Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 235
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Emerg Infect Dis ; 30(7): 1434-1437, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38916639

ABSTRACT

We investigated Alongshan virus infection in reindeer in northeastern China. We found that 4.8% of the animals were viral RNA-positive, 33.3% tested positive for IgG, and 19.1% displayed neutralizing antibodies. These findings suggest reindeer could serve as sentinel animal species for the epidemiologic surveillance of Alongshan virus infection.


Subject(s)
Antibodies, Viral , Reindeer , Animals , Reindeer/virology , China/epidemiology , Antibodies, Viral/blood , Antibodies, Neutralizing/blood , Bunyaviridae Infections/veterinary , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/virology , RNA, Viral , Immunoglobulin G/blood
2.
Acta Pharmacol Sin ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811774

ABSTRACT

Exercise training effectively relieves anxiety disorders via modulating specific brain networks. The role of post-translational modification of proteins in this process, however, has been underappreciated. Here we performed a mouse study in which chronic restraint stress-induced anxiety-like behaviors can be attenuated by 14-day persistent treadmill exercise, in association with dramatic changes of protein phosphorylation patterns in the medial prefrontal cortex (mPFC). In particular, exercise was proposed to modulate the phosphorylation of Nogo-A protein, which drives the ras homolog family member A (RhoA)/ Rho-associated coiled-coil-containing protein kinases 1(ROCK1) signaling cascade. Further mechanistic studies found that liver-derived kynurenic acid (KYNA) can affect the kynurenine metabolism within the mPFC, to modulate this RhoA/ROCK1 pathway for conferring stress resilience. In sum, we proposed that circulating KYNA might mediate stress-induced anxiety-like behaviors via protein phosphorylation modification within the mPFC, and these findings shed more insights for the liver-brain communications in responding to both stress and physical exercise.

3.
Nucleic Acids Res ; 50(19): 10896-10913, 2022 10 28.
Article in English | MEDLINE | ID: mdl-35801907

ABSTRACT

Post-transcriptional RNA modifications critically regulate various biological processes. N4-acetylcytidine (ac4C) is an epi-transcriptome, which is highly conserved in all species. However, the in vivo physiological functions and regulatory mechanisms of ac4C remain poorly understood, particularly in mammals. In this study, we demonstrate that the only known ac4C writer, N-acetyltransferase 10 (NAT10), plays an essential role in male reproduction. We identified the occurrence of ac4C in the mRNAs of mouse tissues and showed that ac4C undergoes dynamic changes during spermatogenesis. Germ cell-specific ablation of Nat10 severely inhibits meiotic entry and leads to defects in homologous chromosome synapsis, meiotic recombination and repair of DNA double-strand breaks during meiosis. Transcriptomic profiling revealed dysregulation of functional genes in meiotic prophase I after Nat10 deletion. These findings highlight the crucial physiological functions of ac4C modifications in male spermatogenesis and expand our understanding of its role in the regulation of specific physiological processes in vivo.


Subject(s)
Cytidine , Meiosis , Male , Mice , Animals , Meiosis/genetics , Cytidine/genetics , Chromosome Pairing , Germ Cells , Mammals
4.
BMC Pulm Med ; 24(1): 29, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38212743

ABSTRACT

BACKGROUND: Some medical conditions may increase the risk of developing pulmonary tuberculosis (PTB); however, no systematic study on PTB-associated comorbidities and comorbidity clusters has been undertaken. METHODS: A nested case-control study was conducted from 2013 to 2017 using multi-source big data. We defined cases as patients with incident PTB, and we matched each case with four event-free controls using propensity score matching (PSM). Comorbidities diagnosed prior to PTB were defined with the International Classification of Diseases-10 (ICD-10). The longitudinal relationships between multimorbidity burden and PTB were analyzed using a generalized estimating equation. The associations between PTB and 30 comorbidities were examined using conditional logistic regression, and the comorbidity clusters were identified using network analysis. RESULTS: A total of 4265 cases and 17,060 controls were enrolled during the study period. A total of 849 (19.91%) cases and 1141 (6.69%) controls were multimorbid before the index date. Having 1, 2, and ≥ 3 comorbidities was associated with an increased risk of PTB (aOR 2.85-5.16). Fourteen out of thirty comorbidities were significantly associated with PTB (aOR 1.28-7.27), and the associations differed by sex and age. Network analysis identified three major clusters, mainly in the respiratory, circulatory, and endocrine/metabolic systems, in PTB cases. CONCLUSIONS: Certain comorbidities involving multiple systems may significantly increase the risk of PTB. Enhanced awareness and surveillance of comorbidity are warranted to ensure early prevention and timely control of PTB.


Subject(s)
Big Data , Tuberculosis, Pulmonary , Humans , Case-Control Studies , Tuberculosis, Pulmonary/epidemiology , Comorbidity , Logistic Models
5.
J Asian Nat Prod Res ; 26(3): 320-327, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37455565

ABSTRACT

Two new quinazoline alkaloids versicomides G-H (1 and 2), together with seven known compounds, were isolated from Aspergillus versicolor HYQZ-215 obtained from the sediment of Qarhan Salt Lake. Their structures were elucidated by NMR, HRESIMS, and quantum chemical ECD calculations data. The antimicrobial activities of these compounds were evaluated against seven agricultural pathogenic fungi and eight clinically drug-resistant bacteria.


Subject(s)
Alkaloids , Anti-Infective Agents , Aspergillus , Molecular Structure , Quinazolines/pharmacology , Quinazolines/chemistry , Alkaloids/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry
6.
Langmuir ; 39(33): 11797-11806, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37555935

ABSTRACT

To improve the interfacial bonding of dissimilar composites, the interaction mechanism between the surface state and severe plastic deformation to strengthen the interfacial bonding strength was revealed. In this study, the different surface states of the steel strip were designed by louver blade grinding (LBG) and diamond bowl grinding (DBG), and the cold-rolled composite method was developed to prepare the brass/carbon steel composite strips. The results show that the steel surface after DBG has a large roughness of 9.79 µm, a hard hardening layer of 6.2 GPa, and high cleanliness of 1.34 atomic % oxygen content, while that after LBG has a roughness of 1.31 µm, a hardening layer of 4.2 GPa, and an oxygen content of 2.37 atomic %. The large roughness promotes the breaking of the hardening layer; the hardening layer is beneficial to obtain sufficient interfacial stress to expose the fresh metal; and the high cleanliness reduces the barrier to the fresh metal and contributes to the bonding of the fresh metal. The interface of the cold-rolled brass/carbon steel composite strip after LBG and DBG is mechanical bonding and metallurgical bonding, respectively. In the process of the cold-rolling composite, large shear deformation occurs at the interface of brass and steel, resulting in a high concentration of vacancy and dislocation defects, which provides a channel for interdiffusion of atoms at the interface. Under the diffusion driving force provided by the cold-rolling shear deformation heat, a nanodiffusion layer with a thickness of 60 nm and high interfacial bond strength was formed.

7.
Environ Res ; 222: 115334, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36702192

ABSTRACT

Accumulating data demonstrate that polycyclic aromatic hydrocarbons (PAH) exposure is linked to compromised respiratory diseases. This study aimed to analyze urinary PAH metabolites and their associations with chronic obstructive pulmonary disease (COPD) in a sample size of 3015 subjects from a total population of 50,588 from the National Health and Nutrition Examination Survey (NHANES) in 2007-2016. Results showed that the most predominant metabolite was 1-Hydroxynaphthalene (1-NAP, 84%) with a geometric mean concentration of 50,265 ng/L, followed by its homologue 2-NAP (10%), both of which arose from sources including road emission, smoking and cooking. Multiple logistic regression showed that seven of the ten major PAH metabolites were correlated with increased COPD risk: including 1-NAP (OR: 1.83, 95%CI: 1.25, 2.69), 2-Hydroxyfluorene (2-FLU, OR: 2.29, 95%CI: 1.42, 3.68) and 1-Hydroxyphenanthrene (1-PHE, OR: 2.79, 95%CI: 1.85, 4.21), when compared to the lowest tertile after adjusted for covariates. Total exposure burden per PAH congener sub-group demonstrated persistent positive correlation with COPD for ∑PHE (OR: 1.80, 95%CI: 1.34, 2.43) and ∑FLU (OR: 2.74, 95%CI: 1.77, 4.23) after adjusted for covariates. To address the contribution of PAH exposure as mixture towards COPD, weighted quantile sum (WQS) regression analyses revealed that 1-NAP, 9-Hydroxyfluorene (9-FLU), 3-Hydroxyfluorene (3-FLU) and 1-PHE were among the top contributors in the associations with COPD. Our results demonstrate the contemporary yet ongoing exposure burden of PAH exposure for over a decade, particularly towards NAPs and FLUs that contribute significantly to COPD risk, calling for more timely environmental regulation.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Pulmonary Disease, Chronic Obstructive , Humans , Polycyclic Aromatic Hydrocarbons/metabolism , Nutrition Surveys , Longitudinal Studies , Logistic Models , Biomarkers/urine
8.
Ecotoxicol Environ Saf ; 255: 114799, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36933479

ABSTRACT

Increasing evidence have demonstrated that early-life exposure to environmental toxicants elevates risk of allergic asthma. Cadmium (Cd) is widely present in the environment. The purposes of this study were to evaluate the impact of early-life Cd exposure on susceptibility to ovalbumin (OVA)-evoked allergic asthma. Newly weaned mice were subjected to a low concentration of CdCl2 (1 mg/L) by drinking water for 5 consecutive weeks. Penh value, an index of airway obstruction, was increased in OVA-stimulated and challenged pups. Abundant inflammatory cells were observed in the lung of OVA-exposed pups. Goblet cell hyperplasia and mucus secretion were shown in the airway of OVA-stimulated and challenged pups. Early-life Cd exposure exacerbated OVA-evoked airway hyperreactivity, Goblet cell hyperplasia and mucus secretion. The in vitro experiments showed that mucoprotein gene MUC5AC mRNA was upregulated in Cd-exposed bronchial epithelial cells. Mechanistically, endoplasmic reticulum (ER) stress-related molecules GRP78, p-eIF2α, CHOP, p-IRE1α and spliced XBP-1 (sXBP-1) were elevated in Cd-subjected bronchial epithelial cells. The blockade of ER stress, using chemical inhibitor 4-PBA or sXBP-1 siRNA interference, attenuated Cd-induced MUC5AC upregulation in bronchial epithelial cells. These results indicate that early-life Cd exposure aggravates OVA-induced allergic asthma partially through inducing ER stress in bronchial epithelial cells.


Subject(s)
Asthma , Cadmium , Mice , Animals , Ovalbumin , Cadmium/toxicity , Endoribonucleases , Hyperplasia/pathology , Protein Serine-Threonine Kinases , Asthma/chemically induced , Asthma/pathology , Lung/pathology , Mice, Inbred BALB C
9.
Molecules ; 28(12)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37375227

ABSTRACT

A new Ni coordination polymer [Ni(MIP)(BMIOPE)]n (1) was constructed (BMIOPE = 4,4'-bis(2-methylimidazol-1-yl)diphenyl ether, and H2MIP = 5-methylisophthalic acid), possessing two-dimensional (2D) twofold parallel interwoven net structure with a 44∙62 point symbol. Complex 1 has been successfully obtained based on mixed-ligand strategy. The fluorescence titration experiments revealed that complex 1 could act as multifunctional luminescent sensor to simultaneously detect UO22+, Cr2O72- and CrO42-, and NFT (nitrofurantoin). The limit of detection (LOD) values for complex 1 are 2.86 × 10-5, 4.09 × 10-5, 3.79 × 10-5 and 9.32 × 10-5 M for UO22+, Cr2O72-, CrO42- and NFT. The Ksv values are 6.18 × 103, 1.44 × 104, 1.27 × 104 and 1.51 × 104 M-1 for NFT, CrO42-, Cr2O72- and UO22+. Finally, the mechanism of its luminescence sensing is studied in detail. These results manifest that complex 1 is a multifunctional sensor for sensitive fluorescent UO22+, Cr2O72-, CrO42- and NFT detection.

10.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2480-2489, 2023 May.
Article in Zh | MEDLINE | ID: mdl-37282877

ABSTRACT

Qualitative and quantitative analysis of 2-(2-phenylethyl) chromones in sodium chloride(NaCl)-treated suspension cells of Aquilaria sinensis was conducted by UPLC-Q-Exactive-MS and UPLC-QQQ-MS/MS. Both analyses were performed on a Waters T3 column(2.1 mm×50 mm, 1.8 µm) with 0.1% formic acid aqueous solution(A)-acetonitrile(B) as mobile phases at gradient elution. MS data were collected by electrospray ionization in positive ion mode. Forty-seven phenylethylchromones was identified from NaCl-treated suspension cell samples of A. sinensis using UPLC-Q-Exactive-MS, including 22 flindersia-type 2-(2-phenylethyl) chromones and their glycosides, 10 5,6,7,8-tetrahydro-2-(2-phenylethyl) chromones and 15 mono-epoxy or diepoxy-5,6,7,8-tetrahydro-2-(2-phenylethyl) chromones. Additionally, 25 phenylethylchromones were quantitated by UPLC-QQQ-MS/MS. Overall, the rapid and efficient qualitative and quantitative analysis of phenylethylchromones in NaCl-treated suspension cells of A. sinensis by two LC-MS techniques, provides an important reference for the yield of phenylethylchromones in Aquilariae Lignum Resinatum using in vitro culture and other biotechnologies.


Subject(s)
Chromones , Thymelaeaceae , Sodium Chloride , Chromatography, Liquid , Flavonoids , Tandem Mass Spectrometry
11.
Am J Hum Genet ; 105(6): 1102-1111, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31679651

ABSTRACT

Recurrent miscarriage (RM) affects millions of couples globally, and half of them have no demonstrated etiology. Genome sequencing (GS) is an enhanced and novel cytogenetic tool to define the contribution of chromosomal abnormalities in human diseases. In this study we evaluated its utility in RM-affected couples. We performed low-pass GS retrospectively for 1,090 RM-affected couples, all of whom had routine chromosome analysis. A customized sequencing and interpretation pipeline was developed to identify chromosomal rearrangements and deletions/duplications with confirmation by fluorescence in situ hybridization, chromosomal microarray analysis, and PCR studies. Low-pass GS yielded results in 1,077 of 1,090 couples (98.8%) and detected 127 chromosomal abnormalities in 11.7% (126/1,077) of couples; both members of one couple were identified with inversions. Of the 126 couples, 39.7% (50/126) had received former diagnostic results by karyotyping characteristic of normal human male or female karyotypes. Low-pass GS revealed additional chromosomal abnormalities in 50 (4.0%) couples, including eight with balanced translocations and 42 inversions. Follow-up studies of these couples showed a higher miscarriage/fetal-anomaly rate of 5/10 (50%) compared to 21/93 (22.6%) in couples with normal GS, resulting in a relative risk of 2.2 (95% confidence interval, 1.1 to 4.6). In these couples, this protocol significantly increased the diagnostic yield of chromosomal abnormalities per couple (11.7%) in comparison to chromosome analysis (8.0%, chi-square test p = 0.000751). In summary, low-pass GS identified underlying chromosomal aberrations in 1 in 9 RM-affected couples, enabling identification of a subgroup of couples with increased risk of subsequent miscarriage who would benefit from a personalized intervention.


Subject(s)
Abortion, Habitual/diagnosis , Abortion, Habitual/genetics , Chromosome Aberrations , Whole Genome Sequencing/methods , Adult , Female , Follow-Up Studies , Humans , Karyotyping , Male , Pregnancy , Prognosis , Retrospective Studies
12.
Plant Cell Environ ; 45(5): 1474-1489, 2022 05.
Article in English | MEDLINE | ID: mdl-35199338

ABSTRACT

Seed germination is a physiological process regulated by multiple factors. Abscisic acid (ABA) can inhibit seed germination to improve seedling survival under conditions of abiotic stress, and this process is often regulated by light signals. Constitutive photomorphogenic 1 (COP1) is an upstream core repressor of light signals and is involved in several ABA responses. Here, we demonstrate that COP1 is a negative regulator of the ABA-mediated inhibition of seed germination. Disruption of COP1 enhanced Arabidopsis seed sensitivity to ABA and increased reactive oxygen species (ROS) levels. In seeds, ABA induced the translocation of COP1 to the cytoplasm, resulting in enhanced ABA-induced ROS levels. Genetic evidence indicated that HY5 and ABI5 act downstream of COP1 in the ABA-mediated inhibition of seed germination. ABA-induced COP1 cytoplasmic localization increased HY5 and ABI5 protein levels in the nucleus, leading to increased expression of ABI5 target genes and ROS levels in seeds. Together, our results reveal that ABA-induced cytoplasmic translocation of COP1 activates the HY5-ABI5 pathway to promote the expression of ABA-responsive genes and the accumulation of ROS during ABA-mediated inhibition of seed germination. These findings enhance the role of COP1 in the ABA signal transduction pathway.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Cytosol/metabolism , Gene Expression Regulation, Plant , Germination/physiology , Reactive Oxygen Species/metabolism , Seeds/physiology , Signal Transduction
13.
BMC Infect Dis ; 22(1): 332, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35379167

ABSTRACT

BACKGROUND: The current surveillance system only focuses on notifiable infectious diseases in China. The arrival of the big-data era provides us a chance to elaborate on the full spectrum of infectious diseases. METHODS: In this population-based observational study, we used multiple health-related data extracted from the Shandong Multi-Center Healthcare Big Data Platform from January 2013 to June 2017 to estimate the incidence density and describe the epidemiological characteristics and dynamics of various infectious diseases in a population of 3,987,573 individuals in Shandong province, China. RESULTS: In total, 106,289 cases of 130 infectious diseases were diagnosed among the population, with an incidence density (ID) of 694.86 per 100,000 person-years. Besides 73,801 cases of 35 notifiable infectious diseases, 32,488 cases of 95 non-notifiable infectious diseases were identified. The overall ID continuously increased from 364.81 per 100,000 person-years in 2013 to 1071.80 per 100,000 person-years in 2017 (χ2 test for trend, P < 0.0001). Urban areas had a significantly higher ID than rural areas, with a relative risk of 1.25 (95% CI 1.23-1.27). Adolescents aged 10-19 years had the highest ID of varicella, women aged 20-39 years had significantly higher IDs of syphilis and trichomoniasis, and people aged ≥ 60 years had significantly higher IDs of zoster and viral conjunctivitis (all P < 0.05). CONCLUSIONS: Infectious diseases remain a substantial public health problem, and non-notifiable diseases should not be neglected. Multi-source-based big data are beneficial to better understand the profile and dynamics of infectious diseases.


Subject(s)
Communicable Diseases , Syphilis , Adolescent , Adult , Big Data , Child , China/epidemiology , Communicable Diseases/epidemiology , Female , Humans , Incidence , Middle Aged , Young Adult
14.
Curr Microbiol ; 79(10): 293, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35972650

ABSTRACT

Ursolic acid (UA) exists in a variety of medicinal plants. UA exhibits antimicrobial activity against several microorganisms; however, little is known regarding the potential antifungal effect of UA on Cryptococcus neoformans (C. neoformans). The antifungal and antibiofilm activities of UA on C. neoformans H99 were evaluated in this study. Minimum inhibitory concentration (MIC) of UA against C. neoformans H99 was determined by microdilution technique, and its action mode was elucidated by clarifying the variations in cell membrane integrity, capsule, and melanin production. Moreover, the inhibition and dispersal effects of UA on biofilm formation and mature biofilms by C. neoformans H99 were evaluated using crystal violet (CV) assay, optical microscopy, field emission scanning electron microscopy and confocal laser scanning microscopy. The results indicated that the MIC value of UA against C. neoformans H99 was 0.25 mg/mL. UA disrupted the cell membrane integrity, inhibited the capsule and melanin production of C. neoformans H99 in a concentration-dependent manner. Further, UA presented the inhibitory effect on biofilm formation and dispersed mature biofilms, as well as compromised the cell membrane integrity of C. neoformans H99 cells within biofilms. Together, these results indicate that UA might be a potential therapeutic option for the treatment of C. neoformans-related infections.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Biofilms , Cryptococcosis/drug therapy , Cryptococcus neoformans/metabolism , Melanins/metabolism , Melanins/pharmacology , Microbial Sensitivity Tests , Triterpenes , Ursolic Acid
15.
J Asian Nat Prod Res ; : 1-6, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35727201

ABSTRACT

A new chromone analog (1) and a new pyrrole alkaloid (2), together with four known compounds, were isolated from the endophytic fungus Penicillium sclerotiorum MPT-250 obtained from the stems of Taxus wallichiana var. chinensis (Pilger) Florin. The structural elucidation of these metabolites was performed by high-resolution mass spectrometry and NMR spectroscopy. Compounds 1 and 5 exhibited significant antibacterial activity against carbapenems-resistant Pseudomonas aeruginosa and multidrug-resistant Enterococcus faecium with an minimum inhibitory concentration (MIC) value of 3.13 µg/ml respectively.

16.
Appl Environ Microbiol ; 87(8)2021 04 15.
Article in English | MEDLINE | ID: mdl-33514518

ABSTRACT

Shewanella oneidensis is a model strain of the electrochemical active bacteria (EAB) because of its strong capability of extracellular electron transfer (EET) and genetic tractability. In this study, we investigated the effect of carbon sources on EET in S. oneidensis by using reduction of palladium ions (Pd(II)) as a model and found that pyruvate greatly accelerated the Pd(II) reduction compared with lactate by resting cells. Both Mtr pathway and hydrogenases played a role in Pd(II) reduction when pyruvate was used as a carbon source. Furthermore, in comparison with lactate-feeding S. oneidensis, the transcriptional levels of formate dehydrogenases involving in pyruvate catabolism, Mtr pathway, and hydrogenases in pyruvate-feeding S. oneidensis were up-regulated. Mechanistically, the enhancement of electron generation from pyruvate catabolism and electron transfer to Pd(II) explains the pyruvate effect on Pd(II) reduction. Interestingly, a 2-h time window is required for pyruvate to regulate transcription of these genes and profoundly improve Pd(II) reduction capability, suggesting a hierarchical regulation for pyruvate sensing and response in S. oneidensis IMPORTANCE The unique respiration of EET is crucial for the biogeochemical cycling of metal elements and diverse applications of EAB. Although a carbon source is a determinant factor of bacterial metabolism, the research into the regulation of carbon source on EET is rare. In this work, we reported the pyruvate-specific regulation and improvement of EET in S. oneidensis and revealed the underlying mechanism, which suggests potential targets to engineer and improve the EET efficiency of this bacterium. This study sheds light on the regulatory role of carbon sources in anaerobic respiration in EAB, providing a way to regulate EET for diverse applications from a novel perspective.

17.
J Med Virol ; 93(2): 760-765, 2021 02.
Article in English | MEDLINE | ID: mdl-32644266

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 emerged in China in December 2019 and then rapidly spread worldwide. Why COVID-19 patients with the same clinical condition have different outcomes remains unclear. This study aimed to examine the differences in the phenotype and functions of major populations of immune cells between COVID-19 patients with same severity but different outcomes. Four common type adult inpatients with laboratory confirmed COVID-19 from Beijing YouAn Hospital, Capital Medical University were included in this study. The patients were divided into two groups based on whether or not COVID-19 polymerase chain reaction (PCR)-negative conversion occurred within 3 weeks. Peripheral blood samples were collected to compare the differences in the phenotype and functions of major populations of immune cells between the two groups of patients. The result shows that the proportions of CD3+ CD8+ CD38+ HLA-DR+ CD27- effector T killer cells generally declined, whereas that of CD3+ CD4+ CD8+ double-positive T cells (DPTs) increased in the persistently PCR-positive patients. In summary, considering the imbalance between effector T killer cells/CD3+CD4+CD8+ DPTs was a possible key factor for PCR-negative conversion in patients with COVID-19.


Subject(s)
Biological Variation, Individual , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/pathology , Natural Killer T-Cells/immunology , SARS-CoV-2/pathogenicity , Adult , Aged , Antigens, CD/genetics , Antigens, CD/immunology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/virology , COVID-19/immunology , COVID-19/virology , COVID-19 Testing , Female , Gene Expression , HLA-DR Antigens/genetics , HLA-DR Antigens/immunology , Humans , Immunity, Innate , Immunophenotyping , Lymphocyte Count , Male , Middle Aged , Natural Killer T-Cells/virology , Phenotype , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Severity of Illness Index
18.
Chemistry ; 27(8): 2692-2698, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33009681

ABSTRACT

Instead of using organic solvents, a deep eutectic solvent (DES) composed of tetrabutylammonium bromide and imidazole (Bu4 NBr/Im) was employed as a solvent for the first time to synthesize covalent organic frameworks (COFs). Due to the low vapor pressure of the Bu4 NBr/Im-based DES, a new carboxyl-functionalized COF (TpPa-COOH) was synthesized under environmental pressure. The as-synthesized TpPa-COOH has open channels, and the DES can be removed completely from the pores. The dye adsorption performance of TpPa-COOH was examined for three organic dyes with similar molecular sizes: one anionic dye (eosin B, EB) and two cationic dyes (methylene blue, MB and safranine T, ST). TpPa-COOH showed an excellent selective adsorption effect on MB and ST. The electronegative keto form in TpPa-COOH might help to form electrostatic and π-π interactions between the π-stacking frameworks of TpPa-COOH and the positive plane MB and ST molecules. The adsorption isotherms of MB and ST on TpPa-COOH were further investigated in detail, and the equilibrium adsorption was well modeled by using a Langmuir isotherm model. Together with hydrogen bonding, TpPa-COOH showed higher adsorption capacity for ST than for MB (1135 vs. 410 mg g-1 ). These results could provide a guidance for the green synthesis of adsorbents in removing organic dyes from wastewater.

19.
Mol Biol Rep ; 48(4): 3059-3068, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33929647

ABSTRACT

The expression of human and microbial genes serves as biomarkers for disease and health. Blood RNA is an important biological resource for precision medicine and translational medicine. However, few studies have assessed the human transcriptome profiles and microbial communities composition and diversity of peripheral blood from different cell isolation methods, which could affect the reproducibility of researches. We collected peripheral blood from three healthy donors and processed it immediately. We used RNA sequencing to investigate the effect of three leukocyte isolation methods including buffy coat (BC) extraction, red blood cell (RBC) lysis and peripheral blood mononuclear cell (PBMC) isolation with the comparison with whole blood (WB), through analyzing the sensitivity of gene detection, the whole transcriptome profiling and microbial composition and diversity. Our data showed that BC extraction with high globin mRNA mapping rate had similar transcriptome profiles with WB, while RBC lysis and PBMC isolation depleted RBCs effectively. With the efficient depletion of RBC and distinct compositions of leukocyte subsets, RNA-seq of RBC lysis and PBMC isolation uniquely detected genes from specific cell types, like granulocytes and NK cells. In addition, we observed that the microbial composition and diversity were more affected by individuals than isolation methods. Our results showed that blood cell isolations could largely influence the sensitivity of detection of human genes and transcriptome profile.


Subject(s)
Blood Cells , Cell Separation/methods , RNA-Seq , Blood Buffy Coat , Erythrocytes , Humans , Leukocytes, Mononuclear , Microbiota/genetics , Sequence Analysis, RNA , Transcriptome
20.
Mol Biol Rep ; 48(2): 1151-1159, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33565022

ABSTRACT

Leukocytes reflect the physiological and pathological states of each individual, and transcriptomic data of leukocytes have been used to reflect health conditions. Since the overall impact of ex vivo conditions on the leukocyte transcriptome before RNA stabilization remains unclear, we evaluated the influence of temporary storage conditions on the leukocyte transcriptome through RNA sequencing. We collected peripheral blood with EDTA tubes, which were processed immediately or stored either at 4 °C or room temperature (RT, 18-22 °C) for 2 h, 6 h and 24 h. Total cellular RNA was extracted from 42 leukocyte samples after red blood cells lysis for subsequent RNA sequencing. We applied weighted gene co-expression network analysis to construct co-expression networks of mRNA and lncRNA among the samples, and then performed gene ontology (GO) term enrichment to explore possible biological processes affected by storage conditions. Storage conditions change the gene expression of peripheral leukocytes. Comparing with fresh leukocytes, storage for 24 h at 4 °C and RT affected 1515 (1.51%) and 10,823 (10.82%) genes, respectively. Pathway enrichment analysis identified nucleosome assembly enriched in up-regulated genes at both conditions. When blood was stored at RT for 24 h, genes involved in apoptotic signaling pathway, negative regulation of cell cycle and lymphocyte activation were upregulated, while the relative proportion of neutrophils was significantly decreased. Temporary storage conditions profoundly affect the gene expression profiles of leukocytes and might further change cell viability and state. Storage of blood samples at 4 °C within 6 h largely maintains their original transcriptome.


Subject(s)
Leukocytes/metabolism , RNA, Messenger/genetics , Specimen Handling , Transcriptome/genetics , Gene Expression Regulation/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL