Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters

Publication year range
1.
Nucleic Acids Res ; 50(22): 12979-12996, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36533443

ABSTRACT

Aggregation of the microtubule-associated protein tau characterizes tauopathies, including Alzheimer's disease and frontotemporal lobar degeneration (FTLD-Tau). Gene expression regulation of tau is complex and incompletely understood. Here we report that the human tau gene (MAPT) generates two circular RNAs (circRNAs) through backsplicing of exon 12 to either exon 7 (12→7 circRNA) or exon 10 (12→10 circRNA). Both circRNAs lack stop codons. The 12→7 circRNA contains one start codon and is translated in a rolling circle, generating a protein consisting of multimers of the microtubule-binding repeats R1-R4. For the 12→10 circRNA, a start codon can be introduced by two FTLD-Tau mutations, generating a protein consisting of multimers of the microtubule-binding repeats R2-R4, suggesting that mutations causing FTLD may act in part through tau circRNAs. Adenosine to inosine RNA editing dramatically increases translation of circRNAs and, in the 12→10 circRNA, RNA editing generates a translational start codon by changing AUA to AUI. Circular tau proteins self-aggregate and promote aggregation of linear tau proteins. Our data indicate that adenosine to inosine RNA editing initiates translation of human circular tau RNAs, which may contribute to tauopathies.


Subject(s)
Tauopathies , tau Proteins , Humans , Adenosine/metabolism , Codon, Initiator , Inosine/metabolism , RNA/genetics , RNA/metabolism , RNA Editing , RNA, Circular/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Tauopathies/genetics , Tauopathies/metabolism
2.
Int J Mol Sci ; 25(5)2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38473893

ABSTRACT

Neurological diseases and neurotrauma manifest significant sex differences in prevalence, progression, outcome, and therapeutic responses. Genetic predisposition, sex hormones, inflammation, and environmental exposures are among many physiological and pathological factors that impact the sex disparity in neurological diseases. MicroRNAs (miRNAs) are a powerful class of gene expression regulator that are extensively involved in mediating biological pathways. Emerging evidence demonstrates that miRNAs play a crucial role in the sex dimorphism observed in various human diseases, including neurological diseases. Understanding the sex differences in miRNA expression and response is believed to have important implications for assessing the risk of neurological disease, defining therapeutic intervention strategies, and advancing both basic research and clinical investigations. However, there is limited research exploring the extent to which miRNAs contribute to the sex disparities observed in various neurological diseases. Here, we review the current state of knowledge related to the sexual dimorphism in miRNAs in neurological diseases and neurotrauma research. We also discuss how sex chromosomes may contribute to the miRNA sexual dimorphism phenomenon. We attempt to emphasize the significance of sexual dimorphism in miRNA biology in human diseases and to advocate a gender/sex-balanced science.


Subject(s)
MicroRNAs , Nervous System Diseases , Humans , Female , Male , MicroRNAs/genetics , Gonadal Steroid Hormones
3.
Am J Pathol ; 192(3): 564-578, 2022 03.
Article in English | MEDLINE | ID: mdl-34954207

ABSTRACT

The amygdala is vulnerable to multiple or "mixed" mis-aggregated proteins associated with neurodegenerative conditions that can manifest clinically with amnestic dementia; the amygdala region is often affected even at earliest disease stages. With the original intent of identifying novel dementia-associated proteins, the detergent-insoluble proteome was characterized from the amygdalae of 40 participants from the University of Kentucky Alzheimer's Disease Center autopsy cohort. These individuals encompassed a spectrum of clinical conditions (cognitively normal to severe amnestic dementia). Polypeptides from the detergent-insoluble fraction were interrogated using liquid chromatography-electrospray ionization-tandem mass spectrometry. As anticipated, portions of peptides previously associated with neurologic diseases were enriched from subjects with dementia. Among all detected peptides, Apolipoprotein E (ApoE) stood out: even more than the expected Tau, APP/Aß, and α-Synuclein peptides, ApoE peptides were strongly enriched in dementia cases, including from individuals lacking the APOE ε4 genotype. The amount of ApoE protein detected in detergent-insoluble fractions was robustly associated with levels of complement proteins C3 and C4. Immunohistochemical staining of APOE ε3/ε3 subjects' amygdalae confirmed ApoE co-localization with C4 in amyloid plaques. Thus, analyses of human amygdala proteomics indicate that rather than being only an "upstream" genetic risk factor, ApoE is an aberrantly aggregated protein in its own right, and show that the ApoE protein may play active disease-driving mechanistic roles in persons lacking the APOE ε4 allele.


Subject(s)
Alzheimer Disease , Apolipoproteins E , Dementia , Alleles , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Apolipoprotein E4/genetics , Apolipoproteins E/metabolism , Biomarkers/metabolism , Dementia/genetics , Dementia/metabolism , Dementia/pathology , Detergents , Genotype , Humans
4.
Cell Mol Neurobiol ; 43(1): 423-429, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34761332

ABSTRACT

Sex is a key biological variable in traumatic brain injury (TBI) and plays a significant role in neuroinflammatory responses. However, the molecular mechanisms contributing to this sexually dimorphic neuroinflammatory response remain elusive. Here we describe a significant and previously unreported tissue enrichment and sex-specific alteration of a set of inflammatory microRNAs (miRNAs) in CD11b+ cells of brain and bone marrow isolated from naïve mice as well as mice subjected to TBI. Our data from naïve mice demonstrated that expression levels of miR-146a-5p and miR-150-5p were relatively higher in brain CD11b+ cells, and that miR-155-5p and miR-223-3p were highly enriched in bone marrow CD11b+ cells. Furthermore, while miR-150-5p and miR-155-5p levels were higher in male brain CD11b+ cells, no significant sexual difference was observed for miR-146a-5p and miR-223-3p. However, TBI resulted in sex-specific differential responses of these miRNAs in brain CD11b+ cells. Specifically, miR-223-3p levels in brain CD11b+ cells were markedly elevated in both sexes in response to TBI at 3 and 24 h, with levels in females being significantly higher than males at 24 h. We then focused on analyzing several miR-223-3p targets and inflammation-related marker genes following injury. Corresponding to the greater elevation of miR-223-3p in females, the miR-223-3p targets, TRAF6 and FBXW7 were significantly reduced in females compared to males. Interestingly, anti-inflammatory genes ARG1 and IL4 were higher in females after TBI than in males. These observations suggest miR-223-3p and other inflammatory responsive miRNAs may play a key role in sex-specific neuroinflammatory response following TBI.


Subject(s)
Brain Injuries, Traumatic , MicroRNAs , Animals , Female , Male , Mice , Bone Marrow/metabolism , Brain/metabolism , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/metabolism , Inflammation/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
5.
Int J Mol Sci ; 22(17)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34502401

ABSTRACT

Aneurysmal subarachnoid hemorrhage (aSAH) is a high mortality hemorrhagic stroke that affects nearly 30,000 patients annually in the United States. Approximately 30% of aSAH patients die during initial hospitalization and those who survive often carry poor prognosis with one in five having permanent physical and/or cognitive disabilities. The poor outcome of aSAH can be the result of the initial catastrophic event or due to the many acute or delayed neurological complications, such as cerebral ischemia, hydrocephalus, and re-bleeding. Unfortunately, no effective biomarker exists to predict or diagnose these complications at a clinically relevant time point when neurologic injury can be effectively treated and managed. Recently, a number of studies have demonstrated that microRNAs (miRNAs) in extracellular biofluids are highly associated with aSAH and complications. Here we provide an overview of the current research on relevant human studies examining the correlation between miRNAs and aSAH complications and discuss the potential application of using miRNAs as biomarkers in aSAH management.


Subject(s)
MicroRNAs/genetics , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/genetics , Biomarkers/analysis , Brain Ischemia/complications , Brain Ischemia/genetics , Cerebral Infarction/complications , Cerebral Infarction/genetics , Humans , Intracranial Aneurysm/complications , Intracranial Aneurysm/genetics , MicroRNAs/metabolism , Prognosis , Vasospasm, Intracranial/genetics
6.
Neurobiol Dis ; 125: 67-76, 2019 05.
Article in English | MEDLINE | ID: mdl-30682540

ABSTRACT

TDP-43 proteinopathy is very prevalent among the elderly (affecting at least 25% of individuals over 85 years of age) and is associated with substantial cognitive impairment. Risk factors implicated in age-related TDP-43 proteinopathy include commonly inherited gene variants, comorbid Alzheimer's disease pathology, and thyroid hormone dysfunction. To test parameters that are associated with aging-related TDP-43 pathology, we performed exploratory analyses of pathologic, genetic, and biochemical data derived from research volunteers in the University of Kentucky Alzheimer's Disease Center autopsy cohort (n = 136 subjects). Digital pathologic methods were used to discriminate and quantify both neuritic and intracytoplasmic TDP-43 pathology in the hippocampal formation. Overall, 46.4% of the cases were positive for TDP-43 intracellular inclusions, which is consistent with results in other prior community-based cohorts. The pathologies were correlated with hippocampal sclerosis of aging (HS-Aging) linked genotypes. We also assayed brain parenchymal thyroid hormone (triiodothyronine [T3] and thyroxine [T4]) levels. In cases with SLCO1A2/IAPP or ABCC9 risk associated genotypes, the T3/T4 ratio tended to be reduced (p = .051 using 2-tailed statistical test), and in cases with low T3/T4 ratios (bottom quintile), there was a higher likelihood of HS-Aging pathology (p = .025 using 2-tailed statistical test). This is intriguing because the SLCO1A2/IAPP and ABCC9 risk associated genotypes have been associated with altered expression of the astrocytic thyroid hormone receptor (protein product of the nearby gene SLCO1C1). These data indicate that dysregulation of thyroid hormone signaling may play a role in age-related TDP-43 proteinopathy.


Subject(s)
Brain/pathology , TDP-43 Proteinopathies/genetics , Thyroxine , Triiodothyronine , Aged , Aged, 80 and over , Aging , Brain/metabolism , Female , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Organic Anion Transporters/genetics , Polymorphism, Single Nucleotide , Risk Factors , Sulfonylurea Receptors/genetics , TDP-43 Proteinopathies/metabolism , TDP-43 Proteinopathies/pathology , Thyroxine/analysis , Thyroxine/genetics , Thyroxine/metabolism , Triiodothyronine/analysis , Triiodothyronine/genetics , Triiodothyronine/metabolism
7.
Mol Cell Biochem ; 461(1-2): 23-36, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31309409

ABSTRACT

Antibiotics are the front-line treatment against many bacterial infectious diseases in human. The excessive and long-term use of antibiotics in human cause several side effects. It is important to understand the underlying molecular mechanisms of action of antibiotics in the host cell to avoid the side effects due to the prevalent uses. In the current study, we investigated the crosstalk between mitochondria and lysosomes in the presence of widely used antibiotics: erythromycin (ERM) and clindamycin (CLDM), which target the 50S subunit of bacterial ribosomes. We report here that both ERM and CLDM induced caspase activation and cell death in several different human cell lines. The activity of the mitochondrial respiratory chain was compromised in the presence of ERM and CLDM leading to bioenergetic crisis and generation of reactive oxygen species. Antibiotics treatment impaired autophagy flux and lysosome numbers, resulting in decreased removal of damaged mitochondria through mitophagy, hence accumulation of defective mitochondria. We further show that over-expression of transcription factor EB (TFEB) increased the lysosome number, restored mitochondrial function and rescued ERM- and CLDM-induced cell death. These studies indicate that antibiotics alter mitochondria and lysosome interactions leading to apoptotsis and may develop a novel approach for targeting inter-organelle crosstalk to limit deleterious antibiotic-induced side effects.


Subject(s)
Apoptosis/drug effects , Clindamycin/pharmacology , Erythromycin/pharmacology , Lysosomes/metabolism , Mitochondria/metabolism , Organelle Biogenesis , Anti-Bacterial Agents/pharmacology , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagy/drug effects , Cell Line , Humans , Lysosomes/drug effects , Membrane Fusion/drug effects , Mitochondria/drug effects , Mitophagy/drug effects , Models, Biological , Reactive Oxygen Species/metabolism , Ribosome Subunits, Large, Bacterial/metabolism
8.
Acta Neuropathol ; 132(6): 841-858, 2016 12.
Article in English | MEDLINE | ID: mdl-27815632

ABSTRACT

We report evidence of a novel pathogenetic mechanism in which thyroid hormone dysregulation contributes to dementia in elderly persons. Two single nucleotide polymorphisms (SNPs) on chromosome 12p12 were the initial foci of our study: rs704180 and rs73069071. These SNPs were identified by separate research groups as risk alleles for non-Alzheimer's neurodegeneration. We found that the rs73069071 risk genotype was associated with hippocampal sclerosis (HS) pathology among people with the rs704180 risk genotype (National Alzheimer's Coordinating Center/Alzheimer's Disease Genetic Consortium data; n = 2113, including 241 autopsy-confirmed HS cases). Furthermore, both rs704180 and rs73069071 risk genotypes were associated with widespread brain atrophy visualized by MRI (Alzheimer's Disease Neuroimaging Initiative data; n = 1239). In human brain samples from the Braineac database, both rs704180 and rs73069071 risk genotypes were associated with variation in expression of ABCC9, a gene which encodes a metabolic sensor protein in astrocytes. The rs73069071 risk genotype was also associated with altered expression of a nearby astrocyte-expressed gene, SLCO1C1. Analyses of human brain gene expression databases indicated that the chromosome 12p12 locus may regulate particular astrocyte-expressed genes induced by the active form of thyroid hormone, triiodothyronine (T3). This is informative biologically, because the SLCO1C1 protein transports thyroid hormone into astrocytes from blood. Guided by the genomic data, we tested the hypothesis that altered thyroid hormone levels could be detected in cerebrospinal fluid (CSF) obtained from persons with HS pathology. Total T3 levels in CSF were elevated in HS cases (p < 0.04 in two separately analyzed groups), but not in Alzheimer's disease cases, relative to controls. No change was detected in the serum levels of thyroid hormone (T3 or T4) in a subsample of HS cases prior to death. We conclude that brain thyroid hormone perturbation is a potential pathogenetic factor in HS that may also provide the basis for a novel CSF-based clinical biomarker.


Subject(s)
Aging/pathology , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/pathology , Genomics/methods , Hippocampus/pathology , Triiodothyronine/cerebrospinal fluid , Aged, 80 and over , Alzheimer Disease/complications , Alzheimer Disease/diagnostic imaging , Chromosomes, Human, Pair 12/genetics , Cohort Studies , Enzyme-Linked Immunosorbent Assay , Female , Genotype , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Organic Anion Transporters/cerebrospinal fluid , Organic Anion Transporters/genetics , Polymorphism, Single Nucleotide/genetics , Sclerosis/etiology , Sulfonylurea Receptors/genetics , Sulfonylurea Receptors/metabolism , Triiodothyronine/blood
9.
J Neurochem ; 134(6): 1026-39, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26115089

ABSTRACT

ABCC9 genetic polymorphisms are associated with increased risk for various human diseases including hippocampal sclerosis of aging. The main goals of this study were 1 > to detect the ABCC9 variants and define the specific 3' untranslated region (3'UTR) for each variant in human brain, and 2 > to determine whether a polymorphism (rs704180) associated with risk for hippocampal sclerosis of aging pathology is also associated with variation in ABCC9 transcript expression and/or splicing. Rapid amplification of ABCC9 cDNA ends (3'RACE) provided evidence of novel 3' UTR portions of ABCC9 in human brain. In silico and experimental studies were performed focusing on the single nucleotide polymorphism, rs704180. Analyses from multiple databases, focusing on rs704180 only, indicated that this risk allele is a local expression quantitative trait locus (eQTL). Analyses of RNA from human brains showed increased ABCC9 transcript levels in individuals with the risk genotype, corresponding with enrichment for a shorter 3' UTR which may be more stable than variants with the longer 3' UTR. MicroRNA transfection experiments yielded results compatible with the hypothesis that miR-30c causes down-regulation of SUR2 transcripts with the longer 3' UTR. Thus we report evidence of complex ABCC9 genetic regulation in brain, which may be of direct relevance to human disease. ABCC9 gene variants are associated with increased risk for hippocampal sclerosis of aging (HS-Aging--a prevalent brain disease with symptoms that mimic Alzheimer's disease). We describe novel ABCC9 variants in human brain, corresponding to altered 3'UTR length, which could lead to targeting by miR-30c. We also determined that the HS-Aging risk mutation is associated with variation in ABCC9 transcript expression.


Subject(s)
Aging/pathology , Brain Diseases/genetics , Hippocampus/pathology , Neurodegenerative Diseases/genetics , Sulfonylurea Receptors/genetics , Aged, 80 and over , Brain Diseases/pathology , Female , Gene Expression Regulation/genetics , Genetic Predisposition to Disease , Humans , Male , MicroRNAs/genetics , Neurodegenerative Diseases/pathology , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Sclerosis/genetics , Sclerosis/pathology
10.
Acta Neuropathol ; 127(6): 825-43, 2014.
Article in English | MEDLINE | ID: mdl-24770881

ABSTRACT

Hippocampal sclerosis of aging (HS-Aging) is a high-morbidity brain disease in the elderly but risk factors are largely unknown. We report the first genome-wide association study (GWAS) with HS-Aging pathology as an endophenotype. In collaboration with the Alzheimer's Disease Genetics Consortium, data were analyzed from large autopsy cohorts: (#1) National Alzheimer's Coordinating Center (NACC); (#2) Rush University Religious Orders Study and Memory and Aging Project; (#3) Group Health Research Institute Adult Changes in Thought study; (#4) University of California at Irvine 90+ Study; and (#5) University of Kentucky Alzheimer's Disease Center. Altogether, 363 HS-Aging cases and 2,303 controls, all pathologically confirmed, provided statistical power to test for risk alleles with large effect size. A two-tier study design included GWAS from cohorts #1-3 (Stage I) to identify promising SNP candidates, followed by focused evaluation of particular SNPs in cohorts #4-5 (Stage II). Polymorphism in the ATP-binding cassette, sub-family C member 9 (ABCC9) gene, also known as sulfonylurea receptor 2, was associated with HS-Aging pathology. In the meta-analyzed Stage I GWAS, ABCC9 polymorphisms yielded the lowest p values, and factoring in the Stage II results, the meta-analyzed risk SNP (rs704178:G) attained genome-wide statistical significance (p = 1.4 × 10(-9)), with odds ratio (OR) of 2.13 (recessive mode of inheritance). For SNPs previously linked to hippocampal sclerosis, meta-analyses of Stage I results show OR = 1.16 for rs5848 (GRN) and OR = 1.22 rs1990622 (TMEM106B), with the risk alleles as previously described. Sulfonylureas, a widely prescribed drug class used to treat diabetes, also modify human ABCC9 protein function. A subsample of patients from the NACC database (n = 624) were identified who were older than age 85 at death with known drug history. Controlling for important confounders such as diabetes itself, exposure to a sulfonylurea drug was associated with risk for HS-Aging pathology (p = 0.03). Thus, we describe a novel and targetable dementia risk factor.


Subject(s)
Aging/genetics , Aging/pathology , Hippocampus/pathology , Polymorphism, Single Nucleotide , Sulfonylurea Receptors/genetics , Aged, 80 and over , Aging/drug effects , Cohort Studies , Databases as Topic , Endophenotypes , Genome-Wide Association Study , Hippocampus/drug effects , Humans , Sclerosis/genetics , Sclerosis/pathology , Sulfonylurea Compounds/adverse effects , Sulfonylurea Compounds/therapeutic use
11.
Acta Neuropathol ; 126(2): 161-77, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23864344

ABSTRACT

Hippocampal sclerosis of aging (HS-Aging) is a causative factor in a large proportion of elderly dementia cases. The current definition of HS-Aging rests on pathologic criteria: neuronal loss and gliosis in the hippocampal formation that is out of proportion to AD-type pathology. HS-Aging is also strongly associated with TDP-43 pathology. HS-Aging pathology appears to be most prevalent in the oldest-old: autopsy series indicate that 5-30 % of nonagenarians have HS-Aging pathology. Among prior studies, differences in study design have contributed to the study-to-study variability in reported disease prevalence. The presence of HS-Aging pathology correlates with significant cognitive impairment which is often misdiagnosed as AD clinically. The antemortem diagnosis is further confounded by other diseases linked to hippocampal atrophy including frontotemporal lobar degeneration and cerebrovascular pathologies. Recent advances characterizing the neurocognitive profile of HS-Aging patients have begun to provide clues that may help identify living individuals with HS-Aging pathology. Structural brain imaging studies of research subjects followed to autopsy reveal hippocampal atrophy that is substantially greater in people with eventual HS-Aging pathology, compared to those with AD pathology alone. Data are presented from individuals who were followed with neurocognitive and neuroradiologic measurements, followed by neuropathologic evaluation at the University of Kentucky. Finally, we discuss factors that are hypothesized to cause or modify the disease. We conclude that the published literature on HS-Aging provides strong evidence of an important and under-appreciated brain disease of aging. Unfortunately, there is no therapy or preventive strategy currently available.


Subject(s)
Aging/pathology , Brain Diseases/epidemiology , Brain Diseases/pathology , Hippocampus/pathology , Aged , Humans , Morbidity , Prevalence , Sclerosis
12.
Nucleic Acids Res ; 39(18): 8163-72, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21724616

ABSTRACT

MicroRNAs (miRNAs) target mRNAs in human cells via complex mechanisms that are still incompletely understood. Using anti-Argonaute (anti-AGO) antibody co-immunoprecipitation, followed by microarray analyses and downstream bioinformatics, 'RIP-Chip' experiments enable direct analyses of miRNA targets. RIP-Chip studies (and parallel assessments of total input mRNA) were performed in cultured H4 cells after transfection with miRNAs corresponding to the miR-15/107 gene group (miR-103, miR-107, miR-16 and miR-195), and five control miRNAs. Three biological replicates were run for each condition with a total of 54 separate human Affymetrix Human Gene 1.0 ST array replicates. Computational analyses queried for determinants of miRNA:mRNA binding. The analyses support four major findings: (i) RIP-Chip studies correlated with total input mRNA profiling provides more comprehensive information than using either RIP-Chip or total mRNA profiling alone after miRNA transfections; (ii) new data confirm that miR-107 paralogs target coding sequence (CDS) of mRNA; (iii) biochemical and computational studies indicate that the 3' portion of miRNAs plays a role in guiding miR-103/7 to the CDS of targets; and (iv) there are major sequence-specific targeting differences between miRNAs in terms of CDS versus 3'-untranslated region targeting, and stable AGO association versus mRNA knockdown. Future studies should take this important miRNA-to-miRNA variability into account.


Subject(s)
Down-Regulation , MicroRNAs/chemistry , RNA, Messenger/metabolism , Argonaute Proteins/isolation & purification , Base Sequence , Cell Line , Gene Expression Profiling , Humans , Immunoprecipitation , MicroRNAs/metabolism , Oligonucleotide Array Sequence Analysis , RNA, Messenger/chemistry
13.
Neurobiol Aging ; 128: 74-84, 2023 08.
Article in English | MEDLINE | ID: mdl-37229849

ABSTRACT

Mouse models of hyper- and hypothyroidism were used to examine the effects of thyroid hormone (TH) dyshomeostasis on the aging mammalian brain. 13-14 month-old mice were treated for 4months with either levothyroxine (hyperthyroid) or a propylthiouracil and methimazole combination (PTU/Met; hypothyroid). Hyperthyroid mice performed better on Morris Water Maze than control mice, while hypothyroid mice performed worse. Brain weight was increased in thyroxine-treated, and decreased in PTU/Met-treated animals. The brain weight change was strongly correlated with circulating and tissue T4. Quantitative measurements of microvessels were compared using digital neuropathologic methods. There was an increase in microvessel area in hyperthyroid mice. Hypothyroid mice showed a trend for elevated glial fibrillary acidic protein-immunoreactive astrocytes, indicating an increase in neuroinflammation. Gene expression alterations were associated with TH perturbation and astrocyte-expressed transcripts were particularly affected. For example, expression of Gli2 and Gli3, mediators in the Sonic Hedgehog signaling pathway, were strongly impacted by both treatments. We conclude that TH perturbations produce robust neurobehavioral, pathological, and brain gene expression changes in aging mouse models.


Subject(s)
Hyperthyroidism , Hypothyroidism , Mice , Animals , Hedgehog Proteins/metabolism , Thyroid Hormones/metabolism , Hypothyroidism/genetics , Thyroxine , Hyperthyroidism/metabolism , Gene Expression , Brain/metabolism , Mammals/metabolism
14.
RNA ; 16(2): 394-404, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20042474

ABSTRACT

MicroRNAs (miRNAs) play key roles in gene expression regulation by guiding Argonaute (AGO)-containing microribonucleoprotein (miRNP) effector complexes to target polynucleotides. There are still uncertainties about how miRNAs interact with mRNAs. Here we employed a biochemical approach to isolate AGO-containing miRNPs from human H4 tumor cells by co-immunoprecipitation (co-IP) with a previously described anti-AGO antibody. Co-immunoprecipitated (co-IPed) RNAs were subjected to downstream Affymetrix Human Gene 1.0 ST microarray analysis. During rigorous validation, the "RIP-Chip" assay identified target mRNAs specifically associated with AGO complexes. RIP-Chip was performed after transfecting brain-enriched miRNAs (miR-107, miR-124, miR-128, and miR-320) and nonphysiologic control miRNA to identify miRNA targets. As expected, the miRNA transfections altered the mRNA content of the miRNPs. Specific mRNA species recruited to miRNPs after miRNA transfections were moderately in agreement with computational target predictions. In addition to recruiting mRNA targets into miRNPs, miR-107 and to a lesser extent miR-128, but not miR-124 or miR-320, caused apparent exclusion of some mRNAs that are normally associated with miRNPs. MiR-107 and miR-128 transfections also result in decreased AGO mRNA and protein levels. However, AGO mRNAs were not recruited to miRNPs after either miR-107 or miR-128 transfection, confirming that miRNAs may alter gene expression without stable association between particular mRNAs and miRNPs. In summary, RIP-Chip assays constitute an optimized, validated, direct, and high-throughput biochemical assay that provides data about specific miRNA:mRNA interactions, as well as global patterns of regulation by miRNAs.


Subject(s)
Immunoprecipitation/methods , MicroRNAs/genetics , MicroRNAs/metabolism , Oligonucleotide Array Sequence Analysis/methods , RNA, Messenger/metabolism , Ribonucleoproteins/metabolism , Animals , Antibodies, Monoclonal , Argonaute Proteins , Cell Line, Tumor , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/immunology , Eukaryotic Initiation Factor-2/metabolism , Humans , Macromolecular Substances , Mice , MicroRNAs/chemistry , RNA, Messenger/chemistry , Ribonucleoproteins/chemistry , Transfection
15.
Am J Pathol ; 177(1): 334-45, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20489155

ABSTRACT

Granulin (GRN, or progranulin) is a protein involved in wound repair, inflammation, and neoplasia. GRN has also been directly implicated in frontotemporal dementia and may contribute to Alzheimer's disease pathogenesis. However, GRN regulation expression is poorly understood. A high-throughput experimental microRNA assay showed that GRN is the strongest target for miR-107 in human H4 neuroglioma cells. miR-107 has been implicated in Alzheimer's disease pathogenesis, and sequence elements in the open reading frame-rather than the 3' untranslated region-of GRN mRNA are recognized by miR-107 and are highly conserved among vertebrate species. To better understand the mechanism of this interaction, FLAG-tagged Argonaute constructs were used following miR-107 transfection. GRN mRNA interacts preferentially with Argonaute 2. In vitro and in vivo studies indicate that regulation of GRN by miR-107 may be functionally important. Glucose supplementation in cultured cells that leads to increased miR-107 levels also results in decreased GRN expression, including changes in cell compartmentation and decreased secretion of GRN protein. This effect was eliminated following miR-107 transfection. We also tested a mouse model where miR-107 has been shown to be down-regulated. In brain tissue subjacent to 1.0 mm depth controlled cortical impact, surviving hippocampal neurons show decreased miR-107 with augmentation of neuronal GRN expression. These findings indicate that miR-107 contributes to GRN expression regulation with implications for brain disorders.


Subject(s)
Brain Injuries/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , MicroRNAs/metabolism , Neurodegenerative Diseases/metabolism , Animals , Argonaute Proteins , Base Sequence , Brain/anatomy & histology , Brain/metabolism , Brain/pathology , Brain Injuries/genetics , Brain Injuries/pathology , Cells, Cultured , Eukaryotic Initiation Factors/genetics , Eukaryotic Initiation Factors/metabolism , Glucose/metabolism , Humans , Intercellular Signaling Peptides and Proteins/genetics , Male , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Microarray Analysis , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Progranulins , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Alignment
16.
Acta Neuropathol ; 121(2): 193-205, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20936480

ABSTRACT

MicroRNA (miRNA) expression was assessed in human cerebral cortical gray matter (GM) and white matter (WM) in order to provide the first insights into the difference between GM and WM miRNA repertoires across a range of Alzheimer's disease (AD) pathology. RNA was isolated separately from GM and WM portions of superior and middle temporal cerebral cortex (N = 10 elderly females, postmortem interval < 4 h). miRNA profiling experiments were performed using state-of-the-art Exiqon(©) LNA-microarrays. A subset of miRNAs that appeared to be strongly expressed according to the microarrays did not appear to be conventional miRNAs according to Northern blot analyses. Some well-characterized miRNAs were substantially enriched in WM as expected. However, most of the miRNA expression variability that correlated with the presence of early AD-related pathology was seen in GM. We confirm that downregulation of a set of miRNAs in GM (including several miR-15/107 genes and miR-29 paralogs) correlated strongly with the density of diffuse amyloid plaques detected in adjacent tissue. A few miRNAs were differentially expressed in WM, including miR-212 that is downregulated in AD and miR-424 which is upregulated in AD. The expression of certain miRNAs correlates with other miRNAs across different cases, and particular subsets of miRNAs are coordinately expressed in relation to AD-related pathology. These data support the hypothesis that patterns of miRNA expression in cortical GM may contribute to AD pathogenetically, because the aggregate change in miRNA expression observed early in the disease would be predicted to cause profound changes in gene expression.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/pathology , MicroRNAs/metabolism , Nerve Fibers, Myelinated/metabolism , Nerve Tissue/pathology , Temporal Lobe/pathology , Aged , Aged, 80 and over , Amyloid beta-Peptides/metabolism , Female , Gene Expression Profiling , Humans , MicroRNAs/genetics , Nerve Fibers, Myelinated/pathology , Nerve Tissue/metabolism , Neurofibrillary Tangles/pathology , Oligonucleotide Array Sequence Analysis , Postmortem Changes , Statistics as Topic
17.
Front Mol Biosci ; 8: 657258, 2021.
Article in English | MEDLINE | ID: mdl-34055880

ABSTRACT

Approximately one-third of aneurysmal subarachnoid hemorrhage (aSAH) patients develop delayed cerebral vasospasm (DCV) 3-10 days after aneurysm rupture resulting in additional, permanent neurologic disability. Currently, no validated biomarker is available to determine the risk of DCV in aSAH patients. MicroRNAs (miRNAs) have been implicated in virtually all human diseases, including aSAH, and are found in extracellular biofluids including plasma and cerebrospinal fluid (CSF). We used a custom designed TaqMan Low Density Array miRNA panel to examine the levels of 47 selected brain and vasculature injury related miRNAs in CSF and plasma specimens collected from 31 patients with or without DCV at 3 and 7 days after aSAH, as well as from eight healthy controls. The analysis of the first 18-patient cohort revealed a striking differential expression pattern of the selected miRNAs in CSF and plasma of aSAH patients with DCV from those without DCV. Importantly, this differential expression was observed at the early time point (3 days after aSAH), before DCV event occurs. Seven miRNAs were identified as reliable DCV risk predictors along with a prediction model constructed based on an array of additional 19 miRNAs on the panel. These chosen miRNAs were then used to predict the risk of DCV in a separate, testing cohort of 15 patients. The accuracy of DCV risk prediction in the testing cohort reached 87%. The study demonstrates that our novel designed miRNA panel is an effective predictor of DCV risk and has strong applications in clinical management of aSAH patients.

18.
J Thyroid Res ; 2021: 9960188, 2021.
Article in English | MEDLINE | ID: mdl-34257897

ABSTRACT

Thyroid hormone (TH) perturbation is a common medical problem. Because of substantial public health impact, prior researchers have studied hyper- and hypothyroidism in animal models. Although most prior research focused on in utero and/or developmental effects, changes in circulating TH levels are commonly seen in elderly individuals: approximately 20% of persons older than 80 years have clinically impactful hypothyroidism and up to 5% have clinical hyperthyroidism, with women being more often affected than men. TH disease model methodology in mice have varied but usually focus on a single sex, and the impact(s) of TH perturbation on the adult brain are not well understood. We administered thyroxine to middle-aged (13 to 14 months) male and female mice to model hyperthyroidism and TH-lowering drugs propylthiouracil (PTU) and methimazole, to induce hypothyroidism. These pharmacological agents are used commonly in adult humans. Circulating TH-level changes were observed when thyroxine was dosed at 20 µg/mL in drinking water for two weeks. By contrast, PTU and methimazole did not elicit a consistent reproducible effect until two months of treatment. No substantial changes in TH levels were detected in brain tissues of treated animals; however, pronounced changes in gene expression, specifically for TH-processing transcripts, were observed following the treatment with thyroxine. Our study indicated a robust compensatory mechanism by which the brain tissue/cells minimize the TH fluctuation in CNS by altering gene expression. Neurobehavioral changes were related to the TH perturbation and suggested potential associations between cognitive status and hyper- and hypothyroidism.

19.
Neural Regen Res ; 16(3): 514-522, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32985480

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate post-transcriptional gene expression and contribute to all aspects of cellular function. We previously reported that the activities of several mitochondria-enriched miRNAs regulating inflammation (i.e., miR-142-3p, miR-142-5p, and miR-146a) are altered in the hippocampus at 3-12 hours following a severe traumatic brain injury. In the present study, we investigated the temporal expression profile of these inflammatory miRNAs in mitochondria and cytosol fractions at more chronic post-injury times following severe controlled cortical impact injury in rats. In addition, several inflammatory genes were analyzed in the cytosol fractions. The analysis showed that while elevated levels were observed in cytoplasm, the mitochondria-enriched miRNAs, miR-142-3p and miR-142-5p continued to be significantly reduced in mitochondria from injured hippocampi for at least 3 days and returned to near normal levels at 7 days post-injury. Although not statistically significant, miR-146a also remained at reduced levels for up to 3 days following controlled cortical impact injury, and recovered by 7 days. In contrast, miRNAs that are not enriched in mitochondria, including miR-124a, miR-150, miR-19b, miR-155, and miR-223 were either increased or demonstrated no change in their levels in mitochondrial fractions for 7 days. The one exception was that miR-223 levels were reduced in mitochondria at 1 day following injury. No major alterations were observed in sham operated animals. This temporal pattern was unique to mitochondria-enriched miRNAs and correlated with injury-induced changes in mitochondrial bioenergetics as well as expression levels of several inflammatory markers. These observations suggested a potential compartmental re-distribution of the mitochondria-enriched inflammatory miRNAs and may reflect an intracellular mechanism by which specific miRNAs regulate injury-induced inflammatory signaling. To test this, we utilized a novel peptide-based nanoparticle strategy for in vitro and in vivo delivery of a miR-146a mimic as a potential therapeutic strategy for targeting nuclear factor-kappaB inflammatory modulators in the injured brain. Nanoparticle delivery of miR-146a to BV-2 or SH-SY5Y cells significantly reduced expression of TNF receptor-associated factor 6 (TRAF6) and interleukin-1 receptor-associated kinase 1 (IRAK1), two important modulators of the nuclear factor-kappaB (NF-κB) pro-inflammatory pathway. Moreover, injections of miR-146a containing nanoparticles into the brain immediately following controlled cortical impact injury significantly reduced hippocampal TNF receptor-associated factor 6 and interleukin-1 receptor-associated kinase 1 levels. Taken together, our studies demonstrate the subcellular alteration of inflammatory miRNAs after traumatic brain injury and establish proof of principle that nanoparticle delivery of miR-146a has therapeutic potential for modulating pro-inflammatory effectors in the injured brain. All of the studies performed were approved by the University of Kentucky Institutional Animal Care and Usage Committee (IACUC protocol # 2014-1300) on August 17, 2017.

20.
Cell Death Differ ; 28(5): 1548-1562, 2021 05.
Article in English | MEDLINE | ID: mdl-33398092

ABSTRACT

Iron homeostasis disturbance has been implicated in Alzheimer's disease (AD), and excess iron exacerbates oxidative damage and cognitive defects. Ferroptosis is a nonapoptotic form of cell death dependent upon intracellular iron. However, the involvement of ferroptosis in the pathogenesis of AD remains elusive. Here, we report that ferroportin1 (Fpn), the only identified mammalian nonheme iron exporter, was downregulated in the brains of APPswe/PS1dE9 mice as an Alzheimer's mouse model and Alzheimer's patients. Genetic deletion of Fpn in principal neurons of the neocortex and hippocampus by breeding Fpnfl/fl mice with NEX-Cre mice led to AD-like hippocampal atrophy and memory deficits. Interestingly, the canonical morphological and molecular characteristics of ferroptosis were observed in both Fpnfl/fl/NEXcre and AD mice. Gene set enrichment analysis (GSEA) of ferroptosis-related RNA-seq data showed that the differentially expressed genes were highly enriched in gene sets associated with AD. Furthermore, administration of specific inhibitors of ferroptosis effectively reduced the neuronal death and memory impairments induced by Aß aggregation in vitro and in vivo. In addition, restoring Fpn ameliorated ferroptosis and memory impairment in APPswe/PS1dE9 mice. Our study demonstrates the critical role of Fpn and ferroptosis in the progression of AD, thus provides promising therapeutic approaches for this disease.


Subject(s)
Alzheimer Disease/genetics , Ferroptosis/physiology , Memory Disorders/genetics , Animals , Disease Models, Animal , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL