Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Proc Natl Acad Sci U S A ; 121(7): e2314085121, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38330013

ABSTRACT

Cancer therapy, including immunotherapy, is inherently limited by chronic inflammation-induced tumorigenesis and toxicity within the tumor microenvironment. Thus, stimulating the resolution of inflammation may enhance immunotherapy and improve the toxicity of immune checkpoint inhibition (ICI). As epoxy-fatty acids (EpFAs) are degraded by the enzyme soluble epoxide hydrolase (sEH), the inhibition of sEH increases endogenous EpFA levels to promote the resolution of cancer-associated inflammation. Here, we demonstrate that systemic treatment with ICI induces sEH expression in multiple murine cancer models. Dietary omega-3 polyunsaturated fatty acid supplementation and pharmacologic sEH inhibition, both alone and in combination, significantly enhance anti-tumor activity of ICI in these models. Notably, pharmacological abrogation of the sEH pathway alone or in combination with ICI counter-regulates an ICI-induced pro-inflammatory and pro-tumorigenic cytokine storm. Thus, modulating endogenous EpFA levels through dietary supplementation or sEH inhibition may represent a unique strategy to enhance the anti-tumor activity of paradigm cancer therapies.


Subject(s)
Epoxide Hydrolases , Neoplasms , Mice , Humans , Animals , Epoxide Hydrolases/metabolism , Fatty Acids/metabolism , Inflammation/metabolism , Neoplasms/therapy , Immunotherapy , Tumor Microenvironment
2.
Proc Natl Acad Sci U S A ; 117(15): 8431-8436, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32220957

ABSTRACT

Intestinal barrier dysfunction, which leads to translocation of bacteria or toxic bacterial products from the gut into bloodstream and results in systemic inflammation, is a key pathogenic factor in many human diseases. However, the molecular mechanisms leading to intestinal barrier defects are not well understood, and there are currently no available therapeutic approaches to target intestinal barrier function. Here we show that soluble epoxide hydrolase (sEH) is an endogenous regulator of obesity-induced intestinal barrier dysfunction. We find that sEH is overexpressed in the colons of obese mice. In addition, pharmacologic inhibition or genetic ablation of sEH abolishes obesity-induced gut leakage, translocation of endotoxin lipopolysaccharide or bacteria, and bacterial invasion-induced adipose inflammation. Furthermore, systematic treatment with sEH-produced lipid metabolites, dihydroxyeicosatrienoic acids, induces bacterial translocation and colonic inflammation in mice. The actions of sEH are mediated by gut bacteria-dependent mechanisms, since inhibition or genetic ablation of sEH fails to attenuate obesity-induced gut leakage and adipose inflammation in mice lacking gut bacteria. Overall, these results support that sEH is a potential therapeutic target for obesity-induced intestinal barrier dysfunction, and that sEH inhibitors, which have been evaluated in human clinical trials targeting other human disorders, could be promising agents for prevention and/or treatment.


Subject(s)
Bacterial Translocation , Epoxide Hydrolases/immunology , Intestinal Diseases/enzymology , Intestines/enzymology , Obesity/complications , Adipose Tissue/immunology , Animals , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Physiological Phenomena , Epoxide Hydrolases/genetics , Gastrointestinal Microbiome , Humans , Intestinal Diseases/etiology , Intestinal Diseases/immunology , Intestinal Diseases/microbiology , Intestines/immunology , Intestines/microbiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/enzymology , Obesity/genetics
3.
Proc Natl Acad Sci U S A ; 117(35): 21576-21587, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32801214

ABSTRACT

Toxic environmental carcinogens promote cancer via genotoxic and nongenotoxic pathways, but nongenetic mechanisms remain poorly characterized. Carcinogen-induced apoptosis may trigger escape from dormancy of microtumors by interfering with inflammation resolution and triggering an endoplasmic reticulum (ER) stress response. While eicosanoid and cytokine storms are well-characterized in infection and inflammation, they are poorly characterized in cancer. Here, we demonstrate that carcinogens, such as aflatoxin B1 (AFB1), induce apoptotic cell death and the resulting cell debris stimulates hepatocellular carcinoma (HCC) tumor growth via an "eicosanoid and cytokine storm." AFB1-generated debris up-regulates cyclooxygenase-2 (COX-2), soluble epoxide hydrolase (sEH), ER stress-response genes including BiP, CHOP, and PDI in macrophages. Thus, selective cytokine or eicosanoid blockade is unlikely to prevent carcinogen-induced cancer progression. Pharmacological abrogation of both the COX-2 and sEH pathways by PTUPB prevented the debris-stimulated eicosanoid and cytokine storm, down-regulated ER stress genes, and promoted macrophage phagocytosis of debris, resulting in suppression of HCC tumor growth. Thus, inflammation resolution via dual COX-2/sEH inhibition is an approach to prevent carcinogen-induced cancer.


Subject(s)
Cytokines/metabolism , Eicosanoids/metabolism , Liver Neoplasms/metabolism , Aflatoxin B1/adverse effects , Animals , Apoptosis , Carcinogenesis/metabolism , Carcinogens/metabolism , Carcinoma, Hepatocellular/metabolism , Cell Line , Cyclooxygenase 2/metabolism , Cytokines/immunology , Disease Progression , Eicosanoids/immunology , Epoxide Hydrolases/metabolism , Hep G2 Cells , Humans , Inflammation/metabolism , Liver Neoplasms/physiopathology , Macrophages/metabolism , Mice , Neoplastic Processes
4.
Ecotoxicol Environ Saf ; 249: 114417, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36525946

ABSTRACT

Aflatoxin B1 (AFB1) contamination in food and feed leads to severe global health problems. Acting as the frontier immunological barrier, the intestinal mucosa is constantly challenged by exposure to foodborne toxins such as AFB1 via contaminated diets, but the detailed toxic mechanism and endogenous regulators of AFB1 toxicity are still unclear. Here, we showed that AFB1 disrupted intestinal immune function by suppressing macrophages, especially M2 macrophages, and antimicrobial peptide-secreting Paneth cells. Using an oxylipinomics approach, we identified that AFB1 immunotoxicity is associated with decreased epoxy fatty acids, notably epoxyeicosatrienoic acids, and increased soluble epoxide hydrolase (sEH) levels in the intestine. Furthermore, sEH deficiency or inhibition rescued the AFB1-compromised intestinal immunity by restoring M2 macrophages as well as Paneth cells and their-derived lysozyme and α-defensin-3 in mice. Altogether, our study demonstrates that AFB1 exposure impairs intestinal immunity, at least in part, in a sEH-mediated way. Moreover, the present study supports the potential application of pharmacological intervention by inhibiting the sEH enzyme in alleviating intestinal immunotoxicity and associated complications caused by AFB1 global contamination.


Subject(s)
Aflatoxin B1 , Epoxide Hydrolases , Animals , Mice , Aflatoxin B1/toxicity , Diet , Immunity , Intestines
5.
Int J Mol Sci ; 24(12)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37373086

ABSTRACT

Parkinson's disease (PD) is an increasingly common neurodegenerative movement disorder with contributing factors that are still largely unexplored and currently no effective intervention strategy. Epidemiological and pre-clinical studies support the close association between environmental toxicant exposure and PD incidence. Aflatoxin B1 (AFB1), a hazardous mycotoxin commonly present in food and environment, is alarmingly high in many areas of the world. Previous evidence suggests that chronic exposure to AFB1 leads to neurological disorders as well as cancer. However, whether and how aflatoxin B1 contributes to the pathogenesis of PD is poorly understood. Here, oral exposure to AFB1 is shown to induce neuroinflammation, trigger the α-synuclein pathology, and cause dopaminergic neurotoxicity. This was accompanied by the increased expression and enzymatic activity of soluble epoxide hydrolase (sEH) in the mouse brain. Importantly, genetic deletion or pharmacological inhibition of sEH alleviated the AFB1-induced neuroinflammation by reducing microglia activation and suppressing pro-inflammatory factors in the brain. Furthermore, blocking the action of sEH attenuated dopaminergic neuron dysfunction caused by AFB1 in vivo and in vitro. Together, our findings suggest a contributing role of AFB1 to PD etiology and highlight sEH as a potential pharmacological target for alleviating PD-related neuronal disorders caused by AFB1 exposure.


Subject(s)
Neurodegenerative Diseases , Neurotoxicity Syndromes , Parkinson Disease , Mice , Animals , Aflatoxin B1/toxicity , Epoxide Hydrolases/genetics , Epoxide Hydrolases/metabolism , Neuroinflammatory Diseases , Parkinson Disease/metabolism , Brain/metabolism
6.
Int J Mol Sci ; 24(5)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36901999

ABSTRACT

Aging, which is characterized by enhanced cell senescence and functional decline of tissues, is a major risk factor for many chronic diseases. Accumulating evidence shows that age-related dysfunction in the colon leads to disorders in multiple organs and systemic inflammation. However, the detailed pathological mechanisms and endogenous regulators underlying colon aging are still largely unknown. Here, we report that the expression and activity of the soluble epoxide hydrolase (sEH) enzyme are increased in the colon of aged mice. Importantly, genetic knockout of sEH attenuated the age-related upregulation of senescent markers p21, p16, Tp53, and ß-galactosidase in the colon. Moreover, sEH deficiency alleviated aging-associated endoplasmic reticulum (ER) stress in the colon by reducing both the upstream regulators Perk and Ire1 as well as the downstream pro-apoptotic effectors Chop and Gadd34. Furthermore, treatment with sEH-derived linoleic acid metabolites, dihydroxy-octadecenoic acids (DiHOMEs), decreased cell viability and increased ER stress in human colon CCD-18Co cells in vitro. Together, these results support that the sEH is a key regulator of the aging colon, which highlights its potential application as a therapeutic target for reducing or treating age-related diseases in the colon.


Subject(s)
Cellular Senescence , Endoplasmic Reticulum Stress , Epoxide Hydrolases , Animals , Humans , Mice , Aging , Colon/metabolism , Epoxide Hydrolases/metabolism , Inflammation , Mice, Inbred C57BL
7.
Am J Pathol ; 190(9): 1782-1788, 2020 09.
Article in English | MEDLINE | ID: mdl-32650004

ABSTRACT

Severe coronavirus disease 2019 (COVID-19) symptoms, including systemic inflammatory response and multisystem organ failure, are now affecting thousands of infected patients and causing widespread mortality. Coronavirus infection causes tissue damage, which triggers the endoplasmic reticulum stress response and subsequent eicosanoid and cytokine storms. Although proinflammatory eicosanoids, including prostaglandins, thromboxanes, and leukotrienes, are critical mediators of physiological processes, such as inflammation, fever, allergy, and pain, their roles in COVID-19 are poorly characterized. Arachidonic acid-derived epoxyeicosatrienoic acids could alleviate the systemic hyperinflammatory response in COVID-19 infection by modulating endoplasmic reticulum stress and stimulating the resolution of inflammation. Soluble epoxide hydrolase (sEH) inhibitors, which increase endogenous epoxyeicosatrienoic acid levels, exhibit potent anti-inflammatory activity and inhibit various pathologic processes in preclinical disease models, including pulmonary fibrosis, thrombosis, and acute respiratory distress syndrome. Therefore, targeting eicosanoids and sEH could be a novel therapeutic approach in combating COVID-19. In this review, we discuss the predominant role of eicosanoids in regulating the inflammatory cascade and propose the potential application of sEH inhibitors in alleviating COVID-19 symptoms. The host-protective action of omega-3 fatty acid-derived epoxyeicosanoids and specialized proresolving mediators in regulating anti-inflammation and antiviral response is also discussed. Future studies determining the eicosanoid profile in COVID-19 patients or preclinical models are pivotal in providing novel insights into coronavirus-host interaction and inflammation modulation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Animals , Betacoronavirus/pathogenicity , COVID-19 , Eicosanoids/pharmacology , Eicosanoids/therapeutic use , Endoplasmic Reticulum Stress/drug effects , Humans , Pandemics , SARS-CoV-2
8.
Proc Natl Acad Sci U S A ; 115(20): 5283-5288, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29717038

ABSTRACT

Obesity is associated with enhanced colonic inflammation, which is a major risk factor for colorectal cancer. Considering the obesity epidemic in Western countries, it is important to identify novel therapeutic targets for obesity-induced colonic inflammation, to develop targeted strategies for prevention. Eicosanoids are endogenous lipid signaling molecules involved in regulating inflammation and immune responses. Using an LC-MS/MS-based lipidomics approach, we find that obesity-induced colonic inflammation is associated with increased expression of soluble epoxide hydrolase (sEH) and its eicosanoid metabolites, termed fatty acid diols, in colon tissue. Furthermore, we find that pharmacological inhibition or genetic ablation of sEH reduces colonic concentrations of fatty acid diols, attenuates obesity-induced colonic inflammation, and decreases obesity-induced activation of Wnt signaling in mice. Together, these results support that sEH could be a novel therapeutic target for obesity-induced colonic inflammation and associated diseases.


Subject(s)
Colitis/etiology , Diet, High-Fat/adverse effects , Epoxide Hydrolases/physiology , Inflammation/etiology , Lipids/analysis , Metabolomics/methods , Obesity/complications , Animals , Colitis/metabolism , Colitis/pathology , Inflammation/metabolism , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction
9.
Small ; 16(36): e2001858, 2020 09.
Article in English | MEDLINE | ID: mdl-32519440

ABSTRACT

The recent ban of titanium dioxide (TiO2 ) as a food additive (E171) in France intensified the controversy on safety of foodborne-TiO2 nanoparticles (NPs). This study determines the biological effects of TiO2 NPs and TiO2 (E171) in obese and non-obese mice. Oral consumption (0.1 wt% in diet for 8 weeks) of TiO2 (E171, 112 nm) and TiO2 NPs (33 nm) does not cause severe toxicity in mice, but significantly alters composition of gut microbiota, for example, increased abundance of Firmicutes phylum and decreased abundance of Bacteroidetes phylum and Bifidobacterium and Lactobacillus genera, which are accompanied by decreased cecal levels of short-chain fatty acids. Both TiO2 (E171) and TiO2 NPs increase abundance of pro-inflammatory immune cells and cytokines in the colonic mucosa, indicating an inflammatory state. Importantly, TiO2 NPs cause stronger colonic inflammation than TiO2 (E171), and obese mice are more susceptible to the effects. A microbiota transplant study demonstrates that altered fecal microbiota by TiO2 NPs directly mediate inflammatory responses in the mouse colon. Furthermore, proteomic analysis shows that TiO2 NPs cause more alterations in multiple pathways in the liver and colon of obese mice than non-obese mice. This study provides important information on the health effects of foodborne inorganic nanoparticles.


Subject(s)
Colon , Dysbiosis , Gastrointestinal Microbiome , Metal Nanoparticles , Proteome , Titanium , Animals , Colon/drug effects , Dysbiosis/chemically induced , Food Contamination , Gastrointestinal Microbiome/drug effects , Inflammation/chemically induced , Metal Nanoparticles/toxicity , Mice , Mice, Obese , Proteome/drug effects , Proteomics , Titanium/toxicity
10.
Cancer Metastasis Rev ; 37(2-3): 257-267, 2018 09.
Article in English | MEDLINE | ID: mdl-29858741

ABSTRACT

Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related death in the USA. It is of practical importance to identify novel therapeutic targets of CRC to develop new anti-cancer drugs and to discover novel biomarkers of CRC to develop new detection methods. Eicosanoids, which are metabolites of polyunsaturated fatty acids produced by cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) enzymes, are important lipid-signaling molecules involved in the regulation of inflammation and tumorigenesis. Substantial studies have shown that the profiles of eicosanoids are deregulated in CRC, and the enzymes, metabolites, and receptors in the eicosanoid signaling cascade play critical roles in regulating colonic inflammation and colon tumorigenesis. In this review, we discuss the roles of the COX, LOX, and CYP pathways in the carcinogenesis of CRC.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Colorectal Neoplasms/etiology , Colorectal Neoplasms/metabolism , Eicosanoids/metabolism , Signal Transduction , Animals , Cell Transformation, Neoplastic/genetics , Colitis/complications , Colitis/metabolism , Colorectal Neoplasms/pathology , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Epoxide Hydrolases/genetics , Epoxide Hydrolases/metabolism , Humans , Lipid Metabolism , Lipoxygenase/genetics , Lipoxygenase/metabolism , Obesity/complications , Obesity/metabolism , Prostaglandin-Endoperoxide Synthases/genetics , Prostaglandin-Endoperoxide Synthases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL