Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Proc Natl Acad Sci U S A ; 120(12): e2219029120, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36917661

ABSTRACT

Adenosine-to-inosine (A-to-I) editing is the most prevalent type of RNA editing in animals, and it occurs in fungi specifically during sexual reproduction. However, it is debatable whether A-to-I RNA editing is adaptive. Deciphering the functional importance of individual editing sites is essential for the mechanistic understanding of the adaptive advantages of RNA editing. Here, by performing gene deletion for 17 genes with conserved missense editing (CME) sites and engineering underedited (ue) and overedited (oe) mutants for 10 CME sites using site-specific mutagenesis at the native locus in Fusarium graminearum, we demonstrated that two CME sites in CME5 and CME11 genes are functionally important for sexual reproduction. Although the overedited mutant was normal in sexual reproduction, the underedited mutant of CME5 had severe defects in ascus and ascospore formation like the deletion mutant, suggesting that the CME site of CME5 is co-opted for sexual development. The preediting residue of Cme5 is evolutionarily conserved across diverse classes of Ascomycota, while the postediting one is rarely hardwired into the genome, implying that editing at this site leads to higher fitness than a genomic A-to-G mutation. More importantly, mutants expressing only the underedited or the overedited allele of CME11 are defective in ascosporogenesis, while those expressing both alleles displayed normal phenotypes, indicating that concurrently expressing edited and unedited versions of Cme11 is more advantageous than either. Our study provides convincing experimental evidence for the long-suspected adaptive advantages of RNA editing in fungi and likely in animals.


Subject(s)
Ascomycota , RNA , Animals , RNA Editing/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Mutation , Ascomycota/genetics
2.
Proc Natl Acad Sci U S A ; 120(42): e2313034120, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37812726

ABSTRACT

Meiosis is essential for generating genetic diversity and sexual spores, but the regulation of meiosis and ascosporogenesis is not clear in filamentous fungi, in which dikaryotic and diploid cells formed inside fruiting bodies are not free living and independent of pheromones or pheromone receptors. In this study, Gia1, a non-pheromone GPCR (G protein-coupled receptor) with sexual-specific expression in Fusarium graminearum, is found to be essential for ascosporogenesis. The gia1 mutant was normal in perithecium development, crozier formation, and karyogamy but failed to undergo meiosis, which could be partially rescued by a dominant active mutation in GPA1 and activation of the Gpmk1 pathway. GIA1 orthologs have conserved functions in regulating meiosis and ascosporogenesis in Sordariomycetes. GIA1 has a paralog, GIP1, in F. graminearum and other Hypocreales species which is essential for perithecium formation. GIP1 differed from GIA1 in expression profiles and downstream signaling during sexual reproduction. Whereas the C-terminal tail and IR3 were important for intracellular signaling, the N-terminal region and EL3 of Gia1 were responsible for recognizing its ligand, which is likely a protein enriched in developing perithecia, particularly in the gia1 mutant. Taken together, these results showed that GIA1 encodes a non-pheromone GPCR that regulates the entry into meiosis and ascosporogenesis via the downstream Gpmk1 MAP kinase pathway in F. graminearum and other filamentous ascomycetes.


Subject(s)
Ascomycota , Fusarium , Triticum/microbiology , Pheromones/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fusarium/genetics , Ascomycota/genetics , Ascomycota/metabolism , Meiosis/genetics , Spores, Fungal
3.
PLoS Genet ; 16(11): e1009185, 2020 11.
Article in English | MEDLINE | ID: mdl-33137093

ABSTRACT

Histone acetylation, balanced by histone acetyltransferase (HAT) and histone deacetylase (HDAC) complexes, affects dynamic transitions of chromatin structure to regulate transcriptional accessibility. However, little is known about the interplay between HAT and HDAC complexes in Fusarium graminearum, a causal agent of Fusarium Head Blight (FHB) that uniquely contains chromosomal regions enriched for house-keeping or infection-related genes. In this study, we identified the ortholog of the human inhibitor of growth (ING1) gene in F. graminearum (FNG1) and found that it specifically interacts with the FgEsa1 HAT of the NuA4 complex. Deletion of FNG1 led to severe growth defects and blocked conidiation, sexual reproduction, DON production, and plant infection. The fng1 mutant was normal in H3 acetylation but significantly reduced in H4 acetylation. A total of 34 spontaneous suppressors of fng1 with faster growth rate were isolated. Most of them were still defective in sexual reproduction and plant infection. Thirty two of them had mutations in orthologs of yeast RPD3, SIN3, and SDS3, three key components of the yeast Rpd3L HDAC complex. Four mutations in these three genes were verified to suppress the defects of fng1 mutant in growth and H4 acetylation. The rest two suppressor strains had a frameshift or nonsense mutation in a glutamine-rich hypothetical protein that may be a novel component of the FgRpd3 HDAC complex in filamentous fungi. FgRpd3, like Fng1, localized in euchromatin. Deletion of FgRPD3 resulted in severe growth defects and elevated H4 acetylation. In contract, the Fgsds3 deletion mutant had only a minor reduction in growth rate but FgSIN3 appeared to be an essential gene. RNA-seq analysis revealed that 48.1% and 54.2% of the genes with altered expression levels in the fng1 mutant were recovered to normal expression levels in two suppressor strains with mutations in FgRPD3 and FgSDS3, respectively. Taken together, our data showed that Fng1 is important for H4 acetylation as a component of the NuA4 complex and functionally related to the FgRpd3 HDAC complex for transcriptional regulation of genes important for growth, conidiation, sexual reproduction, and plant infection in F. graminearum.


Subject(s)
Fungal Proteins/metabolism , Fusarium/enzymology , Gene Expression Regulation, Fungal , Histone Deacetylases/metabolism , Histones/genetics , Acetylation , Euchromatin/metabolism , Fungal Proteins/genetics , Fusarium/genetics , Fusarium/pathogenicity , Histone Acetyltransferases/metabolism , Histone Deacetylases/genetics , Mutation , Plant Diseases/microbiology , RNA-Seq , Triticum/microbiology
4.
New Phytol ; 235(6): 2350-2364, 2022 09.
Article in English | MEDLINE | ID: mdl-35653584

ABSTRACT

The steady-state level of histone acetylation is maintained by histone acetyltransferase (HAT) and histone deacetylase (HDAC) complexes. INhibitor of Growth (ING) proteins are key components of the HAT or HDAC complexes but their relationship with other components and roles in phytopathogenic fungi are not well-characterized. Here, the FNG3 ING gene was functionally characterized in the wheat head blight fungus Fusarium graminearum. Deletion of FNG3 results in defects in fungal development and pathogenesis. Unlike other ING proteins that are specifically associated with distinct complexes, Fng3 was associated with both NuA3 HAT and FgRpd3 HDAC complexes to regulate H3 acetylation and H4 deacetylation. Whereas FgNto1 mediates the FgSas3-Fng3 interaction in the NuA3 complex, Fng3 interacted with the C-terminal region of FgRpd3 that is present in Rpd3 orthologs from filamentous fungi but absent in yeast Rpd3. The intrinsically disordered regions in the C-terminal tail of FgRpd3 underwent phase separation, which was important for its interaction with Fng3. Furthermore, the ING domain of Fng3 is responsible for its specificities in protein-protein interactions and functions. Taken together, Fng3 is involved in the dynamic regulation of histone acetylation by interacting with two histone modification complexes, and is important for fungal development and pathogenicity.


Subject(s)
Fungal Proteins , Fusarium , Histones , Acetylation , Fungal Proteins/genetics , Fusarium/genetics , Fusarium/pathogenicity , Histone Acetyltransferases/metabolism , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Histones/metabolism
5.
New Phytol ; 235(2): 674-689, 2022 07.
Article in English | MEDLINE | ID: mdl-35451076

ABSTRACT

Alternative splicing (AS) and alternative polyadenylation (APA) contribute significantly to the regulation of gene expression in higher eukaryotes. Their biological impact in filamentous fungi, however, is largely unknown. Here we combine PacBio Isoform-Sequencing and strand-specific RNA-sequencing of multiple tissues and mutant characterization to reveal the landscape and regulation of AS and APA in Fusarium graminearum. We generated a transcript annotation comprising 51 617 isoforms from 17 189 genes. In total, 4997 and 11 133 genes are alternatively spliced and polyadenylated, respectively. Majority of the AS events alter coding sequences. Unexpectedly, the AS transcripts containing premature-termination codons are not sensitive to nonsense-mediated messenger RNA decay. Unlike in yeasts and animals, distal APA sites have strong signals, but proximal APA isoforms are highly expressed in F. graminearum. The 3'-end processing factors FgRNA15, FgHRP1, and FgFIP1 play roles in promoting proximal APA site usage and intron splicing. A genome-wide increase in intron inclusion and distal APA site usage and downregulation of the spliceosomal and 3'-end processing factors were observed in older and quiescent tissues, indicating intron inclusion and 3'-untranslated region lengthening as novel mechanisms in regulating aging and dormancy in fungi. This study provides new insights into the complexity and regulation of AS and APA in filamentous fungi.


Subject(s)
Alternative Splicing , Polyadenylation , 3' Untranslated Regions/genetics , Alternative Splicing/genetics , Animals , Fungi/genetics , Polyadenylation/genetics , Protein Isoforms/genetics
6.
BMC Plant Biol ; 21(1): 304, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34193039

ABSTRACT

BACKGROUND: The production of cereal crops is frequently affected by diseases caused by Fusarium graminearum and Magnaporthe oryzae, two devastating fungal pathogens. To improve crop resistance, many studies have focused on understanding the mechanisms of host defense against these two fungi individually. However, our knowledge of the common and different host defenses against these pathogens is very limited. RESULTS: In this study, we employed Brachypodium distachyon as a model for cereal crops and performed comparative transcriptomics to study the dynamics of host gene expression at different infection stages. We found that infection with either F. graminearum or M. oryzae triggered massive transcriptomic reprogramming in the diseased tissues. Numerous defense-related genes were induced with dynamic changes during the time course of infection, including genes that function in pattern detection, MAPK cascade, phytohormone signaling, transcription, protein degradation, and secondary metabolism. In particular, the expression of jasmonic acid signaling genes and proteasome component genes were likely specifically inhibited or manipulated upon infection by F. graminearum. CONCLUSIONS: Our analysis showed that, although the affected host pathways are similar, their expression programs and regulations are distinct during infection by F. graminearum and M. oryzae. The results provide valuable insight into the interactions between B. distachyon and two important cereal pathogens.


Subject(s)
Ascomycota/physiology , Brachypodium/genetics , Brachypodium/microbiology , Fusarium/physiology , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Ontology , Gene Regulatory Networks , Host-Pathogen Interactions/genetics , Plant Diseases/microbiology , Protein Interaction Maps/genetics
7.
Plant Dis ; 105(8): 2231-2234, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33529071

ABSTRACT

Clonostachys rosea is a necrotrophic mycoparasitic fungus with excellent biological control ability against numerous fungal plant pathogens. Here, we performed genomic sequencing of C. rosea strain CanS41 using Oxford Nanopore sequencing technology. We generated a high-quality genome assembly (>99.99% accuracy), which comprised 26 contigs containing 60.68 Mb sequences with a GC content of 48.55% and a repeat content of 8.38%. The N50 contig length is 3.02 Mb. In total, 20,818 protein-coding genes were identified and functionally annotated. Genes encoding secreted proteins and carbohydrate-active enzymes as well as secondary metabolic gene clusters were also identified and analyzed. In summary, the high-quality genome assembly and gene annotation provided here will allow further exploration of biological functions and enhance biological control ability of C. rosea.


Subject(s)
Hypocreales , Nanopores , Genome , High-Throughput Nucleotide Sequencing , Hypocreales/genetics
8.
Mol Plant Microbe Interact ; 33(7): 884-887, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32233960

ABSTRACT

Phyllachora maydis is an important fungal pathogen that causes tar spot of corn and has led to significant yield loss in the United States and other countries. P. maydis is an obligate biotroph belonging to the Sordariomycetes class of Ascomycota. Due to the challenges posed by their obligate nature, there is no genome sequence available in the Phyllachora genus. P. maydis isolate PM01 was collected from a corn field in Indiana and the genome was determined by next-generation sequencing. The assembly size is 45.7 Mb, with 56.46% repetitive sequences. There are 5,992 protein-coding genes and 59 are predicted as effector proteins. This genome resource will increase our understanding of genomic features of P. maydis and will assist in studying the corn-P. maydis interaction and identifying potential resistant candidates for corn breeding programs.


Subject(s)
Ascomycota , Genome, Fungal , Plant Diseases/microbiology , Zea mays/microbiology , Ascomycota/genetics , Ascomycota/pathogenicity , Repetitive Sequences, Nucleic Acid , United States
9.
Mol Microbiol ; 111(5): 1245-1262, 2019 05.
Article in English | MEDLINE | ID: mdl-30746783

ABSTRACT

Ascospores are the primary inoculum in Fusarium graminearum. Interestingly, 70 of its genes have premature stop codons (PSC) and require A-to-I editing during sexual reproduction to encode full-length proteins, including the ortholog of yeast Ama1, a meiosis-specific activator of APC/C. In this study, we characterized the function of FgAMA1 and its PSC editing. FgAMA1 was specifically expressed during sexual reproduction. The Fgama1 mutant was normal in growth and perithecium formation but defective in ascospogenesis. Instead of forming four-celled, uninucleate ascospores, Fgama1 mutant produced oval, single-celled, binucleated ascospores by selfing. Some mutant ascospores began to bud and underwent additional mitosis inside asci. Expression of the wild-type or edited FgAMA1 but not the uneditable allele complemented Fgama1. In the Fgama1 x mat-1-1 outcross, over 60% of the asci had eight Fgama1 or intermediate (elongated but single-celled) ascospores, suggesting efficient meiotic silencing of unpaired FgAMA1. Deletion of FgPAL1, one of the genes upregulated in Fgama1 also resulted in defects in ascospore morphology and budding. Overall, our results showed that FgAMA1 is dispensable for meiosis but important for ascospore formation and discharge. In F. graminearum, whereas some of its targets are functional during meiosis, FgAma1 may target other proteins that function after spore delimitation.


Subject(s)
Fungal Proteins/genetics , Fusarium/genetics , Meiosis , Spores, Fungal/growth & development , Fungal Proteins/metabolism , Fusarium/growth & development , Gene Expression Regulation, Fungal , Mutation , Spores, Fungal/genetics , Spores, Fungal/metabolism , Up-Regulation
10.
Proc Natl Acad Sci U S A ; 114(37): E7756-E7765, 2017 09 12.
Article in English | MEDLINE | ID: mdl-28847945

ABSTRACT

Although fungi lack adenosine deaminase acting on RNA (ADAR) enzymes, adenosine to inosine (A-to-I) RNA editing was reported recently in Fusarium graminearum during sexual reproduction. In this study, we profiled the A-to-I editing landscape and characterized its functional and adaptive properties in the model filamentous fungus Neurospora crassa A total of 40,677 A-to-I editing sites were identified, and approximately half of them displayed stage-specific editing or editing levels at different sexual stages. RNA-sequencing analysis with the Δstc-1 and Δsad-1 mutants confirmed A-to-I editing occurred before ascus development but became more prevalent during ascosporogenesis. Besides fungal-specific sequence and secondary structure preference, 63.5% of A-to-I editing sites were in the coding regions and 81.3% of them resulted in nonsynonymous recoding, resulting in a significant increase in the proteome complexity. Many genes involved in RNA silencing, DNA methylation, and histone modifications had extensive recoding, including sad-1, sms-3, qde-1, and dim-2. Fifty pseudogenes harbor premature stop codons that require A-to-I editing to encode full-length proteins. Unlike in humans, nonsynonymous editing events in N. crassa are generally beneficial and favored by positive selection. Almost half of the nonsynonymous editing sites in N. crassa are conserved and edited in Neurospora tetrasperma Furthermore, hundreds of them are conserved in F. graminearum and had higher editing levels. Two unknown genes with editing sites conserved between Neurospora and Fusarium were experimentally shown to be important for ascosporogenesis. This study comprehensively analyzed A-to-I editing in N. crassa and showed that RNA editing is stage-specific and generally adaptive, and may be functionally related to repeat induced point mutation and meiotic silencing by unpaired DNA.


Subject(s)
Neurospora crassa/genetics , Adaptation, Biological , Adenosine/metabolism , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal/genetics , Genes, Fungal/genetics , Inosine/genetics , Meiosis/genetics , Neurospora/genetics , Neurospora crassa/physiology , RNA/metabolism , RNA Editing/genetics , RNA Interference , Reproduction/genetics , Reproduction/physiology
11.
Int J Mol Sci ; 21(9)2020 May 01.
Article in English | MEDLINE | ID: mdl-32370102

ABSTRACT

Utilization of disease resistance components from wild potatoes is a promising and sustainable approach to control Phytophthora blight. Here, we combined avirulence (Avr) genes screen with RNA-seq analysis to discover the potential mechanism of resistance in Mexican wild potato species, Solanum pinnatisectum. Histological characterization displayed that hyphal expansion was significantly restricted in epidermal cells and mesophyll cell death was predominant, indicating that a typical defense response was initiated in S. pinnatisectum. Inoculation of S. pinnatisectum with diverse Phytophthora infestans isolates showed distinct resistance patterns, suggesting that S. pinnatisectum has complex genetic resistance to most of the prevalent races of P. infestans in northwestern China. Further analysis by Avr gene screens and comparative transcriptomic profiling revealed the presence and upregulation of multiple plant NBS-LRR genes corresponding to biotic stresses. Six NBS-LRR alleles of R1, R2, R3a, R3b, R4, and Rpi-smira2 were detected, and over 60% of the 112 detected NLR proteins were significantly induced in S. pinnatisectum. On the contrary, despite the expression of the Rpi-blb1, Rpi-vnt1, and Rpi-smira1 alleles, fewer NLR proteins were expressed in susceptible Solanum cardophyllum. Thus, the enriched NLR genes in S. pinnatisectum make it an ideal genetic resource for the discovery and deployment of resistance genes for potato breeding.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Host-Pathogen Interactions/genetics , Phytophthora infestans , Solanum/genetics , Solanum/parasitology , Transcriptome , Disease Resistance , Genes, Plant , Plant Diseases/genetics , Plant Diseases/parasitology , Solanum/cytology
12.
Mol Microbiol ; 109(4): 494-508, 2018 08.
Article in English | MEDLINE | ID: mdl-29923654

ABSTRACT

Deletion of Prp4, the only kinase among spliceosome components, is not lethal in Fusarium graminearum but Fgprp4 mutants have severe growth defects and produced spontaneous suppressors. To identify novel suppressor mutations of Fgprp4, we sequenced the genome of suppressor S37 that was normal in growth but only partially recovered for intron splicing and identified a tandem duplication of 9-aa in the tri-snRNP component FgSNU66. Among the 19 additional suppressor strains found to have mutations in FgSNU66 (out of 260 screened), five had the same 9-aa duplication event with S37 and another five had the R477H/C mutation. The rest had nonsense or G-to-D mutations in the C-terminal 27-aa (CT27) region of FgSnu66, which is absent in its yeast ortholog. Truncation of this C-terminal region reduced the interaction of FgSnu66 with FgHub1 but increased its interaction with FgPrp8 and FgPrp6. Five phosphorylation sites were identified in FgSnu66 by phosphoproteomic analysis and the T418A-S420A-S422A mutation was shown to reduce virulence. Overall, our results showed that mutations in FgSNU66 can suppress deletion of Fgprp4, which has not been reported in other organisms, and the C-terminal tail of FgSnu66 plays a role in its interaction with key tri-snRNP components during spliceosome activation.


Subject(s)
Fungal Proteins/genetics , Fusarium/growth & development , Fusarium/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Ribonucleoproteins, Small Nuclear/genetics , Ribonucleoproteins, Small Nuclear/metabolism , Suppression, Genetic/genetics , Amino Acid Sequence , Base Sequence , Fungal Proteins/metabolism , Gene Deletion , Genome, Fungal/genetics , RNA Splicing/genetics
13.
Environ Microbiol ; 21(1): 226-243, 2019 01.
Article in English | MEDLINE | ID: mdl-30346649

ABSTRACT

Autophagy is important for growth, development and pathogenesis in fungi. Although autophagic process is generally considered to be conserved, the conservation and evolution of ATG genes at kingdom-wide remains to be conducted. Here we systematically identified 41 known ATG genes in 331 species and analyzed their distribution across the fungal kingdom. In general, only 20 ATG genes are highly conserved, including most but not all the yeast core-autophagy-machinery genes. Four functional protein groups involved in autophagosome formation had conserved and non-conserved components, suggesting plasticity in autophagosome formation in fungi. All or majority of the key ATG genes were lost in several fungal groups with unique lifestyles and niches, such as Microsporidia, Pneumocystis and Malassezia. Moreover, majority of ATG genes had A-to-I RNA editing during sexual reproduction in two ascomycetes and deletion of FgATG11, the ATG gene with the most editing sites in Fusarium affected ascospore releasing. Duplication and divergence also was observed to several core ATG genes, such as highly divergent ATG8 paralogs in dermatophytes and multiple ATG15 duplications in mushrooms. Taken together, independent losses and duplications of ATG genes have occurred throughout the fungal kingdom and variations in autophagy exist among different lineages and possibly different developmental stages.


Subject(s)
Autophagy/genetics , Evolution, Molecular , Fungi/genetics , Ascomycota/genetics , Gene Deletion , Gene Duplication/genetics , Genes, Fungal/genetics
14.
Genome Res ; 26(4): 499-509, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26934920

ABSTRACT

Yeasts and filamentous fungi do not have adenosine deaminase acting on RNA (ADAR) orthologs and are believed to lack A-to-I RNA editing, which is the most prevalent editing of mRNA in animals. However, during this study with the PUK1(FGRRES_01058) pseudokinase gene important for sexual reproduction in Fusarium graminearum, we found that two tandem stop codons, UA(1831)GUA(1834)G, in its kinase domain were changed to UG(1831)GUG(1834)G by RNA editing in perithecia. To confirm A-to-I editing of PUK1 transcripts, strand-specific RNA-seq data were generated with RNA isolated from conidia, hyphae, and perithecia. PUK1 was almost specifically expressed in perithecia, and 90% of transcripts were edited to UG(1831)GUG(1834)G. Genome-wide analysis identified 26,056 perithecium-specific A-to-I editing sites. Unlike those in animals, 70.5% of A-to-I editing sites inF. graminearum occur in coding regions, and more than two-thirds of them result in amino acid changes, including editing of 69PUK1-like pseudogenes with stop codons in ORFs.PUK1orthologs and other pseudogenes also displayed stage-specific expression and editing in Neurospora crassa and F. verticillioides Furthermore,F. graminearum differs from animals in the sequence preference and structure selectivity of A-to-I editing sites. Whereas A's embedded in RNA stems are targeted by ADARs, RNA editing inF. graminearum preferentially targets A's in hairpin loops, which is similar to the anticodon loop of tRNA targeted by adenosine deaminases acting on tRNA (ADATs). Overall, our results showed that A-to-I RNA editing occurs specifically during sexual reproduction and mainly in the coding regions in filamentous ascomycetes, involving adenosine deamination mechanisms distinct from metazoan ADARs.


Subject(s)
Adenosine Deaminase/metabolism , Adenosine , Fungi/genetics , Fungi/metabolism , Genome, Fungal , Inosine , RNA Editing , Amino Acid Substitution , Codon, Terminator , DNA, Complementary , Gene Expression Regulation, Fungal , Genome-Wide Association Study , Mutation , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Reproduction/genetics , Transcription, Genetic
15.
New Phytol ; 2019 Aug 22.
Article in English | MEDLINE | ID: mdl-31436314

ABSTRACT

Oomycete pathogens secrete numerous effectors to manipulate host immunity. While some effectors share a conserved structural fold, it remains unclear if any have conserved host targets. Avr3a-like family effectors, which are related to Phytophthora infestans effector PiAvr3a and are widely distributed across diverse clades of Phytophthora species, were used to study this question. By using yeast-two-hybrid, bimolecular fluorescence complementation and co-immunoprecipitation assays, we identified members of the plant cinnamyl alcohol dehydrogenase 7 (CAD7) subfamily as targets of multiple Avr3a-like effectors from Phytophthora pathogens. The CAD7 subfamily has expanded in plant genomes but lost the lignin biosynthetic activity of canonical CAD subfamilies. In turn, we identified CAD7s as negative regulators of plant immunity that are induced by Phytophthora infection. Moreover, AtCAD7 was stabilized by Avr3a-like effectors and involved in suppression of pathogen-associated molecular pattern-triggered immunity, including callose deposition, reactive oxygen species burst and WRKY33 expression. Our results reveal CAD7 subfamily proteins as negative regulators of plant immunity that are exploited by multiple Avr3a-like effectors to promote infection in different host plants.

16.
Biochem Biophys Res Commun ; 503(2): 495-500, 2018 09 05.
Article in English | MEDLINE | ID: mdl-29704501

ABSTRACT

Abscisic acid (ABA) signaling is a vital physiological step that is used by many land plants to fight against environmental stress. As components of the linear ABA signaling pathway, clade A protein phosphatases type 2C (PP2C-As) are mainly inhibited by PYRABACTIN RESISTANCE1/PYR1-LIKE/REGULATORY COMPONENTS OF ABA RECEPTORS (PYLs)-type receptors upon their binding to ABA. Here, we show that the genome of Brassica rapa encodes 14 putative clade A PP2C-like proteins (BrPP2C-As). Two of these BrPP2C-As, Bra025964 and Bra016595, show high similarity to the HAB2 (Homology to ABI2) protein in Arabidopsis. RNAseq data reveal that nearly all BrPP2C-As, like BrHAB2a (Bra025964) and BrHAB2b (Bra016595), were highly expressed in at least one tissue. Overexpression of BrHAB2a conferred ABA insensitivity to Arabidopsis thaliana seedlings. Furthermore, the phosphatase activity of BrHAB2a could be inhibited by AtPYL1 or BrPYL1 in the presence of ABA. Overall, these results suggest that BrHAB2a is a functional PP2C-A like protein phosphotase and a key component of ABA signaling in Brassica rapa.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/metabolism , Brassica rapa/metabolism , Phosphoprotein Phosphatases/metabolism , Plant Proteins/metabolism , Signal Transduction , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Brassica rapa/genetics , Gene Expression Regulation, Plant , Phosphoprotein Phosphatases/genetics , Phylogeny , Plant Proteins/genetics
18.
Development ; 141(3): 707-14, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24401372

ABSTRACT

For the emerging amphibian genetic model Xenopus tropicalis targeted gene disruption is dependent on zinc-finger nucleases (ZFNs) or transcription activator-like effector nucleases (TALENs), which require either complex design and selection or laborious construction. Thus, easy and efficient genome editing tools are still highly desirable for this species. Here, we report that RNA-guided Cas9 nuclease resulted in precise targeted gene disruption in all ten X. tropicalis genes that we analyzed, with efficiencies above 45% and readily up to 100%. Systematic point mutation analyses in two loci revealed that perfect matches between the spacer and the protospacer sequences proximal to the protospacer adjacent motif (PAM) were essential for Cas9 to cleave the target sites in the X. tropicalis genome. Further study showed that the Cas9 system could serve as an efficient tool for multiplexed genome engineering in Xenopus embryos. Analysis of the disruption of two genes, ptf1a/p48 and tyrosinase, indicated that Cas9-mediated gene targeting can facilitate direct phenotypic assessment in X. tropicalis embryos. Finally, five founder frogs from targeting of either elastase-T1, elastase-T2 or tyrosinase showed highly efficient transmission of targeted mutations into F1 embryos. Together, our data demonstrate that the Cas9 system is an easy, efficient and reliable tool for multiplex genome editing in X. tropicalis.


Subject(s)
CRISPR-Cas Systems/genetics , Genetic Engineering/methods , Genome/genetics , RNA/metabolism , Xenopus/genetics , Animals , Base Sequence , DNA, Intergenic/metabolism , Embryo, Nonmammalian/metabolism , Gene Dosage/genetics , Gene Targeting , Genetic Loci/genetics , Germ Cells/metabolism , Inheritance Patterns/genetics , Molecular Sequence Data , Mutation/genetics , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Xenopus/embryology
19.
Stress Biol ; 4(1): 30, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864932

ABSTRACT

Although genome-wide A-to-I editing mediated by adenosine-deaminase-acting-on-tRNA (ADAT) occurs during sexual reproduction in the presence of stage-specific cofactors, RNA editing is not known to occur during vegetative growth in filamentous fungi. Here we identified 33 A-to-I RNA editing events in vegetative hyphae of Fusarium graminearum and functionally characterized one conserved hyphal-editing site. Similar to ADAT-mediated editing during sexual reproduction, majority of hyphal-editing sites are in coding sequences and nonsynonymous, and have strong preference for U at -1 position and hairpin loops. Editing at TA437G, one of the hyphal-specific editing sites, is a premature stop codon correction (PSC) event that enables CHE1 gene to encode a full-length zinc fingertranscription factor. Manual annotations showed that this PSC site is conserved in CHE1 orthologs from closely-related Fusarium species. Whereas the che1 deletion and CHE1TAA (G438 to A) mutants had no detectable phenotype, the CHE1TGG (A437 to G) mutant was defective in hyphal growth, conidiation, sexual reproduction, and plant infection. However, the CHE1TGG mutant was increased in tolerance against oxidative stress and editing of TA437G in CHE1 was stimulated by H2O2 treatment in F. graminearum. These results indicate that fixation of the premature stop codon in CHE1 has a fitness cost on normal hyphal growth and reproduction but provides a benefit to tolerance against oxidative stress. Taken together, A-to-I editing events, although rare (not genome-wide), occur during vegetative growth and editing in CHE1 plays a role in response to oxidative stress in F. graminearum and likely in other fungal pathogens.

20.
Sci Adv ; 10(1): eadk6130, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38181075

ABSTRACT

RNA editing in various organisms commonly restores RNA sequences to their ancestral state, but its adaptive advantages are debated. In fungi, restorative editing corrects premature stop codons in pseudogenes specifically during sexual reproduction. We characterized 71 pseudogenes and their restorative editing in Fusarium graminearum, demonstrating that restorative editing of 16 pseudogenes is crucial for germ tissue development in fruiting bodies. Our results also revealed that the emergence of premature stop codons is facilitated by restorative editing and that premature stop codons corrected by restorative editing are selectively favored over ancestral amino acid codons. Furthermore, we found that ancestral versions of pseudogenes have antagonistic effects on reproduction and survival. Restorative editing eliminates the survival costs of reproduction caused by antagonistic pleiotropy and provides a selective advantage in fungi. Our findings highlight the importance of restorative editing in the evolution of fungal complex multicellularity and provide empirical evidence that restorative editing serves as an adaptive mechanism enabling the resolution of genetic trade-offs.


Subject(s)
Codon, Nonsense , Magnoliopsida , RNA Editing/genetics , Amino Acids , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL