Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 722
Filter
Add more filters

Publication year range
1.
Nat Mater ; 23(1): 131-138, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37884671

ABSTRACT

Consecutive mechanical loading cycles cause irreversible fatigue damage and residual strain in gels, affecting their service life and application scope. Hysteresis-free hydrogels within a limited deformation range have been created by various strategies. However, large deformation and high elasticity are inherently contradictory attributes. Here we present a nanoconfined polymerization strategy for producing tough and near-zero-hysteresis gels under a large range of deformations. Gels are prepared through in situ polymerization within nanochannels of covalent organic frameworks or molecular sieves. The nanochannel confinement and strong hydrogen bonding interactions with polymer segments are crucial for achieving rapid self-reinforcement. The rigid nanostructures relieve the stress concentration at the crack tips and prevent crack propagation, enhancing the ultimate fracture strain (17,580 ± 308%), toughness (87.7 ± 2.3 MJ m-3) and crack propagation strain (5,800%) of the gels. This approach provides a general strategy for synthesizing gels that overcome the traditional trade-offs of large deformation and high elasticity.

2.
EMBO Rep ; 24(4): e56660, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36880581

ABSTRACT

Interferon-induced transmembrane protein 3 (IFITM3) is an antiviral protein that alters cell membranes to block fusion of viruses. Conflicting reports identified opposing effects of IFITM3 on SARS-CoV-2 infection of cells, and its impact on viral pathogenesis in vivo remains unclear. Here, we show that IFITM3 knockout (KO) mice infected with SARS-CoV-2 experience extreme weight loss and lethality compared to mild infection in wild-type (WT) mice. KO mice have higher lung viral titers and increases in inflammatory cytokine levels, immune cell infiltration, and histopathology. Mechanistically, we observe disseminated viral antigen staining throughout the lung and pulmonary vasculature in KO mice, as well as increased heart infection, indicating that IFITM3 constrains dissemination of SARS-CoV-2. Global transcriptomic analysis of infected lungs shows upregulation of gene signatures associated with interferons, inflammation, and angiogenesis in KO versus WT animals, highlighting changes in lung gene expression programs that precede severe lung pathology and fatality. Our results establish IFITM3 KO mice as a new animal model for studying severe SARS-CoV-2 infection and overall demonstrate that IFITM3 is protective in SARS-CoV-2 infections in vivo.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , COVID-19/genetics , Interferons/genetics , Lung , Mice, Knockout
3.
Am J Physiol Cell Physiol ; 327(1): C48-C64, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38708522

ABSTRACT

Deficiencies in mice and in humans have brought to the fore the importance of the caveolar network in key aspects of adipocyte biology. The conserved N-terminal caveolin-binding motif (CBM) of the ubiquitous Na/K-ATPase (NKA) α1 isoform, which allows NKA/caveolin-1 (Cav1) interaction, influences NKA signaling and caveolar distribution. It has been shown to be critical for animal development and ontogenesis, as well as lineage-specific differentiation of human induced pluripotent stem cells (hiPSCs). However, its role in postnatal adipogenesis has not been fully examined. Using a genetic approach to alter CBM in hiPSC-derived adipocytes (iAdi-mCBM) and in mice (mCBM), we investigated the regulatory function of NKA CBM signaling in adipogenesis. Seahorse XF cell metabolism analyses revealed impaired glycolysis and decreased ATP synthesis-coupled respiration in iAdi-mCBM. These metabolic dysfunctions were accompanied by evidence of extensive remodeling of the extracellular matrix (ECM), including increased collagen staining, overexpression of ECM marker genes, and heightened TGF-ß signaling uncovered by RNAseq analysis. Rescue of mCBM by lentiviral delivery of WT NKA α1 or treatment of mCBM hiPSCs with the TGF-ß inhibitor SB431542 normalized ECM, suggesting that NKA CBM signaling integrity is required for adequate control of TGF-ß signaling and ECM stiffness during adipogenesis. The physiological impact was revealed in mCBM male mice with reduced fat mass accompanied by histological and transcriptional evidence of elevated adipose fibrosis and decreased adipocyte size. Based on these findings, we propose that the genetic alteration of the NKA/Cav1 regulatory path uncovered in human iAdi leads to lipodystrophy in mice.NEW & NOTEWORTHY A Na/K-ATPase α1 caveolin-binding motif regulates adipogenesis. Mutation of this binding motif in the mouse leads to reduced fat with increased extracellular matrix production and inflammation. RNA-seq analysis and pharmacological interventions in human iPSC-derived adipocytes revealed that TGF-ß signal, rather than Na/K-ATPase-mediated ion transport, is a key mediator of NKA regulation of adipogenesis.


Subject(s)
Adipocytes , Adipogenesis , Caveolin 1 , Induced Pluripotent Stem Cells , Sodium-Potassium-Exchanging ATPase , Adipogenesis/genetics , Animals , Caveolin 1/metabolism , Caveolin 1/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Sodium-Potassium-Exchanging ATPase/genetics , Humans , Mice , Adipocytes/metabolism , Induced Pluripotent Stem Cells/metabolism , Signal Transduction , Cell Differentiation , Male , Extracellular Matrix/metabolism , Amino Acid Motifs , Mice, Inbred C57BL
4.
J Am Chem Soc ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38593469

ABSTRACT

Hydrolytically stable materials exhibiting a wide range of programmable water sorption behaviors are crucial for on-demand water sorption systems. While notable advancements in employing metal-organic frameworks (MOFs) as promising water adsorbents have been made, developing a robust yet easily tailorable MOF scaffold for specific operational conditions remains a challenge. To address this demand, we employed a topology-guided linker installation strategy using NU-600, which is a zirconium-based MOF (Zr-MOF) that contains three vacant crystallographically defined coordination sites. Through a judicious selection of three N-heterocyclic auxiliary linkers of specific lengths, we installed them into designated sites, giving rise to six new MOFs bearing different combinations of linkers in predetermined positions. The resulting MOFs, denoted as NU-606 to NU-611, demonstrate enhanced structural stability against capillary force-driven channel collapse during water desorption due to the increased connectivity of the Zr6 clusters in the resulting MOFs. Furthermore, incorporating these auxiliary linkers with various hydrophilic N sites enables the systematic modulation of the pore-filling pressure from about 55% relative humidity (RH) for the parent NU-600 down to below 40% RH. This topology-driven linker installation strategy offers precise control of water sorption properties for MOFs, highlighting a facile route to design MOF adsorbents for use in water sorption applications.

5.
J Am Chem Soc ; 146(39): 27006-27013, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39303286

ABSTRACT

Metal-organic frameworks (MOFs) have shown promise in both capturing CO2 under flue gas conditions and converting it into valuable chemicals. However, the development of a single MOF capable of capturing and selectively converting CO2 has remained elusive due to a lack of a harmonious combination of selectivity, water stability, and reactivity. For example, Cu(I)-based MOFs are particularly effective for CO2 conversion, but they do not typically exhibit selective CO2 adsorption and often suffer from instability in the presence of air and moisture. Developing a Cu(I) MOF that is stable under flue gas conditions while also capturing CO2 from this mixture would likely afford a material capable of selectively capturing and converting CO2 in an integrated pathway, which would represent a significant advancement in this field. In this study, we introduce NU-2100, an ultramicroporous Cu(I) MOF, which exhibits both selectivity for CO2 adsorption and great stability even in the presence of moisture and air. Comprehensive evaluations involving exposure to air, oxygen, water, and varying temperatures reveal that NU-2100 demonstrates superior stability compared to other known Cu(I) MOFs. Utilizing adsorption isotherms and thermogravimetric analysis coupled with gas chromatography-mass spectrometry (TGA-GCMS), we establish the high selectivity of NU-2100 for CO2 over common flue gas components, including water, nitrogen, and oxygen. Additionally, under mild reaction conditions (50 °C and H2:CO2 = 3:1), NU-2100 exhibits CO2 capture and catalytic conversion to formic acid with 100% selectivity. This study marks an important step toward the design of next-generation MOFs capable of integrated carbon capture and utilization (iCCU) under industrial conditions.

