Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Genomics ; 116(5): 110882, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38857814

ABSTRACT

The investigation of dwarfing rootstocks for the establishment of high-generation seed orchards is a prospective avenue of research. In this investigation, Pinus massoniana, Pinus yunnanensis var. pygmaea (P. pygmaea), and P. elliottii seedlings were used as rootstocks for grafting with P. massoniana scions. Grafting P. massoniana onto P. pygmaea rootstock resulted in observable phenotypic alterations in lateral branches, apical buds, and needle length. Certain characteristic metabolites of rootstocks, such as fatty acyls, pregnenolones, steroids, and steroid derivatives, were found to be highly expressed in scions after grafting. RNA-seq analysis revealed MYB-related, SBP, and bHLH demonstrating a significant positive correlation, while C2H2 and Orphans exhibited negative correlations with the differential intensity of metabolites related to lipids and lipid-like molecules. This study offers valuable insights for the establishment of rootstock breeding programs.

2.
BMC Genomics ; 25(1): 281, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493093

ABSTRACT

Drought stress can significantly affect plant growth, development, and yield. Fewer comparative studies have been conducted between different species of pines, particularly involving Pinus yunnanensis var. pygmaea (P. pygmaea). In this study, the physiological indices, photosynthetic pigment and related antioxidant enzyme changes in needles from P. pygmaea, P. elliottii and P. massoniana under drought at 0, 7, 14, 21, 28 and 35 d, as well as 7 days after rehydration, were measured. The PacBio single-molecule real-time (SMRT) and Illumina RNA sequencing were used to uncover the gene expression differences in P. pygmaea under drought and rehydration conditions. The results showed that the total antioxidant capacity (TAOC) of P. pygmaea was significantly higher than P. massoniana and P. elliottii. TAOC showed a continuous increase trend across all species. Soluble sugar (SS), starch content and non-structural carbohydrate (NSC) of all three pines displayed a "W" pattern, declining initially, increasing, and then decreasing again. P. pygmaea exhibits stronger drought tolerance and greater recovery ability under prolonged drought conditions. Through the PacBio SMRT-seq, a total of 50,979 high-quality transcripts were generated, and 6,521 SSR and 5,561 long non-coding RNAs (LncRNAs) were identified. A total of 2310, 1849, 5271, 5947, 7710, and 6854 differentially expressed genes (DEGs) were identified compared to the control (Pp0D) in six pair-wise comparisons of treatment versus control. bHLH, NAC, ERF, MYB_related, C3H transcription factors (TFs) play an important role in drought tolerance of P. pygmaea. KEGG enrichment analysis and Gene set enrichment analysis (GSEA) analysis showed that P. pygmaea may respond to drought by enhancing metabolic processes such as ABA signaling pathway, alpha-linolenic acid. Weighted gene co-expression network analysis (WGCNA) revealed GST, CAT, LEC14B, SEC23 were associated with antioxidant enzyme activity and TAOC. This study provides a basis for further research on drought tolerance differences among coniferous species.


Subject(s)
Droughts , Pinus , Antioxidants , Gene Expression Profiling/methods , Transcriptome , Pinus/genetics , Carbohydrates , Gene Expression Regulation, Plant , Stress, Physiological/genetics
3.
Plant Cell Environ ; 47(4): 1041-1052, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37997205

ABSTRACT

In arbuscular mycorrhizal (AM) symbiosis, sugars in root cortical cells could be exported as glucose or sucrose into peri-arbuscular space for use by AM fungi. However, no sugar transporter has been identified to be involved in sucrose export. An AM-inducible SWEET transporter, GmSWEET6, was functionally characterised in soybean, and its role in AM symbiosis was investigated via transgenic plants. The expression of GmSWEET6 was enhanced by inoculation with the cooperative fungal strain in both leaves and roots. Heterologous expression in a yeast mutant showed that GmSWEET6 mainly transported sucrose. Transgenic plants overexpressing GmSWEET6 increased sucrose concentration in root exudates. Overexpression or knockdown of GmSWEET6 decreased plant dry weight, P content, and sugar concentrations in non-mycorrhizal plants, which were partly recovered in mycorrhizal plants. Intriguingly, overexpression of GmSWEET6 increased root P content and decreased the percentage of degraded arbuscules, while knockdown of GmSWEET6 increased root sugar concentrations in RNAi2 plants and the percentage of degraded arbuscules in RNAi1 plants compared with wild-type plants when inoculated with AM fungi. These results in combination with subcellular localisation of GmSWEET6 to peri-arbuscular membranes strongly suggest that GmSWEET6 is required for AM symbiosis by mediating sucrose efflux towards fungi.


Subject(s)
Mycorrhizae , Symbiosis , Glycine max , Mycorrhizae/metabolism , Fungi , Plants, Genetically Modified/metabolism , Glucose/metabolism , Sucrose/metabolism , Plant Roots/metabolism
4.
BMC Cancer ; 24(1): 1158, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39289660

ABSTRACT

BACKGROUND: Post-translational modification pathway of protein ubiquitination is intricately associated with tumorigenesis. We previously reported elevated ubiquitin-conjugating enzyme 2T (UBE2T) as an independent risk factor in stage I lung adenocarcinoma and promoting cellular proliferation. However, its underlying mechanisms needed further investigation. METHODS: Immunohistochemistry was used to assess the expression of UBE2T and retinoic acid receptor-related orphan receptor α (RORA) in stage I LUAD. Cell proliferation, migration, and invasion of LUAD cell lines were measured by Cell Counting Kit-8 assay (CCK-8), Colony-forming assay and Transwell assay, respectively. Western blot analysis was performed to determine the expression of epithelial-mesenchymal transition (EMT) markers. A xenograft model was established to evaluate the proliferative capacity of UBE2T and its interaction with RORA in promoting LUAD. Mechanistic insights into the promotion of early-stage LUAD by UBE2T were obtained through luciferase reporter assay, chromatin immunoprecipitation and co-immunoprecipitation. RESULTS: UBE2T and RORA expression was significantly up- and down-regulated in early-stage LUAD patients which's proved to be associated with unfavorable outcomes, strengthened cell proliferation, migration, EMT and invasion through its interaction with RORA both in vivo and in vitro. The growth NSCLC xenografts was reduced by down-expression of UBE2T but was suppressed by RORA knockout. Mechanistically, UBE2T mediated the ubiquitination of the intermediate transcription factor PBX1, which played a transcriptional role in downstream regulation of RORA. CONCLUSION: The oncogenic role of UBE2T and the UBE2T-PBX1-RORA axis in driving malignant progression in Stage I LUAD had been established. UBE2T might be a novel and promising therapeutic target for LUAD treatment.


Subject(s)
Adenocarcinoma of Lung , Cell Proliferation , Disease Progression , Epithelial-Mesenchymal Transition , Lung Neoplasms , Pre-B-Cell Leukemia Transcription Factor 1 , Ubiquitin-Conjugating Enzymes , Ubiquitination , Humans , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Animals , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Mice , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/genetics , Pre-B-Cell Leukemia Transcription Factor 1/metabolism , Pre-B-Cell Leukemia Transcription Factor 1/genetics , Cell Line, Tumor , Female , Cell Movement , Neoplasm Staging , Male , Gene Expression Regulation, Neoplastic , Middle Aged , Mice, Nude , Nuclear Receptor Subfamily 1, Group F, Member 1
5.
Ann Bot ; 134(1): 179-190, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38642143

ABSTRACT

BACKGROUND AND AIMS: Plants have adapted to acquire phosphorus (P) primarily through advantageous root morphologies, responsive physiological pathways and associations with mycorrhizal fungi. Yet, to date, little information exists on how variation in arbuscular mycorrhizal (AM) colonization is coordinated with root morphological and physiological traits to enhance P acquisition. METHODS: Thirteen root functional traits associated with P acquisition were characterized at full bloom stage in pot cultures under low soil P availability conditions for 13 soybean genotypes contrasting in AM colonization. KEY RESULTS: Significant variation in root functional traits was observed in response to low P stress among the 13 tested soybean genotypes contrasting in AM colonization. Genotypes with low AM colonization exhibited greater root proliferation but with less advantageous root physiological characteristics for P acquisition. In contrast, genotypes with high AM colonization exhibited less root growth but higher phosphatase activities and carboxylate content in the rhizosheath. Root dry weights, and contents of carbon and P were positively correlated with root morphological traits of different root orders and whole root systems, and were negatively correlated with AM colonization of fine roots and whole root systems, as well as rhizosheath phosphatase activities and carboxylate contents. These results taken in combination with a significant positive correlation between plant P content and root morphological traits indicate that root morphological traits play a primary role in soybean P acquisition. CONCLUSIONS: The results suggest that efficient P acquisition involves tradeoffs among carbon allocation to root proliferation, mycorrhizal symbiosis or P-mobilizing exudation. Complementarity and complexity in the selection of P acquisition strategies was notable among soybean genotypes contrasting in AM colonization, which is closely related to plant C budgeting.


Subject(s)
Genotype , Glycine max , Mycorrhizae , Phosphorus , Plant Roots , Glycine max/microbiology , Glycine max/genetics , Glycine max/growth & development , Glycine max/physiology , Glycine max/anatomy & histology , Mycorrhizae/physiology , Phosphorus/metabolism , Plant Roots/microbiology , Plant Roots/growth & development , Plant Roots/anatomy & histology , Plant Roots/genetics , Soil/chemistry , Carbon/metabolism
6.
BMC Genomics ; 24(1): 757, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38066414

ABSTRACT

As an economically important tree, Gleditsia sinensis Lam. is widely planted. A lack of background genetic information on G. sinensis hinders molecular breeding. Based on PacBio single-molecule real-time (SMRT) sequencing and analysis of G. sinensis, a total of 95,183 non-redundant transcript sequences were obtained, of which 93,668 contained complete open reading frames (ORFs), 2,858 were long non-coding RNAs (LncRNAs) and 18,855 alternative splicing (AS) events were identified. Genes orthologous to different Gleditsia species pairs were identified, stress-related genes had been positively selected during the evolution. AGA, AGG, and CCA were identified as the universal optimal codon in the genus of Gleditsia. EIF5A was selected as a suitable fluorescent quantitative reference gene. 315 Cytochrome P450 monooxygenases (CYP450s) and 147 uridine diphosphate (UDP)-glycosyltransferases (UGTs) were recognized through the PacBio SMRT transcriptome. Randomized selection of GsIAA14 for cloning verified the reliability of the PacBio SMRT transcriptome assembly sequence. In conclusion, the research data lay the foundation for further analysis of the evolutionary mechanism and molecular breeding of Gleditsia.


Subject(s)
Gleditsia , Transcriptome , Gleditsia/genetics , Reproducibility of Results , Alternative Splicing
7.
BMC Plant Biol ; 23(1): 536, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37919651

ABSTRACT

BACKGROUND: Trachycarpus fortunei is a plant with significant economic and ornamental value. Both male and female flowers of T. fortunei originate as bisexual flowers, and selective abortion occurs during floral development. However, the regulatory mechanisms underlying this process remain unclear in T. fortunei. In this study, transcriptome sequencing with Illumina and Pacific BioSciences (PacBio) single-molecule real-time (SMRT) platforms were used to investigate gene expression differences between male and female T. fortunei plants. RESULTS: A total of 833,137 full-length non-chimeric (FLNC) reads were obtained, and 726,846 high-quality full-length transcripts were identified. A total of 159 genes were differentially expressed between male and female flowers at all development stages. Some of the differentially expressed genes (DEGs) showed male bias, including serine/threonine-protein kinase (STPK), THUMP1 homolog and other genes. Through single-nucleotide polymorphisms(SNPs) identification, 28 genes were considered as potential sex-associated SNPs. Time-Ordered Gene Co-expression Network (TO-GCN) analysis revealed that MADS2 and MADS26 may play important roles in the development of female and male flowers T. fortune plants, respectively. CONCLUSIONS: These findings provide a genetic basis for flower development and differentiation in T. fortunei, and improve our understanding of the mechanisms underlying sexual differentiation in T. fortunei.


Subject(s)
Arecaceae , Transcriptome , Gene Expression Regulation, Plant , Gene Expression Profiling , Flowers/genetics , High-Throughput Nucleotide Sequencing , Arecaceae/genetics
8.
PLoS Pathog ; 17(4): e1009561, 2021 04.
Article in English | MEDLINE | ID: mdl-33905456

ABSTRACT

The H7N9 avian influenza virus (AIV) that emerged in China have caused five waves of human infection. Further human cases have been successfully prevented since September 2017 through the use of an H7N9 vaccine in poultry. However, the H7N9 AIV has not been eradicated from poultry in China, and its evolution remains largely unexplored. In this study, we isolated 19 H7N9 AIVs during surveillance and diagnosis from February 2018 to December 2019, and genetic analysis showed that these viruses have formed two different genotypes. Animal studies indicated that the H7N9 viruses are highly lethal to chicken, cause mild infection in ducks, but have distinct pathotypes in mice. The viruses bound to avian-type receptors with high affinity, but gradually lost their ability to bind to human-type receptors. Importantly, we found that H7N9 AIVs isolated in 2019 were antigenically different from the H7N9 vaccine strain that was used for H7N9 influenza control in poultry, and that replication of these viruses cannot, therefore, be completely prevented in vaccinated chickens. We further revealed that two amino acid mutations at positions 135 and 160 in the HA protein added two glycosylation sites and facilitated the escape of the H7N9 viruses from the vaccine-induced immunity. Our study provides important insights into H7N9 virus evolution and control.


Subject(s)
Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/isolation & purification , Influenza Vaccines/therapeutic use , Influenza in Birds/prevention & control , Poultry Diseases/virology , Animals , Animals, Zoo/virology , Chickens/virology , China/epidemiology , Ducks/virology , Infection Control/methods , Influenza A Virus, H7N9 Subtype/classification , Influenza A Virus, H7N9 Subtype/physiology , Influenza in Birds/epidemiology , Influenza in Birds/virology , Mice , Phylogeny , Population Surveillance , Poultry , Poultry Diseases/epidemiology , Poultry Diseases/prevention & control
9.
Virol J ; 20(1): 261, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37957729

ABSTRACT

BACKGROUND: Avian influenza (AI) is a disease caused by the avian influenza virus (AIV). These viruses spread naturally among wild aquatic birds worldwide and infect domestic poultry, other birds, and other animal species. Currently, real-time reverse transcription polymerase chain reaction (rRT-PCR) is mainly used to detect the presence of pathogens and has good sensitivity and specificity. However, the diagnosis requires sophisticated instruments under laboratory conditions, which significantly limits point-of-care testing (POCT). Rapid, reliable, non-lab-equipment-reliant, sensitive, and specific diagnostic tests are urgently needed for rapid clinical detection and diagnosis. Our study aimed to develop a reverse transcription recombinase polymerase amplification (RT-RPA)/CRISPR method which improves on these limitations. METHODS: The Cas12a protein was purified by affinity chromatography with Ni-agarose resin and observed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Specific CRISPR RNA (crRNA) and primers targeting the M and NP genes of the AIV were designed and screened. By combining RT-RPA with the Cas12a/crRNA trans-cleavage system, a detection system that uses fluorescence readouts under blue light or lateral flow strips was established. Sensitivity assays were performed using a tenfold dilution series of plasmids and RNA of the M and NP genes as templates. The specificity of this method was determined using H1-H16 subtype AIVs and other avian pathogens, such as newcastle disease virus (NDV), infectious bursal disease virus (IBDV), and infectious bronchitis virus (IBV). RESULTS: The results showed that the method was able to detect AIV and that the detection limit can reach 6.7 copies/µL and 12 copies/µL for the M and NP gene, respectively. In addition, this assay showed no cross-reactivity with other avian-derived RNA viruses such as NDV, IBDV, and IBV. Moreover, the detection system presented 97.5% consistency and agreement with rRT-PCR and virus isolation for detecting samples from poultry. This portable and accurate method has great potential for AIV detection in the field. CONCLUSION: An RT-RPA/CRISPR method was developed for rapid, sensitive detection of AIV. The new system presents a good potential as an accurate, user-friendly, and inexpensive platform for point-of-care testing applications.


Subject(s)
Influenza A virus , Influenza in Birds , Animals , Influenza in Birds/diagnosis , CRISPR-Cas Systems , Birds , Poultry , Sensitivity and Specificity , Real-Time Polymerase Chain Reaction/methods , Newcastle disease virus/genetics , RNA
10.
Curr Issues Mol Biol ; 44(11): 5485-5497, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36354683

ABSTRACT

Pinus yunnanensis var. pygmaea demonstrates obvious loss of apical dominance, inconspicuous main trunk, which can be used as an ideal material for dwarfing rootstocks. In order to find out the reasons for the lack of apical dominance of P. pygmaea, endogenous phytohormone content determination by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and comparative transcriptomes were performed on the shoot apical meristem and root apical meristem of three pine species (P. massoniana, P. pygmaea, and P. elliottii). The results showed that the lack of CK and the massive accumulation of ABA and GA-related hormones may be the reasons for the loss of shoot apical dominance and the formation of multi-branching, the abnormal synthesis of diterpenoid biosynthesis may lead to the influence of GA-related synthesis, and the high expression of GA 2-oxidase (GA2ox) gene may be the cause of dwarfing. Weighted correlation network analysis (WGCNA) screened some modules that were highly expressed in the shoot apical meristem of P. pygmaea. These findings provided valuable information for identifying the network regulation of shoot apical dominance loss in P. pygmaea and enhanced the understanding of the molecular mechanism of shoot apical dominance growth differences among Pinus species.

11.
Molecules ; 27(13)2022 Jul 03.
Article in English | MEDLINE | ID: mdl-35807530

ABSTRACT

Terminal sialic acids (Sia) on soluble glycoprotein of saliva play an important role in the clearance of influenza virus. The aim of this study is to investigate the alteration of sialylation on the salivary proteins of women during the lactation period and its effect on the saliva binding ability to virus. In total, 210 saliva samples from postpartum women with and without breastfeeding were collected, and the expression level of α2-3/6-linked Sia on the whole salivary proteins and specific glycoproteins of IgA and MUC5B from different groups were tested and verified using lectin microarray, blotting analysis and ELISA based method. The H1N1 vaccine and three strains of Avian influenza virus (AIV) were used for the saliva binding assay. Results showed that the variation in salivary expression level of α2-3-linked Sia was much more obvious than the α2-6-linked Sia, which was up-regulated significantly in the breastfeeding groups compared to the non-breastfeeding groups at the same postpartum stage. Furthermore, the binding abilities of salivary glycoproteins to AIV strains and H1N1 vaccine were increased in breastfeeding groups accordingly. This finding adds new evidence for the maternal benefit of breastfeeding and provides new thinking to protect postpartum women from AIV infection.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza in Birds , Animals , Female , Glycoproteins/metabolism , Humans , Influenza A Virus, H1N1 Subtype/metabolism , Influenza A virus/metabolism , Sialic Acids
12.
Glycoconj J ; 38(6): 689-696, 2021 12.
Article in English | MEDLINE | ID: mdl-34779975

ABSTRACT

Influenza is a worldwide plague caused by the influenza virus (IAV) infection, which is initiated by specific recognition with sialic acids on host cell surface. Bovine lactoferrin (bLf) is a sialoglycoprotein belonging to the transferrin family, and it plays an important role in immune regulation. It also shows toxicity against cancer cells and pathogenic microorganisms including bacteria, fungi, and virus. The purpose of this study is to assess the roles of the sialylated glycans on bLf against IAV. To this end, bLf were first treated with sodium periodate to destroy its sialylated glycans. Then, the binding activity of native or desialylated bLf with various IAV was assessed by blotting assay. Finally, their ability to inhibit IAV attachment to host cells was analyzed in vitro. Our result showed that the sialylated glycans on bLf were almost completely destroyed by sodium periodate treatment. Furthermore, the binding activity of desialylated bLf to IAV and the ability to inhibit IAV mimics binding to MDCK cells were significantly reduced compared to that of native bLf. These results demonstrated that the sialylated glycans on bLf could serve as competitive substrates to block IAV attachment to host cells during the early stages of viral infection. Our findings make an important contribute for the fully understanding of the mechanism of bLf in the prevention of IAV infections and their possible applications in antiviral infection.


Subject(s)
Antiviral Agents , Influenza A virus/drug effects , Lactoferrin , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Dogs , Lactoferrin/chemistry , Lactoferrin/pharmacology , Madin Darby Canine Kidney Cells , Polysaccharides/chemistry , Sialic Acids/metabolism
13.
Vet Res ; 52(1): 14, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33509253

ABSTRACT

Infectious bronchitis virus (IBV) is a pathogenic coronavirus with high morbidity and mortality in chicken breeding. Macrophages with normal biofunctions are essential for host immune responses. In this study, the HD11 chicken macrophage cell line and chicken peripheral blood mononuclear cell-derived macrophages (PBMCs-Mφ) were infected with IBV at multiplicity of infection (MOI) of 10. The dynamic changes of their biofunctions, including cell viability, pathogen elimination function, phagocytic ability, and gene expressions of related proteins/mediators in innate and acquired immunity, inflammation, autophagy and apoptosis were analyzed. Results showed that IBV infection decreased chicken macrophage viability and phagocytic ability, and increased pathogen elimination function. Moreover, IBV augmented the gene expressions of most related proteins in macrophages involved in multiple host bioprocesses, and the dynamic changes of gene expressions had a close relationship with virus replication. Among them, MHCII, Fc receptor, TLR3, IFN-α, CCL4, MIF, IL-1ß, IL-6, and iNOS showed significantly higher expressions in IBV-infected cells. However, TLR7, MyD88, MDA5, IFN-γ, MHCII, Fc receptor, MARCO, CD36, MIF, XCL1, CXCL12, TNF-α, iNOS, and IL-10 showed early decreased expressions. Overall, chicken macrophages play an important role in host innate and acquired immune responses to resist IBV infection, despite early damage or suppression. Moreover, the IBV-induced autophagy and apoptosis might participate in the virus-host cell interaction which is attributed to the biological process.


Subject(s)
Gene Expression Regulation, Viral/physiology , Infectious bronchitis virus/physiology , Leukocytes, Mononuclear/virology , Macrophages/virology , Adaptive Immunity , Animals , Apoptosis , Autophagy , Cell Line , Cell Survival , Chemokines/genetics , Chemokines/metabolism , Chickens , Cytopathogenic Effect, Viral , DNA, Complementary/genetics , Flow Cytometry/veterinary , Immunity, Innate , Inflammation , Interferons/metabolism , Leukocytes, Mononuclear/physiology , Macrophages/physiology , Nitric Oxide/analysis , Phagocytosis , RNA, Viral/genetics , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction/veterinary , Specific Pathogen-Free Organisms
14.
Ecotoxicol Environ Saf ; 216: 112192, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33838458

ABSTRACT

Boron (B) is an indispensable micronutrient that ensures the optimal growth and productivity of the plant. However, excessive use of B fertilizers results in B toxicity which is relatively difficult to correct as compared to B deficiency. Moreover, underlying mechanisms of B toxicity induced changes in cell wall components and the association of B forms in the appearance of toxicity symptoms in rice seedlings are lacking. Therefore, the present investigation was carried out on rice seedlings by employing different concentrations of B (CK, B1; 100 µM, B2; 300 µM, and B3; 400 µM). The results showed that a high concentration of B caused inhibition of root and shoot growth with noticeable signs of stress on leaves in terms of chlorophyll contents. In addition, B toxicity caused oxidative stress and lipid oxidation of membranes. The higher concentrations of B were accumulated in the leaves than roots. In the roots and leaves, more than 80% B was adsorbed on the cell wall. In the treatment of B3, the free form of B was higher than the bound-B. Fourier Transform Infrared Spectrometer (FTIR) results showed that higher concentrations led to variation in functional groups of cell walls of leaves. The results of this investigation showed that B stress-induced inhibition of growth might be linked with higher B uptake in the upper parts, oxidative damages, and forms of B may play important role in the chlorosis. The findings of the study may help to understand the mechanisms of B stress-induced growth inhibition in rice seedlings.

15.
Ecotoxicol Environ Saf ; 222: 112540, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34311428

ABSTRACT

Cadmium (Cd) is a hazardous heavy metal and some of its negative effects include inhibition of rice growth, while also accumulates in the rice grains. Boron (B) has been implicated in mitigating Cd toxicity. Nevertheless, a few studies have been performed up to now to evaluate whether B could encourage Cd tolerance in rice by regulating Cd adsorption on cell walls (CW) in leaves of rice. The current experiment used different concentrations of B (0, 20, and 30 µM) along with 50 µM Cd to rice seedlings. The results indicate that single treatment of Cd significantly inhibited root and shoot growth and caused leaf chlorosis. However, B application at 20, and 30 µM reduced Cd concentrations in the roots by 66% and 77%, and in shoots by 72% and 83%, respectively, and increased plant development. Boron supply at 30 µM increased Cd in leaf CW fraction by 79% and decreased Cd by 64% in the organelle fraction. Moreover, B addition regulated the antioxidant system and decreased malonaldehyde contents (45%) in rice leaves. The present study demonstrates that B reduces Cd translocation and facilitates Cd adsorption on CW and regulates an efficient antioxidant system in rice leaves.


Subject(s)
Oryza , Adsorption , Antioxidants , Boron/toxicity , Cadmium/toxicity , Cell Wall , Plant Leaves , Plant Roots , Seedlings
16.
Mycorrhiza ; 30(2-3): 285-298, 2020 May.
Article in English | MEDLINE | ID: mdl-32296944

ABSTRACT

Arbuscular mycorrhizal (AM) symbiosis plays crucial roles in plant nutrient uptake. However, little is known about the combined effects of phosphorus (P) and magnesium (Mg) on mycorrhizal symbiosis. In the present study, a pot experiment was carried out using two soybean genotypes in the presence or absence of Rhizophagus irregularis inoculation under different P and Mg conditions. The results showed that plant growth promotion by mycorrhizal symbiosis was associated with P-starved nutrition status, high Mg supply augmented the efficiency of AM symbiosis in low P, and high Mg relieved the inhibitory effect of high P availability on AM symbiosis. The P-efficient genotype HN89 was more responsive to Mg application than the P-inefficient genotype HN112 when inoculated with Rhizophagus irregularis. The results from a comparative RNA sequencing analysis of the root transcriptomes showed that several carbon metabolism pathways were enriched in mycorrhizal roots in low P plus high Mg. Accordingly, the expression levels of the key genes related to carbon metabolism and transport were also upregulated in mycorrhizal roots. Conversely, the Mg-deficient mycorrhizal plants showed increased sucrose, glucose, and fructose accumulations in shoots. Overall, the results herein demonstrate that P and Mg interactively affect mycorrhizal responses in plants, and high Mg supply has a profound effect on P-starved mycorrhizal plant growth through promotion of photosynthate metabolism and transport in soybean.


Subject(s)
Mycorrhizae , Magnesium , Phosphorus , Plant Roots , Glycine max , Symbiosis
17.
Plant Cell Environ ; 42(6): 2015-2027, 2019 06.
Article in English | MEDLINE | ID: mdl-30730567

ABSTRACT

Arbuscules are the central structures of the symbiotic association between terrestrial plants and arbuscular mycorrhizal (AM) fungi. However, arbuscules are also ephemeral structures, and following development, these structures are soon digested and ultimately disappear. Currently, little is known regarding the mechanism underlying the digestion of senescent arbuscules. Here, biochemical and functional analyses were integrated to test the hypothesis that a purple acid phosphatase, GmPAP33, controls the hydrolysis of phospholipids during arbuscule degeneration. The expression of GmPAP33 was enhanced by AM fungal inoculation independent of the P conditions in soybean roots. Promoter-ß-glucuronidase (GUS) reporter assays revealed that the expression of GmPAP33 was mainly localized to arbuscule-containing cells during symbiosis. The recombinant GmPAP33 exhibited high hydrolytic activity towards phospholipids, phosphatidylcholine, and phosphatidic acid. Furthermore, soybean plants overexpressing GmPAP33 exhibited increased percentages of large arbuscules and improved yield and P content compared with wild-type plants when inoculated with AM fungi. Mycorrhizal RNAi plants had high phospholipid levels and a large percentage of small arbuscules. These results in combination with the subcellular localization of GmPAP33 at the plasma membrane indicate that GmPAP33 participates in arbuscule degeneration during AM symbiosis via involvement in phospholipid hydrolysis.


Subject(s)
Acid Phosphatase/metabolism , Glycine max/metabolism , Mycorrhizae/metabolism , Plant Roots/metabolism , Acid Phosphatase/genetics , Cell Membrane/metabolism , Gene Expression Regulation, Plant , Glucuronidase , Phosphates/metabolism , Phospholipids , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , RNA Interference , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Symbiosis
18.
Plant Cell Environ ; 42(1): 270-284, 2019 01.
Article in English | MEDLINE | ID: mdl-29859016

ABSTRACT

Legumes form tripartite interactions with arbuscular mycorrhizal fungi and rhizobia, and both root symbionts exchange nutrients against carbon from their host. The carbon costs of these interactions are substantial, but our current understanding of how the host controls its carbon allocation to individual root symbionts is limited. We examined nutrient uptake and carbon allocation in tripartite interactions of Medicago truncatula under different nutrient supply conditions, and when the fungal partner had access to nitrogen, and followed the gene expression of several plant transporters of the Sucrose Uptake Transporter (SUT) and Sugars Will Eventually be Exported Transporter (SWEET) family. Tripartite interactions led to synergistic growth responses and stimulated the phosphate and nitrogen uptake of the plant. Plant nutrient demand but also fungal access to nutrients played an important role for the carbon transport to different root symbionts, and the plant allocated more carbon to rhizobia under nitrogen demand, but more carbon to the fungal partner when nitrogen was available. These changes in carbon allocation were consistent with changes in the SUT and SWEET expression. Our study provides important insights into how the host plant controls its carbon allocation under different nutrient supply conditions and changes its carbon allocation to different root symbionts to maximize its symbiotic benefits.


Subject(s)
Carbon/metabolism , Host Microbial Interactions , Medicago truncatula/metabolism , Mycorrhizae/metabolism , Symbiosis , Host Microbial Interactions/physiology , Medicago truncatula/microbiology , Medicago truncatula/physiology , Membrane Transport Proteins/metabolism , Mycorrhizae/physiology , Nitrogen/metabolism , Nitrogenase/metabolism , Phosphorus/metabolism , Plant Proteins/metabolism , Plant Roots/metabolism , Plant Roots/microbiology , Transcriptome
19.
Virol J ; 16(1): 119, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31640801

ABSTRACT

BACKGROUND: In 2017-2018, a new highly pathogenic H5N6 avian influenza virus (AIV) variant appeared in poultry and wild birds in Asian and European countries and caused multiple outbreaks. These variant strains are different from the H5N6 virus associated with human infection in previous years, and their genetic taxonomic status and antigenicity have changed. Therefore, revision of the primers and probes of fluorescent RT-PCR is important to detect the new H5N6 subtype AIV in poultry and reduce the risk of an epidemic in birds or humans. METHODS: In this study, the primers and probes including three groups of HA and four groups of NA for H5N6 influenza virus were evaluated. Then a set of ideal primer and probes were selected to further optimize the reaction system and established a method of double rRT-PCR assay. The specificity of this method was determined by using H1~H16 subtype AIV. RESULTS: The results showed that fluorescence signals were obtained for H5 virus in FAM channel and N6 virus in VIC channel, and no fluorescent signal was observed in other subtypes of avian influenza viruses. The detection limit of this assay was 69 copies for H5 and 83 copies for N6 gene. And, the variability tests of intra- and inter-assay showed excellent reproducibility. Moreover, this assay showed 100% agreement with virus isolation method in detecting samples from poultry. CONCLUSION: The duplex rRT-PCR assay presented here has high specificity, sensitivity and reproducibility, and can be used for laboratory surveillance and rapid diagnosis of newly emerged H5N6 subtype avian influenza viruses.


Subject(s)
Influenza A virus/isolation & purification , Influenza in Birds/diagnosis , Microbiological Techniques/veterinary , Molecular Diagnostic Techniques/veterinary , Real-Time Polymerase Chain Reaction/veterinary , Animals , Chickens , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A virus/genetics , Influenza in Birds/virology , Microbiological Techniques/standards , Neuraminidase/genetics , RNA, Viral/genetics , Reproducibility of Results , Sensitivity and Specificity , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL