Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 244
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 177(4): 1035-1049.e19, 2019 05 02.
Article in English | MEDLINE | ID: mdl-31031003

ABSTRACT

We performed the first proteogenomic study on a prospectively collected colon cancer cohort. Comparative proteomic and phosphoproteomic analysis of paired tumor and normal adjacent tissues produced a catalog of colon cancer-associated proteins and phosphosites, including known and putative new biomarkers, drug targets, and cancer/testis antigens. Proteogenomic integration not only prioritized genomically inferred targets, such as copy-number drivers and mutation-derived neoantigens, but also yielded novel findings. Phosphoproteomics data associated Rb phosphorylation with increased proliferation and decreased apoptosis in colon cancer, which explains why this classical tumor suppressor is amplified in colon tumors and suggests a rationale for targeting Rb phosphorylation in colon cancer. Proteomics identified an association between decreased CD8 T cell infiltration and increased glycolysis in microsatellite instability-high (MSI-H) tumors, suggesting glycolysis as a potential target to overcome the resistance of MSI-H tumors to immune checkpoint blockade. Proteogenomics presents new avenues for biological discoveries and therapeutic development.


Subject(s)
Colonic Neoplasms/genetics , Colonic Neoplasms/therapy , Proteogenomics/methods , Apoptosis/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , CD8-Positive T-Lymphocytes , Cell Proliferation/genetics , Colonic Neoplasms/metabolism , Genomics/methods , Glycolysis , Humans , Microsatellite Instability , Mutation , Phosphorylation , Prospective Studies , Proteomics/methods , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism
2.
Proc Natl Acad Sci U S A ; 120(24): e2300189120, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37285393

ABSTRACT

Using millions of observations compiled from the public administrative data of Taiwan, we find a surprising gender inequity in terms of real estate: Men own more land than women, and the annual rate of return (ROR) of men's land outperform women's by almost 1% per year. The latter finding of gender-based ROR difference is in sharp contrast to prior evidence that women outperform men in security investment, and also suggests a quantity-and-quality double jeopardy in female land ownership which, given the heavy weight of real estate in individual wealth, has important implications for wealth inequality among men and women. Our statistical analyses suggest that such a gender-based difference in land ROR cannot be attributed to individual-level factors such as liquidity preferences, risk attitudes, investment experience, and behavioral biases, as described in the literature. Rather, we hypothesize parental gender bias-a phenomenon that is still prevalent today-to be the key macrolevel factor. To test our hypothesis, we partition our observations into two groups: an experimental group in which parents can exercise gender discretion, and a control group in which parents cannot exercise such discretion. Our empirical evidence shows that the gender difference with respect to land ROR only exists in the experimental group. For many societies with long-lasting patriarchal traditions, our analysis provides a perspective to help explain gender differences in wealth distribution and social mobility.


Subject(s)
Ownership , Sexism , Humans , Female , Male , Sex Factors , Men , Investments
3.
Brain ; 147(4): 1497-1510, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-37988283

ABSTRACT

Females are disproportionately affected by dementia due to Alzheimer's disease. Despite a similar amyloid-ß (Aß) load, a higher load of neurofibrillary tangles (NFTs) is seen in females than males. Previous literature has proposed that Aß and phosphorylated-tau (p-tau) synergism accelerates tau tangle formation, yet the effect of biological sex in this process has been overlooked. In this observational study, we examined longitudinal neuroimaging data from the TRIAD and ADNI cohorts from Canada and USA, respectively. We assessed 457 participants across the clinical spectrum of Alzheimer's disease. All participants underwent baseline multimodal imaging assessment, including MRI and PET, with radioligands targeting Aß plaques and tau tangles, respectively. CSF data were also collected. Follow-up imaging assessments were conducted at 1- and 2-year intervals for the TRIAD cohort and 1-, 2- and 4-year intervals for the ADNI cohort. The upstream pathological events contributing to faster tau progression in females were investigated-specifically, whether the contribution of Aß and p-tau synergism to accelerated tau tangle formation is modulated by biological sex. We hypothesized that cortical Aß predisposes tau phosphorylation and tangle accumulation in a sex-specific manner. Findings revealed that Aß-positive females presented higher CSF p-tau181 concentrations compared with Aß-positive males in both the TRIAD (P = 0.04, Cohen's d = 0.51) and ADNI (P = 0.027, Cohen's d = 0.41) cohorts. In addition, Aß-positive females presented faster NFT accumulation compared with their male counterparts (TRIAD: P = 0.026, Cohen's d = 0.52; ADNI: P = 0.049, Cohen's d = 1.14). Finally, the triple interaction between female sex, Aß and CSF p-tau181 was revealed as a significant predictor of accelerated tau accumulation at the 2-year follow-up visit (Braak I: P = 0.0067, t = 2.81; Braak III: P = 0.017, t = 2.45; Braak IV: P = 0.002, t = 3.17; Braak V: P = 0.006, t = 2.88; Braak VI: P = 0.0049, t = 2.93). Overall, we report sex-specific modulation of cortical Aß in tau phosphorylation, consequently facilitating faster NFT progression in female individuals over time. This presents important clinical implications and suggests that early intervention that targets Aß plaques and tau phosphorylation may be a promising therapeutic strategy in females to prevent the further accumulation and spread of tau aggregates.


Subject(s)
Alzheimer Disease , Humans , Male , Female , Alzheimer Disease/pathology , Phosphorylation , Brain/pathology , tau Proteins/metabolism , Amyloid beta-Peptides/metabolism , Neurofibrillary Tangles/pathology , Plaque, Amyloid/pathology , Positron-Emission Tomography , Biomarkers/metabolism
4.
J Proteome Res ; 23(1): 386-396, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38113368

ABSTRACT

Extracellular vesicle (EV) secretion has been observed in many types of both normal and tumor cells. EVs contain a variety of distinctive cargoes, allowing tumor-derived serum proteins in EVs to act as a minimally invasive method for clinical monitoring. We have undertaken a comprehensive study of the protein content of the EVs from several cancer cell lines using direct data-independent analysis. Several thousand proteins were detected, including many classic EV markers such as CD9, CD81, CD63, TSG101, and Syndecan-1, among others. We detected many distinctive cancer-specific proteins, including several known markers used in cancer detection and monitoring. We further studied the protein content of EVs from patient serum for both normal controls and pancreatic cancer and hepatocellular carcinoma. The EVs for these studies have been isolated by various methods for comparison, including ultracentrifugation and CD9 immunoaffinity column. Typically, 500-1000 proteins were identified, where most of them overlapped with the EV proteins identified from the cell lines studied. We were able to identify many of the cell-line EV protein markers in the serum EVs, in addition to the large numbers of proteins specific to pancreatic and HCC cancers.


Subject(s)
Carcinoma, Hepatocellular , Extracellular Vesicles , Liver Neoplasms , Humans , Proteome/genetics , Proteome/metabolism , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Extracellular Vesicles/metabolism , Biomarkers/metabolism , Cell Line, Tumor
5.
Alzheimers Dement ; 20(2): 1166-1174, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37920945

ABSTRACT

INTRODUCTION: We set out to identify tau PET-positive (A+T+) individuals among amyloid-beta (Aß) positive participants using plasma biomarkers. METHODS: In this cross-sectional study we assessed 234 participants across the AD continuum who were evaluated by amyloid PET with [18 F]AZD4694 and tau-PET with [18 F]MK6240 and measured plasma levels of total tau, pTau-181, pTau-217, pTau-231, and N-terminal tau (NTA-tau). We evaluated the performances of plasma biomarkers to predict tau positivity in Aß+ individuals. RESULTS: Highest associations with tau positivity in Aß+ individuals were found for plasma pTau-217 (AUC [CI95% ] = 0.89 [0.82, 0.96]) and NTA-tau (AUC [CI95% ] = 0.88 [0.91, 0.95]). Combining pTau-217 and NTA-tau resulted in the strongest agreement (Cohen's Kappa = 0.74, CI95%  = 0.57/0.90, sensitivity = 92%, specificity = 81%) with PET for classifying tau positivity. DISCUSSION: The potential for identifying tau accumulation in later Braak stages will be useful for patient stratification and prognostication in treatment trials and in clinical practice. HIGHLIGHTS: We found that in a cohort without pre-selection pTau-181, pTau-217, and NTA-tau showed the highest association with tau PET positivity. We found that in Aß+ individuals pTau-217 and NTA-tau showed the highest association with tau PET positivity. Combining pTau-217 and NTA-tau resulted in the strongest agreement with the tau PET-based classification.


Subject(s)
Alzheimer Disease , Humans , tau Proteins , Cross-Sectional Studies , Amyloid beta-Peptides , Biomarkers , Positron-Emission Tomography
6.
Curr Opin Neurol ; 36(5): 481-490, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37639461

ABSTRACT

PURPOSE OF REVIEW: The purpose is to review the latest advances of brain imaging for the diagnosis of Alzheimer disease (AD). RECENT FINDINGS: Brain imaging techniques provide valuable and complementary information to support the diagnosis of Alzheimer disease in clinical and research settings. The recent FDA accelerated approvals of aducanumab, lecanemab and donanemab made amyloid-PET critical in helping determine the optimal window for anti-amyloid therapeutic interventions. Tau-PET, on the other hand, is considered of key importance for the tracking of disease progression and for monitoring therapeutic interventions in clinical trials. PET imaging for microglial activation, astrocyte reactivity and synaptic degeneration are still new techniques only used in the research field, and more studies are needed to validate their use in the clinical diagnosis of AD. Finally, artificial intelligence has opened new prospective in the early detection of AD using MRI modalities. SUMMARY: Brain imaging techniques using PET improve our understanding of the different AD-related pathologies and their relationship with each other along the course of disease. With more robust validation, machine learning and deep learning algorithms could be integrated with neuroimaging modalities to serve as valuable tools for clinicians to make early diagnosis and prognosis of AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnostic imaging , Artificial Intelligence , Prospective Studies , Brain/diagnostic imaging , Neuroimaging
7.
J Neuroinflammation ; 20(1): 278, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38001539

ABSTRACT

INTRODUCTION: Synaptic loss is closely associated with tau aggregation and microglia activation in later stages of Alzheimer's disease (AD). However, synaptic damage happens early in AD at the very early stages of tau accumulation. It remains unclear whether microglia activation independently causes synaptic cleavage before tau aggregation appears. METHODS: We investigated 104 participants across the AD continuum by measuring 14-3-3 zeta/delta ([Formula: see text]) as a cerebrospinal fluid biomarker for synaptic degradation, and fluid and imaging biomarkers of tau, amyloidosis, astrogliosis, neurodegeneration, and inflammation. We performed correlation analyses in cognitively unimpaired and impaired participants and used structural equation models to estimate the impact of microglia activation on synaptic injury in different disease stages. RESULTS: 14-3-3 [Formula: see text] was increased in participants with amyloid pathology at the early stages of tau aggregation before hippocampal volume loss was detectable. 14-3-3 [Formula: see text] correlated with amyloidosis and tau load in all participants but only with biomarkers of neurodegeneration and memory deficits in cognitively unimpaired participants. This early synaptic damage was independently mediated by sTREM2. At later disease stages, tau and astrogliosis additionally mediated synaptic loss. CONCLUSIONS: Our results advertise that sTREM2 is mediating synaptic injury at the early stages of tau accumulation, underlining the importance of microglia activation for AD disease propagation.


Subject(s)
Alzheimer Disease , Amyloidosis , Humans , Alzheimer Disease/pathology , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Gliosis , tau Proteins/metabolism , 14-3-3 Proteins
8.
Plant Biotechnol J ; 21(1): 14-16, 2023 01.
Article in English | MEDLINE | ID: mdl-36221906

ABSTRACT

PoDPBT, an O-benzoyltransferase belonging to the BAHD family, can catalyze the benzoylation of 8-debenzoylpaeoniflorin to paeoniflorin. PoDPBT is the first enzyme demonstrated to be involved in the modification stage of paeoniflorin biosynthesis. DFGGG, a new DFGWG-like motif, was revealed in the BAHD family. The transcriptome database provides a resource for further investigation of other enzyme genes involved in paeoniflorin biosynthesis.


Subject(s)
Paeonia , Paeonia/genetics , Acyltransferases/genetics , Monoterpenes , Catalysis
9.
Mol Psychiatry ; 27(11): 4781-4789, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35948658

ABSTRACT

Astrocytes can adopt multiple molecular phenotypes in the brain of Alzheimer's disease (AD) patients. Here, we studied the associations of cerebrospinal fluid (CSF) glial fibrillary acidic protein (GFAP) and chitinase-3-like protein 1 (YKL-40) levels with brain amyloid-ß (Aß) and tau pathologies. We assessed 121 individuals across the aging and AD clinical spectrum with positron emission tomography (PET) brain imaging for Aß ([18F]AZD4694) and tau ([18F]MK-6240), as well as CSF GFAP and YKL-40 measures. We observed that higher CSF GFAP levels were associated with elevated Aß-PET but not tau-PET load. By contrast, higher CSF YKL-40 levels were associated with elevated tau-PET but not Aß-PET burden. Structural equation modeling revealed that CSF GFAP and YKL-40 mediate the effects of Aß and tau, respectively, on hippocampal atrophy, which was further associated with cognitive impairment. Our results suggest the existence of distinct astrocyte biomarker signatures in response to brain Aß and tau accumulation, which may contribute to our understanding of the complex link between reactive astrogliosis heterogeneity and AD progression.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Biomarkers/cerebrospinal fluid , Cognitive Dysfunction/pathology , Positron-Emission Tomography/methods , tau Proteins/cerebrospinal fluid
10.
Pharmacol Res ; 194: 106835, 2023 08.
Article in English | MEDLINE | ID: mdl-37348691

ABSTRACT

Maintaining mitochondrial homeostasis is a potential therapeutic strategy for various diseases, including neurodegenerative diseases, cardiovascular diseases, metabolic disorders, and cancer. Selective degradation of mitochondria by autophagy (mitophagy) is a fundamental mitochondrial quality control mechanism conserved from yeast to humans. Indeed, small-molecule modulators of mitophagy are valuable pharmaceutical tools that can be used to dissect complex biological processes and turn them into potential drugs. In the past few years, pharmacological regulation of mitophagy has shown promising therapeutic efficacy in various disease models. However, with the increasing number of chemical mitophagy modulator studies, frequent methodological flaws can be observed, leading some studies to draw unreliable or misleading conclusions. This review attempts (a) to summarize the molecular mechanisms of mitophagy; (b) to propose a Mitophagy Modulator Characterization System (MMCS); (c) to perform a comprehensive analysis of methods used to characterize mitophagy modulators, covering publications over the past 20 years; (d) to provide novel targets for pharmacological intervention of mitophagy. We believe this review will provide a panorama of current research on chemical mitophagy modulators and promote the development of safe and robust mitophagy modulators with therapeutic potential by introducing high methodological standards.


Subject(s)
Cardiovascular Diseases , Neoplasms , Humans , Mitophagy , Autophagy , Mitochondria/metabolism , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism
11.
Biogerontology ; 24(4): 581-592, 2023 08.
Article in English | MEDLINE | ID: mdl-37052773

ABSTRACT

There is growing evidence that extracellular vesicles (EVs) play a functional role in tissue repair and anti-aging by transferring the contents of donor cells to recipient cells. We hypothesized that Dauer (C. elegans), known as "ageless" nematodes, can also secrete extracellular vesicles and influence the lifespan of C. elegans. Here, we isolated EVs of dauer larvae (dauer EVs). Dauer EVs were characterized using transmission electron microscopy, nanoparticle tracking analysis (NTA), and Western blot analysis. Wild-type C. elegans were fed in the presence or absence of dauer EVs and tested for a range of phenotypes, including longevity, mobility and reproductive capacity. Results showed that dauer EVs increased the average lifespan of nematodes by 15.74%, improved mobility, slowed age-related pigmentation as well as body length, and reduced the accumulation of reactive oxygen species and lipids, while not impairing nematode reproductive capacity. These findings suggest that dauer EVs can extend the lifespan of C. elegans as well as the healthy lifespan by reducing ROS accumulation, with potential anti-aging capacity.


Subject(s)
Caenorhabditis elegans Proteins , Extracellular Vesicles , Animals , Caenorhabditis elegans/genetics , Larva , Aging , Caenorhabditis elegans Proteins/genetics , Longevity/genetics
12.
Nucleic Acids Res ; 49(2): 805-817, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33410907

ABSTRACT

Pin1 is a peptidyl-prolyl isomerase that regulates the structure and function of eukaryotic RNA polymerase II (Pol II) through interaction with the C-terminal domain (CTD) of Rpb1, the largest subunit of Pol II. We demonstrated that this function is important for cellular response to oxidative stress in the fission yeast Schizosaccharomyces pombe. In response to oxidative stress, the Atf1 transcription factor targets Sty1, the mitogen-activated protein kinase (MAPK), to specific stress-responsive promoters. Anchored Sty1 recruits Pol II through direct association with Rpb1-CTD and phosphorylates the reiterated heptad sequence at Serine 5. Pin1 binds phosphorylated CTD to promote dissociation of Sty1 from it, and directly recruits Ssu72 phosphatase to facilitate dephosphorylation of CTD for transcription elongation. In the absence of Pin1, the association of Sty1-Atf1 with Rpb1 persists on stress-responsive promoters failed to generate transcripts of the corresponding genes effectively. The identified characteristic features of the fission yeast Pin1 are conserved in humans. We demonstrated that elevated Pin1 level in cancer cells might help to sustain survival under oxidative stress generated from their altered metabolic pathways. Together, these results suggest a conserved function of Pin1 in cellular response to oxidative stress among eukaryotic cells that might have clinical implication.


Subject(s)
Gene Expression Regulation, Fungal , Mitogen-Activated Protein Kinases/metabolism , NIMA-Interacting Peptidylprolyl Isomerase/physiology , Oxidative Stress/genetics , Phosphoprotein Phosphatases/metabolism , RNA Polymerase II/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , Chromatin Immunoprecipitation , Phosphorylation , Protein Binding , Protein Interaction Mapping , Protein Processing, Post-Translational , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Reactive Oxygen Species , Real-Time Polymerase Chain Reaction , Recombinant Proteins/metabolism , Schizosaccharomyces/genetics , Transcription, Genetic
13.
Alzheimers Dement ; 19(11): 4967-4977, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37078495

ABSTRACT

INTRODUCTION: Plasma biomarkers are promising tools for Alzheimer's disease (AD) diagnosis, but comparisons with more established biomarkers are needed. METHODS: We assessed the diagnostic performance of p-tau181 , p-tau217 , and p-tau231 in plasma and CSF in 174 individuals evaluated by dementia specialists and assessed with amyloid-PET and tau-PET. Receiver operating characteristic (ROC) analyses assessed the performance of plasma and CSF biomarkers to identify amyloid-PET and tau-PET positivity. RESULTS: Plasma p-tau biomarkers had lower dynamic ranges and effect sizes compared to CSF p-tau. Plasma p-tau181 (AUC = 76%) and p-tau231 (AUC = 82%) assessments performed inferior to CSF p-tau181 (AUC = 87%) and p-tau231 (AUC = 95%) for amyloid-PET positivity. However, plasma p-tau217 (AUC = 91%) had diagnostic performance indistinguishable from CSF (AUC = 94%) for amyloid-PET positivity. DISCUSSION: Plasma and CSF p-tau217 had equivalent diagnostic performance for biomarker-defined AD. Our results suggest that plasma p-tau217 may help reduce the need for invasive lumbar punctures without compromising accuracy in the identification of AD. HIGHLIGHTS: p-tau217 in plasma performed equivalent to p-tau217 in CSF for the diagnosis of AD, suggesting the increased accessibility of plasma p-tau217 is not offset by lower accuracy. p-tau biomarkers in plasma had lower mean fold-changes between amyloid-PET negative and positive groups than p-tau biomarkers in CSF. CSF p-tau biomarkers had greater effect sizes than plasma p-tau biomarkers when differentiating between amyloid-PET positive and negative groups. Plasma p-tau181 and plasma p-tau231 performed worse than p-tau181 and p-tau231 in CSF for AD diagnosis.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnosis , Spinal Puncture , Amyloidogenic Proteins , Plasma , Biomarkers , tau Proteins , Amyloid beta-Peptides
14.
Biochem Biophys Res Commun ; 595: 54-61, 2022 03 05.
Article in English | MEDLINE | ID: mdl-35101664

ABSTRACT

The therapeutic effect of CAR-T is often accompanied by sCRS, which is the main obstacle to the promotion of CAR-T therapy. The JAK1/2 inhibitor ruxolitinib has recently been confirmed as clinically effective in maintaining control over sCRS, however, its mechanism remains unclear. In this study, we firstly revealed that ruxolitinib significantly inhibited the proliferation of CAR-T cells without damaging viability, and induced an efficacy-favored differentiation phenotype. Second, ruxolitinib reduced the level of cytokine release not only from CAR-T cells, but also from other cells in the immune system. Third, the cytolytic activity of CAR-T cells was restored once the ruxolitinib was removed; however, the cytokines released from the CAR-T cells maintained an inhibited state to some degree. Finally, ruxolitinib significantly reduced the proliferation rate of CAR-T cells in vivo without affecting the therapeutic efficacy after withdrawal at the appropriate dose. We demonstrated pre-clinically that ruxolitinib interferes with both CAR-T cells and the other immune cells that play an important role in triggering sCRS reactions. This work provides useful and important scientific data for clinicians on the question of whether ruxolitinib has an effect on CAR-T cell function loss causing CAR-T treatment failure when applied in the treatment of sCRS, the answer to which is of great clinical significance.


Subject(s)
Cell Proliferation/drug effects , Cytokine Release Syndrome/prevention & control , Nitriles/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/drug effects , Animals , Burkitt Lymphoma/complications , Burkitt Lymphoma/therapy , Cell Line, Tumor , Cell Survival/drug effects , Combined Modality Therapy , Cytokine Release Syndrome/complications , Humans , Immunotherapy, Adoptive/methods , Janus Kinase Inhibitors/pharmacology , Male , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Survival Analysis , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Xenograft Model Antitumor Assays/methods
15.
Eur J Neurol ; 29(5): 1324-1334, 2022 05.
Article in English | MEDLINE | ID: mdl-35007366

ABSTRACT

BACKGROUND AND PURPOSE: Abnormal mitochondrial metabolism has been described in the Alzheimer's disease (AD) brain. However, the relationship between AD pathophysiology and key mitochondrial processes remains elusive. The purpose of this study was to investigate whether mitochondrial complex I dysfunction is associated with amyloid aggregation or glucose metabolism and brain atrophy in patients with mild AD using positron emission tomography (PET). METHODS: Amyloid- and tau-positive symptomatic AD patients with clinical dementia rating 0.5 or 1 (N = 30; mean age ± standard deviation: 71.8 ± 7.6 years) underwent magnetic resonance imaging and PET scans with [18 F]2-tert-butyl-4-chloro-5-2H-pyridazin-3-one (BCPP-EF), [11 C]Pittsburgh Compound-B (PiB) and [18 F]fluorodeoxyglucose (FDG) to assess brain atrophy, mitochondrial complex I dysfunction, amyloid deposition, and glucose metabolism, respectively. Local cortical associations among these biomarkers and gray matter volume were evaluated with voxel-based regressions models. RESULTS: [18 F]BCPP-EF standardized uptake value ratio (SUVR) was positively correlated with [18 F]FDG SUVR in the widespread brain area, while its associations with gray matter volume were restricted to the parahippocampal gyrus. Reductions in [18 F]BCPP-EF SUVR were associated with domain-specific cognitive performance. We did not observe regional associations between mitochondrial dysfunction and amyloid burden. CONCLUSIONS: In symptomatic cases, although mitochondrial complex I reduction is linked to a wide range of downstream neurodegenerative processes such as hypometabolism, atrophy, and cognitive decline, a link to amyloid was not observable. The data presented here support [18 F]BCPP-EF as an excellent imaging tool to investigate mitochondrial dysfunction in AD.


Subject(s)
Alzheimer Disease , Amyloidosis , Cognitive Dysfunction , Alzheimer Disease/complications , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Amyloidosis/metabolism , Aniline Compounds , Atrophy , Brain/diagnostic imaging , Brain/metabolism , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Fluorodeoxyglucose F18/metabolism , Glucose/metabolism , Humans , Positron-Emission Tomography/methods
16.
Molecules ; 27(12)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35745070

ABSTRACT

Our previous findings have shown that the chlorophyllides composites have anticancer activities to breast cancer cell lines (MCF-7 and MDA-MB-231). In the present study, microarray gene expression profiling was utilized to investigate the chlorophyllides anticancer mechanism on the breast cancer cells lines. Results showed that chlorophyllides composites induced upregulation of 43 and 56 differentially expressed genes (DEG) in MCF-7 and MDA-MB-231 cells, respectively. In both cell lines, chlorophyllides composites modulated the expression of annexin A4 (ANXA4), chemokine C-C motif receptor 1 (CCR1), stromal interaction molecule 2 (STIM2), ethanolamine kinase 1 (ETNK1) and member of RAS oncogene family (RAP2B). Further, the KEGG annotation revealed that chlorophyllides composites modulated DEGs that are associated with the endocrine system in MCF-7 cells and with the nervous system in MDA-MB-231 cells, respectively. The expression levels of 9 genes were validated by quantitative reverse transcription PCR (RT-qPCR). The expression of CCR1, STIM2, ETNK1, MAGl1 and TOP2A were upregulated in both chlorophyllides composites treated-MCF-7 and MDA-MB-231 cells. The different expression of NLRC5, SLC7A7 and PKN1 provided valuable information for future investigation and development of novel cancer therapy.


Subject(s)
Breast Neoplasms , Chlorophyllides , Amino Acid Transport System y+L , Breast , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Line, Tumor , Early Detection of Cancer , Female , Humans , Intracellular Signaling Peptides and Proteins , MCF-7 Cells , rap GTP-Binding Proteins
17.
Anal Chem ; 93(48): 16059-16067, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34793122

ABSTRACT

Exosomes are a promising noninvasive tumor biomarker for cancer diagnosis and classification. However, efficient capture and precise analysis of exosomes in complex biological samples remain challenging. Here, sensitive profiling of exosomes with an integrated separation-detection strategy of 37 min is performed based on boronic acid-directed coupling immunoaffinity. The modification of g-C3N4 nanosheets with boronic acid (BCNNS) contributes to antibody binding under physiological conditions, which is accompanied by fluorescence enhancement. When exosomes are captured by an antibody equipped with BCNNS, a decrease in fluorescence can be induced; moreover, using the dispersion property of BCNNS, the exosomes can be separated by a simple centrifugation step. The protocol shows a favorable sensitivity with a detection limit of 2484 particles/mL. By changing only the fused antibody, exosome phenotype information profiling can be achieved, and exosomes derived from four different cell lines (HeLa, HepG2, MCF-7, and MCF-10A) can be successfully distinguished. More significantly, the positive prediction accuracy results reach 100% for serum samples from different individuals and have the advantage of multiple parameters; thus, the method has great potential in noninvasive diagnosis and point-of-care testing.


Subject(s)
Exosomes , Biomarkers, Tumor , Boronic Acids , HeLa Cells , Humans
18.
Analyst ; 146(3): 1016-1022, 2021 Feb 07.
Article in English | MEDLINE | ID: mdl-33295353

ABSTRACT

In recent years, α-glucosidase inhibitors (AGIs) have played a significant role in the treatment of type II diabetes (T2D), so it is necessary to develop a reliable and sensitive method to find new AGIs. Herein, we establish a novel method based on fluorescent carbon nitride nanoparticles (CNNPs) for the sensitive detection of the activity of α-glucosidase (α-glu) and the screening of its inhibitors. A CNNP-based fluorescent probe is synthesized from green raw materials, urea and lysine, by a one-pot method. In the presence of α-glu, the substrate 4-nitrophenyl-α-d-glucopyranoside (pNPG) is hydrolyzed to generate 4-nitrophenol (pNP), leading to the fluorescence (FL) quenching of CNNPs due to the inner filter effect (IFE). On the other hand, the activity of α-glu is inhibited after the addition of AGIs, which turns on the FL of CNNPs. In this way, the detection of α-glu activity and the screening of AGIs are achieved. The linear range is 1.25-10.00 U L-1 with a limit of detection as low as 0.17 U L-1 and the IC50 values of two typical inhibitors (gallic acid and acarbose) are 813 µM and 465 µM, respectively. The CNNP probe is further applied for the determination of α-glu activity in human serum samples with satisfactory results.


Subject(s)
Diabetes Mellitus, Type 2 , Nanoparticles , Carbon , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/drug therapy , Fluorescent Dyes , Humans , Nitriles , alpha-Glucosidases
19.
J Nat Prod ; 84(4): 1175-1184, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33760626

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) has become increasingly problematic around the world, not only for its hazards to livestock but also due to the possibility that it is a zoonotic disease. Although vaccine therapy has made some progress toward PEDV control, additional effective therapeutic strategies against PEDV are needed, such as the development of chemotherapeutic agents. The aim of this work was to identify novel anti-PEDV agents by designing and synthesizing a series of phenanthridine derivatives. Among them, three compounds (compounds 1, 2, and 4) were identified as potent anti-PEDV agents exhibiting suppression of host cell heat shock cognate 70 (Hsc70) expression. Mechanism studies revealed that host Hsc70 is involved in the replication of PEDV, and its expression can be suppressed by destabilization of the mRNA, resulting in inhibition of PEDV replication. Activity against PEDV in vivo in PEDV-infected piglets suggested that phenanthridine derivatives are the first host-acting potential anti-PEDV agents.


Subject(s)
Antiviral Agents/pharmacology , HSC70 Heat-Shock Proteins/metabolism , Phenanthridines/pharmacology , Porcine epidemic diarrhea virus/drug effects , Animals , Antiviral Agents/chemical synthesis , Cell Line , Coronavirus Infections/drug therapy , Coronavirus Infections/veterinary , Drug Design , Molecular Structure , Phenanthridines/chemical synthesis , Swine
20.
Int Urogynecol J ; 32(4): 879-884, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32601781

ABSTRACT

INTRODUCTION AND HYPOTHESIS: The objective was to investigate the long-term efficacy and patient satisfaction of Le Fort colpocleisis for the treatment of severe pelvic organ prolapse. METHODS: This was a retrospective study of patients who underwent Le Fort colpocleisis from January 2007 to August 2018 in our hospital. Follow-up was conducted via outpatient visits or the telephone. Records were reviewed for anatomical recurrence, complications, urinary and intestinal symptoms post-operation, reoperation rate, patient satisfaction, Patient Global Impression of Improvement (PGI-I) score, regret rate etc. RESULTS: A total of 208 patients underwent follow-up. The follow-up time was 60.7 ± 34.18 (12-140) months. There were no intraoperative complications. Postoperative urinary retention occurred in 3.8% of patients (8 out of 208). There was no anatomical recurrence. New or more severe urinary symptoms occurred in 8.7% of patients (18 out of 208); new or more severe intestinal symptoms occurred in 1.9% of patients (4 out of 208). The reoperation rate was 1.44% (3 out of 208). Three cases of reoperation occurred for the following reasons: a case of severe stress urinary incontinence, a case of abscess in the vaginal septum, and a case of uterine malignancy after 2 years of colpocleisis. Patient satisfaction was as follows: 98.6% (205 out of 208) of patients were very satisfied. The PGI-I score was very much improved or improved in 99.5% (207 out of 208) of patients. A total of 0.96% (2 out of 208) of patients regretted undergoing colpocleisis. CONCLUSIONS: The long-term follow-up results showed that Le Fort colpocleisis was a safe and effective surgical procedure associated with high satisfaction. There was a very low regret rate, but the procedure should be taken seriously.


Subject(s)
Patient Satisfaction , Pelvic Organ Prolapse , Female , Gynecologic Surgical Procedures/adverse effects , Humans , Pelvic Organ Prolapse/surgery , Retrospective Studies , Treatment Outcome , Vagina/surgery
SELECTION OF CITATIONS
SEARCH DETAIL