6.
J Am Chem Soc ; 146(20): 13903-13913, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38721817

ABSTRACT

Cohesive and interfacial adhesion energies are difficult to balance to obtain reversible adhesives with both high mechanical strength and high adhesion strength, although various methods have been extensively investigated. Here, a biocompatible citric acid/L-(-)-carnitine (CAC)-based ionic liquid was developed as a solvent to prepare tough and high adhesion strength ionogels for reversible engineered and biological adhesives. The prepared ionogels exhibited good mechanical properties, including tensile strength (14.4 MPa), Young's modulus (48.1 MPa), toughness (115.2 MJ m-3), and high adhesion strength on the glass substrate (24.4 MPa). Furthermore, the ionogels can form mechanically matched tough adhesion at the interface of wet biological tissues (interfacial toughness about 191 J m-2) and can be detached by saline solution on demand, thus extending potential applications in various clinical scenarios such as wound adhesion and nondestructive transfer of organs.


Subject(s)
Biocompatible Materials , Citric Acid , Gels , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Citric Acid/chemistry , Gels/chemistry , Carnitine/chemistry , Ionic Liquids/chemistry , Tensile Strength , Adhesives/chemistry
7.
J Am Chem Soc ; 146(8): 5108-5117, 2024 02 28.
Article in English | MEDLINE | ID: mdl-38367279

ABSTRACT

Enzymes are natural catalysts for a wide range of metabolic chemical transformations, including selective hydrolysis, oxidation, and phosphorylation. Herein, we demonstrate a strategy for the encapsulation of enzymes within a highly stable zirconium-based metal-organic framework. UiO-66-F4 was synthesized under mild conditions using an enzyme-compatible amino acid modulator, serine, at a modest temperature in an aqueous solution. Enzyme@UiO-66-F4 biocomposites were then formed by an in situ encapsulation route in which UiO-66-F4 grows around the enzymes and, consequently, provides protection for the enzymes. A range of enzymes, namely, lysozyme, horseradish peroxidase, and amano lipase, were successfully encapsulated within UiO-66-F4. We further demonstrate that the resulting biocomposites are stable under conditions that could denature many enzymes. Horseradish peroxidase encapsulated within UiO-66-F4 maintained its biological activity even after being treated with the proteolytic enzyme pepsin and heated at 60 °C. This strategy expands the toolbox of potential metal-organic frameworks with different topologies or functionalities that can be used as enzyme encapsulation hosts. We also demonstrate that this versatile process of in situ encapsulation of enzymes under mild conditions (i.e., submerged in water and at a modest temperature) can be generalized to encapsulate enzymes of various sizes within UiO-66-F4 while protecting them from harsh conditions (i.e., high temperatures, contact with denaturants or organic solvents).


Subject(s)
Metal-Organic Frameworks , Organometallic Compounds , Phthalic Acids , Metal-Organic Frameworks/chemistry , Zirconium/chemistry , Biomimetics , Organometallic Compounds/chemistry , Horseradish Peroxidase
8.
J Am Chem Soc ; 146(6): 3943-3954, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38295342

ABSTRACT

CALF-20, a Zn-triazolate-based metal-organic framework (MOF), is one of the most promising adsorbent materials for CO2 capture. However, competitive adsorption of water severely limits its performance when the relative humidity (RH) exceeds 40%, limiting the potential implementation of CALF-20 in practical settings where CO2 is saturated with moisture, such as postcombustion flue gas. In this work, three newly designed MOFs related to CALF-20, denoted as NU-220, CALF-20M-w, and CALF-20M-e that feature hydrophobic methyltriazolate linkers, are presented. Inclusion of methyl groups in the linker is proposed as a strategy to improve the uptake of CO2 in the presence of water. Notably, both CALF-20M-w and CALF-20M-e retain over 20% of their initial CO2 capture efficiency at 70% RH─a threshold at which CALF-20 shows negligible CO2 uptake. Grand canonical Monte Carlo simulations reveal that the methyl group hinders water network formation in the pores of CALF-20M-w and CALF-20M-e and enhances their CO2 selectivity over N2 in the presence of a high moisture content. Moreover, calculated radial distribution functions indicate that introducing the methyl group into the triazolate linker increases the distance between water molecules and Zn coordination bonds, offering insights into the origin of the enhanced moisture stability observed for CALF-20M-w and CALF-20M-e relative to CALF-20. Overall, this straightforward design strategy has afforded more robust sorbents that can potentially meet the challenge of effectively capturing CO2 in practical industrial applications.

9.
Small ; : e2403955, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39167262

ABSTRACT

Flexible conductive hydrogels have revolutionized the lives and are widely applied in health monitoring and wearable electronics as a new generation of sensing materials. However, the inherent low mechanical strength, sensitivity, and lack of rapid self-healing capacity results in their short life, poor detection accuracy, and environmental pollution. Inspired by the molecular structure of bone and its chemical characteristics, a novel fully physically cross-linked conductive hydrogel is fabricated by the introduction of nanohydroxyapatite (HAp) as the dynamic junction points. In detail, the dynamically cross-linked network, including multiple physical interactions, provides it with rapid self-healing ability and excellent mechanical properties (elongation at break (>1200%), tensile strength (174kPa), and resilience (92.61%)). Besides, the ions (Cl-, Li+, Ca2+) that move freely within the system impart outstanding electrical conductivity (2.46 ± 0.15 S m-1), high sensitivity (gauge factor, GF>8), good antifreeze (-40.2 °C), and humidity properties. The assembled sensor can be employed to sensitively detect various large human motions and subtle changes in behavior (facial expressions, speech recognition). Meanwhile, the hydrogel sensor can also degrade in phosphate-buffered saline solution without causing any environmental pollution. Therefore, the designed hydrogels may become a promising candidate material in the future potential applications for smart wearable sensors and electronic skin.

10.
Small ; 20(23): e2305838, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38258379

ABSTRACT

Interstitial fluid (ISF) is an attractive alternative to regular blood sampling for health checks and disease diagnosis. Porous microneedles (MNs) are well suited for collecting ISF in a minimally invasive manner. However, traditional methods of molding MNs from microfabricated templates involve prohibitive fabrication costs and fixed designs. To overcome these limitations, this study presents a facile and economical additive manufacturing approach to create porous MNs. Compared to traditional layerwise build sequences, direct ink drawing with nanocomposite inks can define sharp MNs with tailored shapes and achieve vastly improved fabrication efficiency. The key to this fabrication strategy is the yield-stress fluid ink that is easily formulated by dispersing silica nanoparticles into the cellulose acetate polymer solution. As-printed MNs are solidified into interconnected porous microstructure inside a coagulation bath of deionized water. The resulting MNs exhibit high mechanical strength and high porosity. This approach also allows porous MNs to be easily integrated on various substrates. In particular, MNs on filter paper substrates are highly flexible to rapidly collect ISF on non-flat skin sites. The extracted ISF is used for quantitative analysis of biomarkers, including glucose, = calcium ions, and calcium ions. Overall, the developments allow facile fabrication of porous MNs for transdermal diagnosis and therapy.


Subject(s)
Extracellular Fluid , Ink , Nanocomposites , Needles , Nanocomposites/chemistry , Porosity , Extracellular Fluid/chemistry , Animals
11.
J Transl Med ; 22(1): 788, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39183280

ABSTRACT

Vascular dementia (VaD) is a prevalent form of dementia resulting from chronic cerebral hypoperfusion (CCH). However, the pathogenic mechanisms of VaD and corresponding therapeutic strategies are not well understood. Sirtuin 6 (SIRT6) has been implicated in various biological processes, including cellular metabolism, DNA repair, redox homeostasis, and aging. Nevertheless, its functional relevance in VaD remains unexplored. In this study, we utilized a bilateral common carotid artery stenosis (BCAS) mouse model of VaD to investigate the role of SIRT6. We detected a significant decrease in neuronal SIRT6 protein expression following CCH. Intriguingly, neuron-specific ablation of Sirt6 in mice exacerbated neuronal damage and cognitive deficits after CCH. Conversely, treatment with MDL-800, an agonist of SIRT6, effectively mitigated neuronal loss and facilitated neurological recovery. Mechanistically, SIRT6 inhibited excessive mitochondrial fission by suppressing the CCH-induced STAT5-PGAM5-Drp1 signaling cascade. Additionally, the gene expression of monocyte SIRT6 in patients with asymptomatic carotid stenosis showed a correlation with cognitive outcomes, suggesting translational implications in human subjects. Our findings provide the first evidence that SIRT6 prevents cognitive impairment induced by CCH, and mechanistically, this protection is achieved through the remodeling of mitochondrial dynamics in a STAT5-PGAM5-Drp1-dependent manner.


Subject(s)
Cognitive Dysfunction , Dynamins , Mitochondrial Dynamics , STAT5 Transcription Factor , Sirtuins , Aged , Animals , Female , Humans , Male , Mice , Middle Aged , Brain Ischemia/complications , Brain Ischemia/pathology , Brain Ischemia/metabolism , Carotid Stenosis/complications , Carotid Stenosis/metabolism , Chronic Disease , Cognitive Dysfunction/pathology , Dynamins/metabolism , Dynamins/genetics , Mice, Inbred C57BL , Mitochondrial Dynamics/drug effects , Neurons/metabolism , Neurons/drug effects , Neurons/pathology , Signal Transduction/drug effects , Sirtuins/metabolism , Sirtuins/genetics , STAT5 Transcription Factor/metabolism
12.
Plant Physiol ; 193(4): 2622-2639, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37587696

ABSTRACT

Common purslane (Portulaca oleracea) integrates both C4 and crassulacean acid metabolism (CAM) photosynthesis pathways and is a promising model plant to explore C4-CAM plasticity. Here, we report a high-quality chromosome-level genome of nicotinamide adenine dinucleotide (NAD)-malic enzyme (ME) subtype common purslane that provides evidence for 2 rounds of whole-genome duplication (WGD) with an ancient WGD (P-ß) in the common ancestor to Portulacaceae and Cactaceae around 66.30 million years ago (Mya) and another (Po-α) specific to common purslane lineage around 7.74 Mya. A larger number of gene copies encoding key enzymes/transporters involved in C4 and CAM pathways were detected in common purslane than in related species. Phylogeny, conserved functional site, and collinearity analyses revealed that the Po-α WGD produced the phosphoenolpyruvate carboxylase-encoded gene copies used for photosynthesis in common purslane, while the P-ß WGD event produced 2 ancestral genes of functionally differentiated (C4- and CAM-specific) beta carbonic anhydrases involved in the C4 + CAM pathways. Additionally, cis-element enrichment analysis in the promoters showed that CAM-specific genes have recruited both evening and midnight circadian elements as well as the Abscisic acid (ABA)-independent regulatory module mediated by ethylene-response factor cis-elements. Overall, this study provides insights into the origin and evolutionary process of C4 and CAM pathways in common purslane, as well as potential targets for engineering crops by integrating C4 or CAM metabolism.


Subject(s)
Portulaca , Portulaca/genetics , Portulaca/metabolism , Gene Duplication , Crassulacean Acid Metabolism , Biological Evolution , Phylogeny , Photosynthesis/genetics
13.
Plant Physiol ; 193(3): 2180-2196, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37471276

ABSTRACT

Rice (Oryza sativa L.) is a cold-sensitive species that often faces cold stress, which adversely affects yield productivity and quality. However, the genetic basis for low-temperature adaptation in rice remains unclear. Here, we demonstrate that 2 functional polymorphisms in O. sativa SEC13 Homolog 1 (OsSEH1), encoding a WD40-repeat nucleoporin, between the 2 subspecies O. sativa japonica and O. sativa indica rice, may have facilitated cold adaptation in japonica rice. We show that OsSEH1 of the japonica variety expressed in OsSEH1MSD plants (transgenic line overexpressing the OsSEH1 allele from Mangshuidao [MSD], cold-tolerant landrace) has a higher affinity for O. sativa metallothionein 2b (OsMT2b) than that of OsSEH1 of indica. This high affinity of OsSEH1MSD for OsMT2b results in inhibition of OsMT2b degradation, with decreased accumulation of reactive oxygen species and increased cold tolerance. Transcriptome analysis indicates that OsSEH1 positively regulates the expression of the genes encoding dehydration-responsive element-binding transcription factors, i.e. OsDREB1 genes, and induces the expression of multiple cold-regulated genes to enhance cold tolerance. Our findings highlight a breeding resource for improving cold tolerance in rice.


Subject(s)
Oryza , Oryza/metabolism , Plant Breeding , Cold Temperature , Oxidation-Reduction , Homeostasis , Gene Expression Regulation, Plant
14.
Glob Chang Biol ; 30(7): e17404, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38967125

ABSTRACT

The fraction of net primary productivity (NPP) allocated to belowground organs (fBNPP) in grasslands is a critical parameter in global carbon cycle models; moreover, understanding the effect of precipitation changes on this parameter is vital to accurately estimating carbon sequestration in grassland ecosystems. However, how fBNPP responds to temporal precipitation changes along a gradient from extreme drought to extreme wetness, remains unclear, mainly due to the lack of long-term data of belowground net primary productivity (BNPP) and the fact that most precipitation experiments did not have a gradient from extreme drought to extreme wetness. Here, by conducting both a precipitation gradient experiment (100-500 mm) and a long-term observational study (34 years) in the Inner Mongolia grassland, we showed that fBNPP decreased linearly along the precipitation gradient from extreme drought to extreme wetness due to stronger responses in aboveground NPP to drought and wet conditions than those of BNPP. Our further meta-analysis in grasslands worldwide also indicated that fBNPP increased when precipitation decreased, and the vice versa. Such a consistent pattern of fBNPP response suggests that plants increase the belowground allocation with decreasing precipitation, while increase the aboveground allocation with increasing precipitation. Thus, the linearly decreasing response pattern in fBNPP should be incorporated into models that forecast carbon sequestration in grassland ecosystems; failure to do so will lead to underestimation of the carbon stock in drought years and overestimation of the carbon stock in wet years in grasslands.


Subject(s)
Carbon , Droughts , Grassland , Rain , Carbon/analysis , Carbon/metabolism , China , Carbon Cycle , Carbon Sequestration
15.
Opt Lett ; 49(8): 1892-1895, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38621032

ABSTRACT

We experimentally demonstrate the highly-efficient nonlocal erasing and writing of ferroelectric domains using a femtosecond laser in lithium niobate. Based on the induction of a focused infrared femtosecond laser without any relative displacement or additional treatment, the original multiple ferroelectric domains can be either erased (erasing operation) or elongated (writing operation) simultaneously in the crystal, depending on the laser focusing depth and the laser pulse energy. In the erasing operation, the original multiple ferroelectric domains can be cleared completely by just one laser induction, while in the writing operation, the average length of the ferroelectric domains can be elongated up to 235 µm by three laser inductions. A model has been proposed in which a thermoelectric field and a space charge field are used cooperatively to successfully explain the mechanism of nonlocal erasing and writing. This method greatly improves the efficiency and flexibility of tailoring ferroelectric domain structures, paving the way to large-scale all-optical industrial production for nonlinear photonic crystals and nonvolatile ferroelectric domain wall memories.

16.
Opt Lett ; 49(4): 1097-1100, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38359262

ABSTRACT

We experimentally extend the nonlinear Gaussian to flat-top beam shaping from one to two dimensions through a three-dimensional nonlinear photonic crystal. Employing a near-infrared femtosecond laser, we induce a modification inside lithium niobate to achieve a second-order nonlinear optical coefficient modulation in three dimensions. The flat-topped truncation of wavefront has been adjusted in a mutual perpendicular coordinate separately. Among the generated flat-topped beams, the optimal flatness is 97.1%, and the nonlinear conversion efficiency is 10-2 at the peak power of 37 kW with the interaction length of 630 µm. By adding an extra dimension, our work simultaneously enables full-wavefront flat-top distribution and nonlinear frequency conversion.

17.
J Neurooncol ; 169(3): 659-670, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39073688

ABSTRACT

BACKGROUND: Interferon stimulated exonuclease gene 20 (ISG20) has been reported to be correlated with macrophage infiltration in glioblastoma (GBM) in previous bioinformatics-based studies. This study explores the exact effect of ISG20 on macrophage polarization in GBM. METHODS: ISG20 expression in GBM tissues and cells was determined by RT-qPCR and/or immunohistochemistry. GBM cells were co-cultured with M0 macrophages (PMA-stimulated THP-1 cells) in vitro, followed by flow cytometry and ELISA to analyze the M2 polarization of macrophages. Fluorescence-contained GBM cells were intracranially injected into nude mice along with M0 macrophages to generate orthotopic xenograft tumor models. Upstream regulator of ISG20 was predicted using bioinformatics. Loss- or gain-of-function assays of Fos like 2 (FOSL2) and ISG20 were performed in GBM cells. DNA methylation level of FOSL2 was analyzed by bisulfite sequencing analysis. RESULTS: ISG20 was found highly expressed in GBM tissues and cells. ISG20 silencing in GBM cells decreased CD206 and CD163 levels in the co-cultured macrophages and reduced secretion of IL-10 and TGF-ß. It also enhanced survival of nude mice bearing xenograft tumors, blocked tumor growth, and suppressed M2 polarization of macrophages in vivo. FOSL2, highly expressed in GBM, bound to the ISG20 promoter to activate its transcription. FOSL2 silencing similarly blocked M2 polarization of macrophages, which was negated by ISG20 overexpression. The high FOSL2 expression in GBM was attributed to DNA hypomethylation. CONCLUSION: This study demonstrates that FOSL2 is highly expressed in GBM due to DNA hypomethylation. It activates transcription of ISG20, thus promoting M2 polarization of macrophages and GBM development.


Subject(s)
Brain Neoplasms , Glioblastoma , Macrophages , Mice, Nude , Animals , Humans , Mice , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation , Exonucleases/metabolism , Exonucleases/genetics , Exoribonucleases , Gene Expression Regulation, Neoplastic , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Macrophages/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Xenograft Model Antitumor Assays , Fos-Related Antigen-2/genetics , Fos-Related Antigen-2/metabolism
18.
Arterioscler Thromb Vasc Biol ; 43(12): e491-e508, 2023 12.
Article in English | MEDLINE | ID: mdl-37795615

ABSTRACT

BACKGROUND: APN (adiponectin) and APPL1 (adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1) are potent vasculoprotective molecules, and their deficiency (eg, hypoadiponectinemia) contributes to diabetic vascular complications. However, the molecular mechanisms that govern their vasculoprotective genes as well as their alteration by diabetes remain unknown. METHODS: Diabetic medium-cultured rat aortic endothelial cells, mouse aortic endothelial cells from high-fat-diet animals, and diabetic human aortic endothelial cells were used for molecular/cellular investigations. The in vivo concept-prove demonstration was conducted using diabetic vascular injury and diabetic hindlimb ischemia models. RESULTS: In vivo animal experiments showed that APN replenishment caused APPL1 nuclear translocation, resulting in an interaction with HDAC (histone deacetylase) 2, which inhibited HDAC2 activity and increased H3Kac27 levels. Based on transcriptionome pathway-specific real-time polymerase chain reaction profiling and bioinformatics analysis, Angpt1 (angiopoietin 1), Ocln (occludin), and Cav1 (caveolin 1) were found to be the top 3 vasculoprotective genes suppressed by diabetes and rescued by APN in an APPL1-dependent manner. APN reverses diabetes-induced inhibition of Cav1 interaction with APPL1. APN-induced Cav1 expression was not affected by Angpt1 or Ocln deficiency, whereas APN-induced APPL1 nuclear translocation or upregulation of Angpt1/Ocln expression was abolished in the absence of Cav1 both in vivo and in vitro, suggesting Cav1 is upstream molecule of Angpt1/Ocln in response to APN administration. Chromatin immunoprecipitation-qPCR (quantitative polymerase chain reaction) demonstrated that APN caused significant enrichment of H3K27ac in Angpt1 and Ocln promoter region, an effect blocked by APPL1/Cav1 knockdown or HDAC2 overexpression. The protective effects of APN on the vascular system were attenuated by overexpression of HDAC2 and abolished by knocking out APPL1 or Cav1. The double knockdown of ANGPT1/OCLN blunted APN vascular protection both in vitro and in vivo. Furthermore, in diabetic human endothelial cells, HDAC2 activity is increased, H3 acetylation is decreased, and ANGPT1/OCLN expression is reduced, suggesting that the findings have important translational implications. CONCLUSIONS: Hypoadiponectinemia and dysregulation of APPL1-mediated epigenetic regulation are novel mechanisms leading to diabetes-induced suppression of vasculoprotective gene expression. Diabetes-induced pathological vascular remodeling may be prevented by interventions promoting APPL1 nuclear translocation and inhibiting HDAC2.


Subject(s)
Diabetes Mellitus , Diabetic Angiopathies , Vascular System Injuries , Animals , Humans , Mice , Rats , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adiponectin/metabolism , Diabetes Mellitus/genetics , Diabetic Angiopathies/genetics , Diabetic Angiopathies/prevention & control , Diabetic Angiopathies/metabolism , Endothelial Cells/metabolism , Epigenesis, Genetic , Vascular System Injuries/genetics
19.
Anim Genet ; 55(1): 110-122, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38069460

ABSTRACT

Selective breeding of meat pigeons is primarily based on growth traits, especially muscle mass (MM). Identification of functional genes and molecular markers of growth and slaughter traits through a genome-wide association study (GWAS) will help to elucidate the underlying molecular mechanisms and provide a theoretical basis for the selective breeding of meat pigeons. The phenotypic data of body weight (BW) and body size (BS) of 556 meat pigeons at 52 and 80 weeks of age were collected. In total, 160 434 high-quality single nucleotide polymorphism sites were obtained by restriction site-associated DNA sequencing. The GWAS analysis revealed that MSTN, IGF2BP3 and NCAPG/LCORL were important candidate genes affecting the growth traits of meat pigeons. IGF2BP3 and NCAPG/LCORL were highly correlated to BW and BS, which are related to overall growth and development, while MSTN was associated with pectoral thickness and BW. Phenotypic association validation with the use of two meat pigeon populations found that the MSTN mutation c.C861T determines the MM. These results provide new insights into the genetic mechanisms underlying phenotypic variations of growth traits and MM in commercial meat pigeons. The identified markers and genes provide a theoretical basis for the selective breeding of meat pigeons.


Subject(s)
Columbidae , Genome-Wide Association Study , Animals , Genome-Wide Association Study/veterinary , Columbidae/genetics , Phenotype , Meat/analysis , Body Weight/genetics , Mutation , Muscles , Polymorphism, Single Nucleotide
20.
Acta Biochim Biophys Sin (Shanghai) ; 56(2): 162-173, 2024 02 25.
Article in English | MEDLINE | ID: mdl-38298056

ABSTRACT

Voltage-dependent anion channel 1 (VDAC1) is a pore protein located in the outer mitochondrial membrane. Its channel gating mediates mitochondrial respiration and cell metabolism, and it has been identified as a critical modulator of mitochondria-mediated apoptosis. In many diseases characterized by mitochondrial dysfunction, such as cancer and neurodegenerative diseases, VDAC1 is considered a promising potential therapeutic target. However, there is limited research on the regulatory factors involved in VDAC1 protein expression in both normal and pathological states. In this study, we find that VDAC1 protein expression is up-regulated in various neuronal cell lines in response to intracellular metabolic and oxidative stress. We further demonstrate that VDAC1 expression is modulated by intracellular ATP level. Through the use of pharmacological agonists and inhibitors and small interfering RNA (siRNA), we reveal that the AMPK/PGC-1α signaling pathway is involved in regulating VDAC1 expression. Additionally, based on bioinformatics predictions and biochemical verification, we identify p53 as a potential transcription factor that regulates VDAC1 promoter activity during metabolic oxidative stress. Our findings suggest that VDAC1 expression is regulated by the AMPK/PGC-1α and p53 pathways, which contributes to the maintenance of stress adaptation and apoptotic homeostasis in neuronal cells.


Subject(s)
Tumor Suppressor Protein p53 , Voltage-Dependent Anion Channel 1 , Voltage-Dependent Anion Channel 1/genetics , Voltage-Dependent Anion Channel 1/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Oxidative Stress , Apoptosis/genetics , Adenosine Triphosphate/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL