Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 173(5): 1179-1190.e13, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29775593

ABSTRACT

Telomerase is an RNA-protein complex (RNP) that extends telomeric DNA at the 3' ends of chromosomes using its telomerase reverse transcriptase (TERT) and integral template-containing telomerase RNA (TER). Its activity is a critical determinant of human health, affecting aging, cancer, and stem cell renewal. Lack of atomic models of telomerase, particularly one with DNA bound, has limited our mechanistic understanding of telomeric DNA repeat synthesis. We report the 4.8 Å resolution cryoelectron microscopy structure of active Tetrahymena telomerase bound to telomeric DNA. The catalytic core is an intricately interlocked structure of TERT and TER, including a previously structurally uncharacterized TERT domain that interacts with the TEN domain to physically enclose TER and regulate activity. This complete structure of a telomerase catalytic core and its interactions with telomeric DNA from the template to telomere-interacting p50-TEB complex provides unanticipated insights into telomerase assembly and catalytic cycle and a new paradigm for a reverse transcriptase RNP.


Subject(s)
DNA/metabolism , Telomerase/metabolism , Telomere/metabolism , Tetrahymena thermophila/metabolism , Catalytic Domain , Cryoelectron Microscopy , DNA/chemistry , Humans , Models, Molecular , Nucleic Acid Conformation , Protein Binding , Protein Subunits/chemistry , Protein Subunits/metabolism , Shelterin Complex , Tartrate-Resistant Acid Phosphatase/metabolism , Telomerase/chemistry , Telomere/chemistry , Telomere-Binding Proteins , Tetrahymena thermophila/enzymology
2.
Nature ; 604(7906): 578-583, 2022 04.
Article in English | MEDLINE | ID: mdl-35418675

ABSTRACT

Human telomerase is a RNA-protein complex that extends the 3' end of linear chromosomes by synthesizing multiple copies of the telomeric repeat TTAGGG1. Its activity is a determinant of cancer progression, stem cell renewal and cellular aging2-5. Telomerase is recruited to telomeres and activated for telomere repeat synthesis by the telomere shelterin protein TPP16,7. Human telomerase has a bilobal structure with a catalytic core ribonuclear protein and a H and ACA box ribonuclear protein8,9. Here we report cryo-electron microscopy structures of human telomerase catalytic core of telomerase reverse transcriptase (TERT) and telomerase RNA (TER (also known as hTR)), and of telomerase with the shelterin protein TPP1. TPP1 forms a structured interface with the TERT-unique telomerase essential N-terminal domain (TEN) and the telomerase RAP motif (TRAP) that are unique to TERT, and conformational dynamics of TEN-TRAP are damped upon TPP1 binding, defining the requirements for recruitment and activation. The structures further reveal that the elements of TERT and TER that are involved in template and telomeric DNA handling-including the TEN domain and the TRAP-thumb helix channel-are largely structurally homologous to those in Tetrahymena telomerase10, and provide unique insights into the mechanism of telomerase activity. The binding site of the telomerase inhibitor BIBR153211,12 overlaps a critical interaction between the TER pseudoknot and the TERT thumb domain. Numerous mutations leading to telomeropathies13,14 are located at the TERT-TER and TEN-TRAP-TPP1 interfaces, highlighting the importance of TER-TERT and TPP1 interactions for telomerase activity, recruitment and as drug targets.


Subject(s)
Shelterin Complex , Telomerase , Telomere-Binding Proteins , Binding Sites , Cryoelectron Microscopy , Humans , Protein Binding , Shelterin Complex/ultrastructure , Tartrate-Resistant Acid Phosphatase , Telomerase/ultrastructure , Telomere/genetics , Telomere/metabolism , Telomere-Binding Proteins/metabolism , Telomere-Binding Proteins/ultrastructure
3.
Nature ; 608(7924): 813-818, 2022 08.
Article in English | MEDLINE | ID: mdl-35831498

ABSTRACT

Telomeres are the physical ends of linear chromosomes. They are composed of short repeating sequences (such as TTGGGG in the G-strand for Tetrahymena thermophila) of double-stranded DNA with a single-strand 3' overhang of the G-strand and, in humans, the six shelterin proteins: TPP1, POT1, TRF1, TRF2, RAP1 and TIN21,2. TPP1 and POT1 associate with the 3' overhang, with POT1 binding the G-strand3 and TPP1 (in complex with TIN24) recruiting telomerase via interaction with telomerase reverse transcriptase5 (TERT). The telomere DNA ends are replicated and maintained by telomerase6, for the G-strand, and subsequently DNA polymerase α-primase7,8 (PolαPrim), for the C-strand9. PolαPrim activity is stimulated by the heterotrimeric complex CTC1-STN1-TEN110-12 (CST), but the structural basis of the recruitment of PolαPrim and CST to telomere ends remains unknown. Here we report cryo-electron microscopy (cryo-EM) structures of Tetrahymena CST in the context of the telomerase holoenzyme, in both the absence and the presence of PolαPrim, and of PolαPrim alone. Tetrahymena Ctc1 binds telomerase subunit p50, a TPP1 orthologue, on a flexible Ctc1 binding motif revealed by cryo-EM and NMR spectroscopy. The PolαPrim polymerase subunit POLA1 binds Ctc1 and Stn1, and its interface with Ctc1 forms an entry port for G-strand DNA to the POLA1 active site. We thus provide a snapshot of four key components that are required for telomeric DNA synthesis in a single active complex-telomerase-core ribonucleoprotein, p50, CST and PolαPrim-that provides insights into the recruitment of CST and PolαPrim and the handoff between G-strand and C-strand synthesis.


Subject(s)
DNA Primase , Shelterin Complex , Telomerase , Tetrahymena , Cryoelectron Microscopy , DNA/genetics , DNA/metabolism , DNA Primase/chemistry , DNA Primase/metabolism , DNA Primase/ultrastructure , Holoenzymes/chemistry , Holoenzymes/metabolism , Holoenzymes/ultrastructure , Protein Binding , Shelterin Complex/chemistry , Shelterin Complex/metabolism , Shelterin Complex/ultrastructure , Telomerase/chemistry , Telomerase/metabolism , Telomerase/ultrastructure , Telomere/genetics , Telomere/metabolism , Tetrahymena/chemistry , Tetrahymena/enzymology , Tetrahymena/metabolism , Tetrahymena/ultrastructure
4.
Nature ; 593(7859): 454-459, 2021 05.
Article in English | MEDLINE | ID: mdl-33981033

ABSTRACT

Telomerase is unique among the reverse transcriptases in containing a noncoding RNA (known as telomerase RNA (TER)) that includes a short template that is used for the processive synthesis of G-rich telomeric DNA repeats at the 3' ends of most eukaryotic chromosomes1. Telomerase maintains genomic integrity, and its activity or dysregulation are critical determinants of human longevity, stem cell renewal and cancer progression2,3. Previous cryo-electron microscopy structures have established the general architecture, protein components and stoichiometries of Tetrahymena and human telomerase, but our understandings of the details of DNA-protein and RNA-protein interactions and of the mechanisms and recruitment involved remain limited4-6. Here we report cryo-electron microscopy structures of active Tetrahymena telomerase with telomeric DNA at different steps of nucleotide addition. Interactions between telomerase reverse transcriptase (TERT), TER and DNA reveal the structural basis of the determination of the 5' and 3' template boundaries, handling of the template-DNA duplex and separation of the product strand during nucleotide addition. The structure and binding interface between TERT and telomerase protein p50 (a homologue of human TPP17,8) define conserved interactions that are required for telomerase activation and recruitment to telomeres. Telomerase La-related protein p65 remodels several regions of TER, bridging the 5' and 3' ends and the conserved pseudoknot to facilitate assembly of the TERT-TER catalytic core.


Subject(s)
Cryoelectron Microscopy , Telomerase/chemistry , Telomerase/metabolism , Telomere/metabolism , Tetrahymena thermophila/enzymology , Amino Acid Motifs , Binding Sites , DNA/chemistry , DNA/metabolism , DNA/ultrastructure , Humans , Models, Molecular , Nucleotides , Protein Binding , RNA/chemistry , RNA/metabolism , RNA/ultrastructure , Ribonucleoproteins/chemistry , Ribonucleoproteins/metabolism , Ribonucleoproteins/ultrastructure , Shelterin Complex/chemistry , Shelterin Complex/metabolism , Telomerase/ultrastructure , Telomere/genetics , Telomere/ultrastructure , Telomere-Binding Proteins/chemistry , Telomere-Binding Proteins/metabolism , Templates, Genetic , Tetrahymena thermophila/ultrastructure
5.
Br J Anaesth ; 132(6): 1315-1326, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38637267

ABSTRACT

BACKGROUND: Timely detection of modifiable risk factors for postoperative pulmonary complications (PPCs) could inform ventilation strategies that attenuate lung injury. We sought to develop, validate, and internally test machine learning models that use intraoperative respiratory features to predict PPCs. METHODS: We analysed perioperative data from a cohort comprising patients aged 65 yr and older at an academic medical centre from 2019 to 2023. Two linear and four nonlinear learning models were developed and compared with the current gold-standard risk assessment tool ARISCAT (Assess Respiratory Risk in Surgical Patients in Catalonia Tool). The Shapley additive explanation of artificial intelligence was utilised to interpret feature importance and interactions. RESULTS: Perioperative data were obtained from 10 284 patients who underwent 10 484 operations (mean age [range] 71 [65-98] yr; 42% female). An optimised XGBoost model that used preoperative variables and intraoperative respiratory variables had area under the receiver operating characteristic curves (AUROCs) of 0.878 (0.866-0.891) and 0.881 (0.879-0.883) in the validation and prospective cohorts, respectively. These models outperformed ARISCAT (AUROC: 0.496-0.533). The intraoperative dynamic features of respiratory dynamic system compliance, mechanical power, and driving pressure were identified as key modifiable contributors to PPCs. A simplified model based on XGBoost including 20 variables generated an AUROC of 0.864 (0.852-0.875) in an internal testing cohort. This has been developed into a web-based tool for further external validation (https://aorm.wchscu.cn/). CONCLUSIONS: These findings suggest that real-time identification of surgical patients' risk of postoperative pulmonary complications could help personalise intraoperative ventilatory strategies and reduce postoperative pulmonary complications.


Subject(s)
Machine Learning , Postoperative Complications , Humans , Aged , Female , Postoperative Complications/prevention & control , Male , Aged, 80 and over , Lung Diseases/etiology , Lung Diseases/prevention & control , Risk Assessment/methods , Prospective Studies , Cohort Studies , Risk Factors , Monitoring, Intraoperative/methods
6.
Nano Lett ; 23(24): 11958-11967, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38090798

ABSTRACT

Flexible pressure sensors are devices that mimic the sensory capabilities of natural human skin and enable robots to perceive external stimuli. One of the main challenges is maintaining high sensitivity over a broad linear pressure range due to poor structural compressibility. Here, we report a flexible pressure sensor with an ultrahigh sensitivity of 153.3 kPa-1 and linear response over an unprecedentedly broad pressure range from 0.0005 to 1300 kPa based on interdigital-shaped, multigradient architectures, featuring modulus, conductivity, and microstructure gradients. Such multigradient architectures and interdigital-shaped configurations enable effective stress transfer and conductivity regulation, evading the pressure sensitivity-linear range trade-off dilemma. Together with high pressure resolution, high frequency response, and good reproducibility over the ultrabroad linear range, proof-of-concept applications such as acoustic wave detection, high-resolution pressure measurement, and healthcare monitoring in diverse scenarios are demonstrated.

7.
Zhongguo Zhong Yao Za Zhi ; 49(8): 1989-1995, 2024 Apr.
Article in Zh | MEDLINE | ID: mdl-38812215

ABSTRACT

In the new stage of trans-omics and trans-subjects for medicinal plants, it is an urgent need to integrate big data, provide interactive applications, and form a unified and multi-level research system and big data platform. Dao-di medicinal material, as an important source of medicinal plants, is a unique quality concept and comprehensive standard of tranditional Chinese medicine(TCM). Several databases have been developed in China and abroad, such as the Encyclopedia of Traditional Chinese Medicine(ETCM) and the Global Pharmacopoeia Genome Database(GPGD). Yet, most databases do not provide multi-dimensional data, including geographic data, phenotype data, compound data, and genetic data. Sichuan, known as the hometown of TCM therapies and the treasure trove of TCM, is the most representative region of medicinal plant diversity in China. According to the latest data of the fourth national survey of TCM resources, there are more than 8 000 TCM and 86 Dao-di medicinal materials in Sichuan province. Based on resource census data and relevant achievements, this study constructed the bioinformatics database of medicinal plants and the visual analysis platform of production layout by taking the Dao-di medicinal materials in Sichuan province as an example, covering geographic data, phenotype data, compound data, and genetic data. It effectively integrates multi-dimensional data of Dao-di medicinal materials and provides different levels of data interaction applications. The platform is the first large-scale multi-dimensional database and visual platform of Dao-di medicinal materials in Sichuan province, which serves as an essential resource for germplasm resources identification, decomposition of biosynthetic pathways, molecular breeding of varieties and provides medicinal plant resource information and data support for development and utilization of medicinal plants in China and abroad.


Subject(s)
Computational Biology , Databases, Factual , Plants, Medicinal , Plants, Medicinal/chemistry , Plants, Medicinal/genetics , Plants, Medicinal/growth & development , China , Drugs, Chinese Herbal , Medicine, Chinese Traditional
8.
Small ; 19(50): e2304430, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37616511

ABSTRACT

BiCuSeO oxyselenides possess a highlighted thermoelectric performance among oxides, which originates from their intrinsically low thermal conductivity. However, intrinsic factors causing low thermal transport are also detrimental to carrier transport, leading to ultralow carrier mobility and relatively low electrical transport properties. Here, high-conductivity single-wall carbon nanotubes (SWCNTs) are adopted as the charge channels to be embedded in a BiCuSeO-based matrix, providing a transport pathway for charge carriers. The results show that carrier mobility is increased to 188 cm2 V-1 s-1 due to the SWCNTs composited, triggering an enhancement in electrical transport properties. Besides, the SWCNTs embedded in the matrix introduce abundant interfaces, suppressing phonon transport and depressing lattice thermal conductivity. With these achievements, a maximum zT of 0.84 at 818 K is realized in the composite with 0.1 wt% SWCNTs. The mechanical property of the composites is strengthened as well because of the SWCNTs. The work indicates that the SWCNTs, as the charge channels, propose an effective approach for enhancing carrier mobility in BiCuSeO-based materials, finally optimizing the thermoelectric performance as well as the mechanical property.

9.
Environ Res ; 216(Pt 2): 114613, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36272597

ABSTRACT

Notable warming trends have been observed in the Arctic, with tropospheric aerosols being one of the key drivers. Here the seasonal cycles of three-dimensional (3D) distributions of aerosol extinction coefficients (AECs) and frequency of occurrences (FoOs) for different aerosol subtypes in the troposphere over the Arctic from 2007 to 2019 are characterized capitalizing on Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) Level-3 gridded aerosol profile product. Seasonal contributions of total and type-dependent aerosols through their partitioning within the planetary boundary layer (PBL) and free troposphere (FT) are also quantified utilizing the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) PBL height data. The results show substantial seasonal and geographical dependence in the distribution of aerosols over the Arctic. Sulfate, black carbon (BC), and organic carbon (OC) contribute most of the total AEC, with Eurasia being the largest contributor. The vertical structure of AECs and FoOs over the Arctic demonstrates that the vertical influence of aerosols is higher in eastern Siberia and North America than in northern Eurasia and its coasts. When the total aerosol optical depth (TAOD) is partitioned into the PBL and FT, results indicate that the contributions of TAOD within the FT tend to be more significant, especially in summer, with the FT contributes 64.2% and 69.2% of TAOD over the lower (i.e., 60° N-70° N) and high (i.e., north of 70° N) Arctic, respectively. Additionally, seasonal trend analyses suggest Arctic TAOD exhibits a multi-year negative trend in winter, spring, and autumn and a positive trend in summer during 2007-2019, due to an overall decrease in sulfate from weakened anthropogenic emissions and a significant increase in BC and OC from enhanced biomass burning activities. Overall, this study has potential implications for understanding the seasonal cycles and trends in Arctic aerosols.


Subject(s)
Air Pollutants , Air Pollutants/analysis , Seasons , Retrospective Studies , Environmental Monitoring/methods , Aerosols/analysis , Soot/analysis , Carbon , Sulfates
10.
Proc Natl Acad Sci U S A ; 117(49): 31078-31087, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33229538

ABSTRACT

Telomerase is a ribonucleoprotein complex that counteracts the shortening of chromosome ends due to incomplete replication. Telomerase contains a catalytic core of telomerase reverse transcriptase (TERT) and telomerase RNA (TER). However, what defines TERT and separates it from other reverse transcriptases remains a subject of debate. A recent cryoelectron microscopy map of Tetrahymena telomerase revealed the structure of a previously uncharacterized TERT domain (TRAP) with unanticipated interactions with the telomerase essential N-terminal (TEN) domain and roles in telomerase activity. Both TEN and TRAP are absent in the putative Tribolium TERT that has been used as a model for telomerase for over a decade. To investigate the conservation of TRAP and TEN across species, we performed multiple sequence alignments and statistical coupling analysis on all identified TERTs and find that TEN and TRAP have coevolved as telomerase-specific domains. Integrating the data from bioinformatic analysis and the structure of Tetrahymena telomerase, we built a pseudoatomic model of human telomerase catalytic core that accounts for almost all of the cryoelectron microscopy density in a published map, including TRAP in previously unassigned density as well as telomerase RNA domains essential for activity. This more complete model of the human telomerase catalytic core illustrates how domains of TER and TERT, including the TEN-TRAP complex, can interact in a conserved manner to regulate telomere synthesis.


Subject(s)
RNA/ultrastructure , Telomerase/ultrastructure , Tetrahymena thermophila/ultrastructure , Animals , Binding Sites , Catalytic Domain/genetics , Cryoelectron Microscopy , Humans , Protein Binding , Protein Conformation , Protein Domains/genetics , RNA/genetics , Sequence Alignment , Shelterin Complex , Structural Homology, Protein , Telomerase/genetics , Telomere-Binding Proteins , Tetrahymena thermophila/enzymology , Tribolium/enzymology
11.
Nano Lett ; 22(6): 2261-2269, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35234042

ABSTRACT

Mechanochromic structural-colored materials have promising applications in various domains. In this Letter, we report three types of reversible mechanochromisms in simple material systems by harnessing mechano-responsive wrinkling dynamics including (i) brightness mechanochromism (BM), (ii) hue change mechanochromism (HCM), and (iii) viewable angle mechanochromism (VAM). Upon stretching, the BM device exhibits almost a constant hue but reduces light brightness due to the postbuckling mechanics-controlled deformation, while the HCM device can change the hue from blue to red with almost constant intensity because of the linear elastic mechanics-controlled deformation. The VAM device shows a constant hue because of the thin film interference effect. However, the viewable angles decrease with increasing applied strain owing to the light scattering of wrinkles. All of the mechanochromic behaviors exhibit good reversibility and durability. We clearly elucidated the underlying mechanisms for different mechanochromisms and demonstrated their potential applications in smart displays, stretchable strain sensors, and antipeeping/anticounterfeiting devices.

12.
Nano Lett ; 22(16): 6637-6646, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35931465

ABSTRACT

Metal film-based stretchable strain sensors hold great promise for applications in various domains, which require superior sensitivity-stretchability-cyclic stability synergy. However, the sensitivity-stretchability trade-off has been a long-standing dilemma and the metal film-based strain sensors usually suffer from weak cyclic durability, both of which significantly limit their practical applications. Here, we propose an extremely facile, low-cost and spontaneous strategy that incorporates topological gradients in metal film-based strain sensors, composed of intrinsic (grain size and interface) and extrinsic (film thickness and wrinkle) microstructures. The topological gradient strain sensor exhibits an ultrawide stretchability of 100% while simultaneously maintaining a high sensitivity at an optimal topological gradient of 4.5, due to the topological gradients-induced multistage film cracking. Additionally, it possesses a decent cyclic stability for >10 000 cycles between 0 and 40% strain enabled by the gradient-mixed metal/elastomer interfaces. It can monitor the full-range human activities from subtle pulse signals to vigorous joint movements.


Subject(s)
Wearable Electronic Devices , Elastomers/chemistry , Humans , Metals , Monitoring, Physiologic
13.
Environ Res ; 208: 112672, 2022 05 15.
Article in English | MEDLINE | ID: mdl-34999028

ABSTRACT

Regional transport is a key source of carbonaceous aerosol in many Chinese megacities including Beijing. The sources of carbonaceous aerosol in urban areas have been studied extensively but are poorly known in upwind rural areas. This work aims to quantify the contributions of fossil and non-fossil fuel emissions to carbonaceous aerosols at a rural site in North China Plain in winter 2016. We integrated online high resolution-time of flight-aerosol mass spectrometer (HR-TOF-AMS) observations and radiocarbon (14C) measurements of fine particles with Positive Matrix Factorization (PMF) analysis as well as Extended Gelencsér (EG) method. We found that fine particle concentration is much higher at the rural site than in Beijing during the campaign (Dec 7, 2016 to Jan 8, 2017). PMF analysis of the AMS data showed that coal-combustion related organic aerosol (CCOA + Oxidized CCOA) and more oxidized oxygenated organic aerosol (MO-OOA) contributed 48% and 30% of organic matter to non-refractory PM1 (NR-PM1) mass. About 2/3 of the OC and EC were from fossil-fuel combustion. The EG method, combining AMS-PMF and 14C data, showed that primary and secondary OC from fossil fuel contribute 35% and 22% to total carbon (TC), coal combustion emission dominates the fossil fuel sources, and biomass burning accounted for 21% of carbonaceous aerosol. In summary, our results confirm that fossil fuel combustion was the dominant source of carbonaceous aerosol during heavy pollution events in the rural areas. Significant emissions of solid fuel carbonaceous aerosols at rural areas can affect air quality in downwind cities such as Beijing and Tianjin, highlighting the benefits of energy transition from solid fuels to cleaner energy in rural areas.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols/analysis , Air Pollutants/analysis , Carbon/analysis , China , Environmental Monitoring/methods , Fossil Fuels , Fossils , Particulate Matter/analysis , Seasons
14.
Nat Chem Biol ; 15(2): 132-140, 2019 02.
Article in English | MEDLINE | ID: mdl-30559425

ABSTRACT

Among RNA 5'-cap structures, γ-phosphate monomethylation is unique to a small subset of noncoding RNAs, 7SK and U6 in humans. 7SK is capped by methylphosphate capping enzyme (MePCE), which has a second nonenzymatic role as a core component of the 7SK ribonuclear protein (RNP), an essential regulator of RNA transcription. We report 2.0- and 2.1-ŠX-ray crystal structures of the human MePCE methyltransferase domain bound to S-adenosylhomocysteine (SAH) and uncapped or capped 7SK substrates, respectively. 7SK recognition is achieved by protein contacts to a 5'-hairpin-single-stranded RNA region, thus explaining MePCE's specificity for 7SK and U6. The structures reveal SAH and product RNA in a near-transition-state geometry. Unexpectedly, binding experiments showed that MePCE has higher affinity for capped versus uncapped 7SK, and kinetic data support a model of slow product release. This work reveals the molecular mechanism of methyl transfer and 7SK retention by MePCE for subsequent assembly of 7SK RNP.


Subject(s)
Methyltransferases/metabolism , Methyltransferases/ultrastructure , HeLa Cells , Humans , Methylation , Organophosphates/metabolism , Phosphates , RNA Caps , RNA, Long Noncoding/metabolism , RNA, Small Nuclear/metabolism , RNA, Untranslated , S-Adenosylhomocysteine/metabolism
15.
Mol Pharm ; 18(12): 4310-4321, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34761934

ABSTRACT

The introduction of solubilizing additives has historically been an attractive approach to address the ever-growing proportion of poorly water-soluble drug (PWSD) compounds within the modern drug discovery pipeline. Lipid-formulations, and more specifically micelle formulations, have garnered particular interest because of their simplicity, size, scalability, and avoidance of solid-state limitations. Although micelle formulations have been widely utilized, the molecular mechanism of drug solubilization in surfactant micelles is still poorly understood. In this study, a series of modern nuclear magnetic resonance (NMR) methods are utilized to gain a molecular-level understanding of intermolecular interactions and kinetics in a model system. This approach enabled the understanding of how a PWSD, 17ß-Estradiol (E2), solubilizes within a nonionic micelle system composed of polysorbate 80 (PS80). Based on one-dimensional (1D) 1H chemical shift differences of E2 in PS80 solutions, as well as intermolecular correlations established from 1D selective nuclear Overhauser effect (NOE) and two-dimensional NOE spectroscopy experiments, E2 was found to accumulate within the palisade layer of PS80 micelles. A potential hydrogen-bonding interaction between a hydroxyl group of E2 and a carbonyl group of PS80 alkane chains may allow for stabilizing E2-PS80 mixed micelles. Diffusion and relaxation NMR analysis and particle size measurements using dynamic light scattering indicate a slight increase in the micellar size with increasing degrees of supersaturation, resulting in slower mobility of the drug molecule. Based on these structural findings, a theoretical orientation model of E2 molecules with PS80 molecules was developed and validated by computational docking simulations.


Subject(s)
Estradiol/chemistry , Magnetic Resonance Spectroscopy/methods , Polysorbates/chemistry , Crystallization , Micelles , Molecular Docking Simulation , Particle Size , Solubility
16.
Atmos Environ (1994) ; 244: 117986, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33052190

ABSTRACT

The Yangtze-Huaihe (YH) region experiences heavy aerosol pollution, characterized by high PM2.5 concentration. To unravel the pollutant evolution mechanism during the heavy pollution episodes (HPEs), this study combined observational data analysis and three-dimensional WRF-Chem simulations. From December 2, 2016 to January 15, 2017, YH region experienced 4 HPEs under the control by synoptic system, normally associated with a transport stage (TS) and a cumulative stage (CS). During the TS, pollutants are transported to the north of YH region through the near-surface, and then transported to the "mountain corridor" through the residual layer (RL) under the influence of prevailing wind. For the RL transport mechanism, the change of pollutant concentration cannot only consider the net flux in the horizontal direction, but also the role of the vertical movement is extremely important and cannot be ignored. By analyzing the mass conservation equation of pollutant, the results show that the advection transport and turbulent diffusion have a synergistic effect on the change of pollutant in the CS of three HPEs. The change of turbulence characteristics also affected by topography. For the "mountain corridors", which is accompanied by variable wind direction and turbulence diffusion is easily affected by wind shear. In addition, the turbulence characteristics are different during the TS and CS, especially the strong stable conditions in the CS at nighttime. The turbulence is intermittent, and the model has insufficient performance for turbulence, which will lead to differences for the simulation of pollutant concentration. In short, as the PM2.5 concentration linearly increases, the friction velocity (turbulent diffusion coefficient) decreases 63% (80%), 61% (78%) and 45% (68%), respectively. Therefore, the change of pollutants is less sensitive to the change of turbulence during the HPEs. The contribution of regional transport (local emissions) reaches 43% (47%), thus we need pay attention to the contribution of each part during the HPEs, which will help us to build a certain foundation for the emission reduction work in the future.

17.
Environ Sci Technol ; 54(3): 1344-1352, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31766848

ABSTRACT

The Beijing government implemented a number of clean air action plans to improve air quality in the last 10 years, which contributed to changes in the concentration of fine particles and their compositions. However, quantifying the impacts of these interventions is challenging as meteorology masks the real changes in observed concentrations. Here, we applied a machine learning technique to decouple the effect of meteorology and evaluate the changes in the chemistry of nonrefractory PM1 (particulate matter less than 1 µm) in winter 2007, 2016, and 2017 as a result of the clean air actions. The observed mass concentrations of PM1 were 74.6, 90.2, and 36.1 µg m-3 in the three winters, while the deweathered concentrations were 74.2, 78.7, and 46.3 µg m-3, respectively. The deweathered concentrations of PM1, organics, sulfate, ammonium, chloride, SO2, NO2, and CO decreased by -38, -46, -59, -24, -51, -89, -16, and -52% in 2017 in comparison to 2007. On the contrary, the deweathered concentration of nitrates increased by 4%. Our results indicate that the clean air actions implemented in 2017 were highly effective in reducing ambient concentrations of SO2, CO, and PM1 organics, sulfate, ammonium, and chloride, but the control of nitrate and PM1 organics remains a major challenge.


Subject(s)
Air Pollutants , Air Pollution , Beijing , China , Environmental Monitoring , Particle Size , Particulate Matter
18.
BMC Med Inform Decis Mak ; 20(1): 64, 2020 04 06.
Article in English | MEDLINE | ID: mdl-32252745

ABSTRACT

BACKGROUND: In this study, we focus on building a fine-grained entity annotation corpus with the corresponding annotation guideline of traditional Chinese medicine (TCM) clinical records. Our aim is to provide a basis for the fine-grained corpus construction of TCM clinical records in future. METHODS: We developed a four-step approach that is suitable for the construction of TCM medical records in our corpus. First, we determined the entity types included in this study through sample annotation. Then, we drafted a fine-grained annotation guideline by summarizing the characteristics of the dataset and referring to some existing guidelines. We iteratively updated the guidelines until the inter-annotator agreement (IAA) exceeded a Cohen's kappa value of 0.9. Comprehensive annotations were performed while keeping the IAA value above 0.9. RESULTS: We annotated the 10,197 clinical records in five rounds. Four entity categories involving 13 entity types were employed. The final fine-grained annotated entity corpus consists of 1104 entities and 67,799 tokens. The final IAAs are 0.936 on average (for three annotators), indicating that the fine-grained entity recognition corpus is of high quality. CONCLUSIONS: These results will provide a foundation for future research on corpus construction and named entity recognition tasks in the TCM clinical domain.


Subject(s)
Medicine, Chinese Traditional
19.
Proc Natl Acad Sci U S A ; 113(35): E5125-34, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27531956

ABSTRACT

Telomerase is an RNA-protein complex that includes a unique reverse transcriptase that catalyzes the addition of single-stranded telomere DNA repeats onto the 3' ends of linear chromosomes using an integral telomerase RNA (TR) template. Vertebrate TR contains the template/pseudoknot (t/PK) and CR4/5 domains required for telomerase activity in vitro. All vertebrate pseudoknots include two subdomains: P2ab (helices P2a and P2b with a 5/6-nt internal loop) and the minimal pseudoknot (P2b-P3 and associated loops). A helical extension of P2a, P2a.1, is specific to mammalian TR. Using NMR, we investigated the structures of the full-length TR pseudoknot and isolated subdomains in Oryzias latipes (Japanese medaka fish), which has the smallest vertebrate TR identified to date. We determined the solution NMR structure and studied the dynamics of medaka P2ab, and identified all base pairs and tertiary interactions in the minimal pseudoknot. Despite differences in length and sequence, the structure of medaka P2ab is more similar to human P2ab than predicted, and the medaka minimal pseudoknot has the same tertiary interactions as the human pseudoknot. Significantly, although P2a.1 is not predicted to form in teleost fish, we find that it forms in the full-length pseudoknot via an unexpected hairpin. Model structures of the subdomains are combined to generate a model of t/PK. These results provide evidence that the architecture for the vertebrate t/PK is conserved from teleost fish to human. The organization of the t/PK on telomerase reverse transcriptase for medaka and human is modeled based on the cryoEM structure of Tetrahymena telomerase, providing insight into function.


Subject(s)
Oryzias/genetics , RNA/genetics , Telomerase/genetics , Vertebrates/genetics , Animals , Base Sequence , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Mutation , Nucleic Acid Conformation , RNA/chemistry , RNA/metabolism , Telomerase/chemistry , Telomerase/metabolism
20.
Proc Natl Acad Sci U S A ; 112(12): 3624-9, 2015 Mar 24.
Article in English | MEDLINE | ID: mdl-25759439

ABSTRACT

Empirical constraints on orbital gravitational solutions for the Solar System can be derived from the Earth's geological record of past climates. Lithologically based paleoclimate data from the thick, coal-bearing, fluvial-lacustrine sequences of the Junggar Basin of Northwestern China (paleolatitude ∼60°) show that climate variability of the warm and glacier-free high latitudes of the latest Triassic-Early Jurassic (∼198-202 Ma) Pangea was strongly paced by obliquity-dominated (∼40 ky) orbital cyclicity, based on an age model using the 405-ky cycle of eccentricity. In contrast, coeval low-latitude continental climate was much more strongly paced by climatic precession, with virtually no hint of obliquity. Although this previously unknown obliquity dominance at high latitude is not necessarily unexpected in a high CO2 world, these data deviate substantially from published orbital solutions in period and amplitude for eccentricity cycles greater than 405 ky, consistent with chaotic diffusion of the Solar System. In contrast, there are indications that the Earth-Mars orbital resonance was in today's 2-to-1 ratio of eccentricity to inclination. These empirical data underscore the need for temporally comprehensive, highly reliable data, as well as new gravitational solutions fitting those data.

SELECTION OF CITATIONS
SEARCH DETAIL