore, the homojunction photodiode manifests outstanding rectifying behavior with an ideal factor of â¼1.6, perfect air stability over 12 months, and high responsivity of â¼54.6 mA/W. Moreover, the interlayer exciton peak of â¼1.66 eV is found in vdW homojunctions. This work offers an uncommon vdW junction with strong interlayer coupling and perfects the relevance of interlayer coupling and interlayer charge transfer.
ABSTRACT
Magnetic topological insulators (MTIs) offer a combination of topologically nontrivial characteristics and magnetic order and show promise in terms of potentially interesting physical phenomena such as the quantum anomalous Hall (QAH) effect and topological axion insulating states. However, the understanding of their properties and potential applications have been limited due to a lack of suitable candidates for MTIs. Here, we grow two-dimensional single crystals of Mn(SbxBi(1-x))2Te4 bulk and exfoliate them into thin flakes in order to search for intrinsic MTIs. We perform angle-resolved photoemission spectroscopy, low-temperature transport measurements, and first-principles calculations to investigate the band structure, transport properties, and magnetism of this family of materials, as well as the evolution of their topological properties. We find that there exists an optimized MTI zone in the Mn(SbxBi(1-x))2Te4 phase diagram, which could possibly host a high-temperature QAH phase, offering a promising avenue for new device applications.
ABSTRACT
The discovery of a new type-II Dirac semimetal in Ir1-x Ptx Te2 with optimized band structure is described. Pt dopants protect the crystal structure holding the Dirac cones and tune the Fermi level close to the Dirac point. The type-II Dirac dispersion in Ir1-x Ptx Te2 is confirmed by angle-resolved photoemission spectroscopy and first-principles calculations. Superconductivity is also observed and persists when the Fermi level aligns with the Dirac points. Ir1-x Ptx Te2 is an ideal platform for further studies on the exotic properties and potential applications of type-II DSMs, and opens up a new route for the investigation of the possible topological superconductivity and Majorana physics.
ABSTRACT
We report the study of a triaxial vector magnetoresistance (MR) in nonmagnetic (Bi1-xInx)2Se3 nanodevices at the composition of x = 0.08. We show a dumbbell-shaped in-plane negative MR up to room temperature as well as a large out-of-plane positive MR. MR at three directions is about in a -3%:-1%:225% ratio at 2 K. Through both the thickness and composition-dependent magnetotransport measurements, we show that the in-plane negative MR is due to the topological phase transition enhanced intersurface coupling near the topological critical point. Our devices suggest the great potential for room-temperature spintronic applications in, for example, vector magnetic sensors.
ABSTRACT
BACKGROUND: Fatty alcohols are important oleochemicals widely used in detergents, surfactants and personal care products. Bio-synthesized fatty alcohol provides a promising alternative to traditional fatty alcohol industry. Harnessing oleaginous microorganisms for fatty alcohol production may offer a new strategy to achieve a commercially viable yield that currently still seems to be a remote target. RESULTS: In this study, we introduced functional fatty acyl-CoA reductase (FAR), TaFAR1 to direct the conversion from fatty acyl-CoA to fatty alcohol in Yarrowia lipolytica (Y. lipolytica), an oleaginous non-conventional yeast showing great lipid-producing capability. Tri-module optimizations including eliminating fatty alcohol degradation pathway, enhancing TaFAR1 expression, and increasing fatty acyl-CoA supply were furtherly conducted, resulting in 63-fold increase in intracellular fatty alcohol-producing capability compared to the starting strain. Thus, this work demonstrated successful construction of first generation of Y. lipolytica fatty alcohol-producing cell factory. Through the study of effect of environmental nutrition on fatty alcohol production, up to 636.89 mg/L intracellular hexadecanol (high fatty alcohol-retaining capability) and 53.32 mg/L extracellular hexadecanol were produced by this cell factory through batch fermentation, which was comparable to the highest production of Saccharomyces cerevisiae under the similar condition. CONCLUSION: This work preliminarily explored fatty alcohol-producing capability through mobilization of FAR and fatty acid metabolism, maximizing the intracellular fatty alcohol-producing capability, suggesting that Y. lipolytica cell factory potentially offers a promising platform for fatty alcohol production.