Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 587
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Hum Genet ; 109(3): 533-541, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35148830

ABSTRACT

Recent studies indicate that CGG repeat expansions in LRP12, GIPC1, and NOTCH2NLC are associated with oculopharyngodistal myopathy (OPDM) types 1, 2, and 3, respectively. However, some clinicopathologically confirmed OPDM cases continue to have unknown genetic causes. Here, through a combination of long-read whole-genome sequencing (LRS), repeat-primed polymerase chain reaction (RP-PCR), and fluorescence amplicon length analysis PCR (AL-PCR), we found that a CGG repeat expansion in the 5' UTR of RILPL1 is associated with familial and simplex OPDM type 4 (OPDM4). The number of repeats ranged from 139 to 197. Methylation analysis indicates that the methylation levels in RILPL1 were unaltered in OPDM4 individuals. Analyses of muscle biopsies suggested that the expanded CGG repeat might be translated into a toxic poly-glycine protein that co-localizes with p62 in intranuclear inclusions. Moreover, analyses suggest that the toxic RNA gain-of-function effects also contributed to the pathogenesis of this disease. Intriguingly, all four types of OPDM have been found to be associated with the CGG repeat expansions located in 5' UTRs. This finding suggests that a common pathogenic mechanism, driven by the CGG repeat expansion, might underlie all cases of OPDM.


Subject(s)
Muscular Dystrophies , Trinucleotide Repeat Expansion , 5' Untranslated Regions , Adaptor Proteins, Signal Transducing , Humans , Intranuclear Inclusion Bodies/genetics , Muscular Dystrophies/genetics , Trinucleotide Repeat Expansion/genetics
2.
Ann Neurol ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39192489

ABSTRACT

OBJECTIVE: The transcriptional heterogeneity at a single-nucleus level in human Becker muscular dystrophy (BMD) dystrophic muscle has not been explored. Here, we aimed to understand the transcriptional heterogeneity associated with myonuclei, as well as other mononucleated cell types that underly BMD pathogenesis by performing single-nucleus RNA sequencing. METHODS: We profiled single-nucleus transcriptional profiles of skeletal muscle samples from 7 BMD patients and 3 normal controls. RESULTS: A total of 17,216 nuclei (12,879 from BMD patients and 4,337 from controls) were classified into 13 known cell types, including 9 myogenic lineages and 4 non-myogenic lineages, and 1 unclassified nuclear type according to their cell identities. Among them, type IIx myonuclei were the first to degenerate in response to dystrophin reduction. Differential expression analysis revealed that the fibro-adipogenic progenitors (FAPs) population had the largest transcriptional changes among all cell types. Sub-clustering analysis identified a significantly compositional increase in the activated FAPs (aFAPs) subpopulation in BMD muscles. Pseudotime analysis, regulon inference, and deconvolution analysis of bulk RNA-sequencing data derived from 29 BMD patients revealed that the aFAPs subpopulation, a distinctive and previously unrecognized mononuclear subtype, was profibrogenic and expanded in BMD patients. Muscle quantitative real-time polymerase chain reaction and immunofluorescence analysis confirmed that the mRNA and protein levels of the aFAPs markers including LUM, DCN, and COL1A1 in BMD patients were significantly higher than those in controls, respectively. INTERPRETATION: Our results provide insights into the transcriptional diversity of human BMD muscle at a single-nucleus resolution and new potential targets for anti-fibrosis therapies in BMD. ANN NEUROL 2024.

3.
Nat Chem Biol ; 19(4): 468-477, 2023 04.
Article in English | MEDLINE | ID: mdl-36635564

ABSTRACT

Membrane dynamics are important to the integrity and function of mitochondria. Defective mitochondrial fusion underlies the pathogenesis of multiple diseases. The ability to target fusion highlights the potential to fight life-threatening conditions. Here we report a small molecule agonist, S89, that specifically promotes mitochondrial fusion by targeting endogenous MFN1. S89 interacts directly with a loop region in the helix bundle 2 domain of MFN1 to stimulate GTP hydrolysis and vesicle fusion. GTP loading or competition by S89 dislodges the loop from the GTPase domain and unlocks the molecule. S89 restores mitochondrial and cellular defects caused by mitochondrial DNA mutations, oxidative stress inducer paraquat, ferroptosis inducer RSL3 or CMT2A-causing mutations by boosting endogenous MFN1. Strikingly, S89 effectively eliminates ischemia/reperfusion (I/R)-induced mitochondrial damage and protects mouse heart from I/R injury. These results reveal the priming mechanism for MFNs and provide a therapeutic strategy for mitochondrial diseases when additional mitochondrial fusion is beneficial.


Subject(s)
Mitochondrial Dynamics , Mitochondrial Membrane Transport Proteins , Mice , Animals , Mitochondrial Membrane Transport Proteins/analysis , Mitochondrial Membrane Transport Proteins/chemistry , Mitochondrial Membrane Transport Proteins/genetics , Mitochondria , Hydrolysis , Guanosine Triphosphate/analysis , Guanosine Triphosphate/pharmacology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/analysis , Mitochondrial Proteins/pharmacology
4.
FASEB J ; 38(12): e23742, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38865203

ABSTRACT

Mitochondrial disease is a devastating genetic disorder, with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) and m.3243A>G being the most common phenotype and genotype, respectively. The treatment for MELAS patients is still less effective. Here, we performed transcriptomic and proteomic analysis in muscle tissue of MELAS patients, and discovered that the expression of molecules involved in serine catabolism were significantly upregulated, and serine hydroxymethyltransferase 2 (SHMT2) increased significantly in both the mRNA and protein levels. The SHMT2 protein level was also increased in myoblasts with m.3243A>G mutation, which was transdifferentiated from patients derived fibroblasts, accompanying with the decreased nicotinamide adenine dinucleotide (NAD+)/reduced NAD+ (NADH) ratio and cell viability. After treating with SHMT2 inhibitor (SHIN1), the NAD+/NADH ratio and cell viability in MELAS myoblasts increased significantly. Taken together, our study indicates that enhanced serine catabolism plays an important role in the pathogenesis of MELAS and that SHIN1 can be a potential small molecule for the treatment of this disease.


Subject(s)
Glycine Hydroxymethyltransferase , MELAS Syndrome , Serine , Humans , MELAS Syndrome/metabolism , MELAS Syndrome/genetics , MELAS Syndrome/pathology , Glycine Hydroxymethyltransferase/metabolism , Glycine Hydroxymethyltransferase/genetics , Serine/metabolism , Myoblasts/metabolism , NAD/metabolism , Male , Proteomics/methods , Female , Transcriptome , Multiomics
5.
J Med Genet ; 61(4): 340-346, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-37923380

ABSTRACT

BACKGROUND: Oculopharyngodistal myopathy (OPDM) is a rare adult-onset neuromuscular disease, associated with CGG repeat expansions in the 5' untranslated region of LRP12, GIPC1, NOTCH2NLC and RILPL1. However, the genetic cause of a proportion of pathoclinically confirmed cases remains unknown. METHODS: A total of 26 OPDM patients with unknown genetic cause(s) from 4 tertiary referral hospitals were included in this study. Clinical data and laboratory findings were collected. Muscle samples were observed by histological and immunofluorescent staining. Long-read sequencing was initially conducted in six patients with OPDM. Repeat-primed PCR was used to screen the CGG repeat expansions in LOC642361/NUTM2B-AS1 in all 26 patients. RESULTS: We identified CGG repeat expansion in the non-coding transcripts of LOC642361/NUTM2B-AS1 in another two unrelated Chinese cases with typical pathoclinical features of OPDM. The repeat expansion was more than 70 times in the patients but less than 40 times in the normal controls. Both patients showed no leucoencephalopathy but one showed mild cognitive impairment detected by Montreal Cognitive Assessment. Rimmed vacuoles and p62-positive intranuclear inclusions (INIs) were identified in muscle pathology, and colocalisation of CGG RNA foci with p62 was also found in the INIs of patient-derived fibroblasts. CONCLUSIONS: We identified another two unrelated cases with CGG repeat expansion in the long non-coding RNA of the LOC642361/NUTM2B-AS1 gene, presenting with a phenotype of OPDM. Our cases broadened the recognised phenotypic spectrum and pathogenesis in the disease associated with CGG repeat expansion in LOC642361/NUTM2B-AS1.


Subject(s)
Muscular Dystrophies , Adult , Humans , Muscular Dystrophies/genetics , Phenotype , Intranuclear Inclusion Bodies/genetics , Trinucleotide Repeat Expansion/genetics
6.
J Med Genet ; 61(7): 626-632, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38413182

ABSTRACT

BACKGROUND: Congenital myopathies are a clinical, histopathological and genetic heterogeneous group of inherited muscle disorders that are defined on peculiar architectural abnormalities in the muscle fibres. Although there have been at least 33 different genetic causes of the disease, a significant percentage of congenital myopathies remain genetically unresolved. The present study aimed to report a novel TUBA4A variant in two unrelated Chinese patients with sporadic congenital myopathy. METHODS: A comprehensive strategy combining laser capture microdissection, proteomics and whole-exome sequencing was performed to identify the candidate genes. In addition, the available clinical data, myopathological changes, the findings of electrophysiological examinations and thigh muscle MRIs were also reviewed. A cellular model was established to assess the pathogenicity of the TUBA4A variant. RESULTS: We identified a recurrent novel heterozygous de novo c.679C>T (p.L227F) variant in the TUBA4A (NM_006000), encoding tubulin alpha-4A, in two unrelated patients with clinicopathologically diagnosed sporadic congenital myopathy. The prominent myopathological changes in both patients were muscle fibres with focal myofibrillar disorganisation and rimmed vacuoles. Immunofluorescence showed ubiquitin-positive TUBA4A protein aggregates in the muscle fibres with rimmed vacuoles. Overexpression of the L227F mutant TUBA4A resulted in cytoplasmic aggregates which colocalised with ubiquitin in cellular model. CONCLUSION: Our findings expanded the phenotypic and genetic manifestations of TUBA4A as well as tubulinopathies, and added a new type of congenital myopathy to be taken into consideration in the differential diagnosis.


Subject(s)
Myopathies, Structural, Congenital , Tubulin , Adult , Female , Humans , Male , Exome Sequencing , Muscle, Skeletal/pathology , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/metabolism , Mutation , Myofibrils/pathology , Myofibrils/genetics , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/pathology , Myotonia Congenita/genetics , Myotonia Congenita/pathology , Pedigree , Tubulin/genetics
7.
Proc Natl Acad Sci U S A ; 119(41): e2208649119, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36191230

ABSTRACT

Neuronal intranuclear inclusion disease (NIID) is a neuromuscular/neurodegenerative disease caused by the expansion of CGG repeats in the 5' untranslated region (UTR) of the NOTCH2NLC gene. These repeats can be translated into a polyglycine-containing protein, uN2CpolyG, which forms protein inclusions and is toxic in cell models, albeit through an unknown mechanism. Here, we established a transgenic Drosophila model expressing uN2CpolyG in multiple systems, which resulted in progressive neuronal cell loss, locomotor deficiency, and shortened lifespan. Interestingly, electron microscopy revealed mitochondrial swelling both in transgenic flies and in muscle biopsies of individuals with NIID. Immunofluorescence and immunoelectron microscopy showed colocalization of uN2CpolyG with mitochondria in cell and patient samples, while biochemical analysis revealed that uN2CpolyG interacted with a mitochondrial RNA binding protein, LRPPRC (leucine-rich pentatricopeptide repeat motif-containing protein). Furthermore, RNA sequencing (RNA-seq) analysis and functional assays showed down-regulated mitochondrial oxidative phosphorylation in uN2CpolyG-expressing flies and NIID muscle biopsies. Finally, idebenone treatment restored mitochondrial function and alleviated neurodegenerative phenotypes in transgenic flies. Overall, these results indicate that transgenic flies expressing uN2CpolyG recapitulate key features of NIID and that reversing mitochondrial dysfunction might provide a potential therapeutic approach for this disorder.


Subject(s)
Drosophila , Neurodegenerative Diseases , 5' Untranslated Regions , Animals , Animals, Genetically Modified , Drosophila/genetics , Intranuclear Inclusion Bodies/genetics , Intranuclear Inclusion Bodies/pathology , Leucine/genetics , Mitochondria/genetics , Mitochondria/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , RNA-Binding Proteins/genetics , Trinucleotide Repeat Expansion/genetics
8.
Neurobiol Dis ; 190: 106391, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38145851

ABSTRACT

CGG repeat expansion in NOTCH2NLC is the genetic cause of neuronal intranuclear inclusion disease (NIID). Previous studies indicated that the CGG repeats can be translated into polyglycine protein (N2CpolyG) which was toxic to neurons by forming intranuclear inclusions (IIs). However, little is known about the factors governing polyG IIs formation as well as its molecular pathogenesis. Considering that neurogenetic disorders usually involve interactions between genetic and environmental stresses, we investigated the effect of stress on the formation of IIs. Our results revealed that under hyperosmotic stress, N2CpolyG translocated from the cytoplasm to the nucleus and formed IIs in SH-SY5Y cells, recapitulating the pathological hallmark of NIID patients. Furthermore, N2CpolyG interacted/ co-localized with an RNA-binding protein FUS in the IIs of cellular model and NIID patient tissues, thereby disrupting stress granule formation in cytoplasm under hyperosmotic stress. Consequently, dysregulated expression of microRNAs was found both in NIID patients and cellular model, which could be restored by FUS overexpression in cultured cells. Overall, our findings indicate a mechanism of stress-induced pathological changes as well as neuronal damage, and a potential strategy for the treatment of NIID.


Subject(s)
Neuroblastoma , Neurodegenerative Diseases , Humans , Intranuclear Inclusion Bodies/genetics , Intranuclear Inclusion Bodies/metabolism , Intranuclear Inclusion Bodies/pathology , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism , Neuroblastoma/pathology , Neurodegenerative Diseases/metabolism
9.
J Transl Med ; 22(1): 686, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39061062

ABSTRACT

BACKGROUND: During the prolonged period from Human Papillomavirus (HPV) infection to cervical cancer development, Low-Grade Squamous Intraepithelial Lesion (LSIL) stage provides a critical opportunity for cervical cancer prevention, giving the high potential for reversal in this stage. However, there is few research and a lack of clear guidelines on appropriate intervention strategies at this stage, underscoring the need for real-time prognostic predictions and personalized treatments to promote lesion reversal. METHODS: We have established a prospective cohort. Since 2018, we have been collecting clinical data and pathological images of HPV-infected patients, followed by tracking the progression of their cervical lesions. In constructing our predictive models, we applied logistic regression and six machine learning models, evaluating each model's predictive performance using metrics such as the Area Under the Curve (AUC). We also employed the SHAP method for interpretative analysis of the prediction results. Additionally, the model identifies key factors influencing the progression of the lesions. RESULTS: Model comparisons highlighted the superior performance of Random Forests (RF) and Support Vector Machines (SVM), both in clinical parameter and pathological image-based predictions. Notably, the RF model, which integrates pathological images and clinical multi-parameters, achieved the highest AUC of 0.866. Another significant finding was the substantial impact of sleep quality on the spontaneous clearance of HPV and regression of LSIL. CONCLUSIONS: In contrast to current cervical cancer prediction models, our model's prognostic capabilities extend to the spontaneous regression stage of cervical cancer. This model aids clinicians in real-time monitoring of lesions and in developing personalized treatment or follow-up plans by assessing individual risk factors, thus fostering lesion spontaneous reversal and aiding in cervical cancer prevention and reduction.


Subject(s)
Precancerous Conditions , Precision Medicine , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/virology , Precancerous Conditions/pathology , Precancerous Conditions/virology , Adult , Machine Learning , Middle Aged , Disease Progression , Models, Biological
10.
Article in English | MEDLINE | ID: mdl-39110532

ABSTRACT

OBJECTIVES: Dermatomyositis (DM) is a rare type I interferon (IFN-I)-driven autoimmune disease, and anti-nuclear matrix protein 2 (NXP2) antibody is related to severe muscle disease and poor prognosis. Circulating cell-free DNA (ccf-DNA), including ccf-mitochondrial DNA and ccf-nuclear DNA, activates cGAS/STING pathway to induce IFN-I production in autoimmune diseases. We investigated whether serum-derived ccf-DNA played a pathogenic role on skeletal muscle in anti-NXP2 antibody-positive DM. METHODS: Serum ccf-DNA levels were measured, and correlations between ccf-DNA and clinicopathological indicators were performed. RNA sequencing, immunofluorescence, western blotting and RT-qPCR were performed on skeletal muscle samples. The serum-induced expression of p-STING in C2C12 cells was assessed in vitro. RESULTS: We found that increased ccf-DNA levels were positively correlated with MYOACT scores in anti-NXP2 antibody-positive DM. RNA sequencing and immunofluorescence results revealed that the cytosolic DNA-sensing pathway was upregulated and that increased cytosolic dsDNA was colocalised with cGAS in skeletal muscle in anti-NXP2 antibody-positive DM. Western blot analysis revealed activation of the cGAS/STING pathway in patients with perifascicular atrophy (PFA) but not in patients without PFA. RT-qPCR showed increased IFN-I scores in both patients with PFA and patients without PFA. Sera from patients with PFA increased p-STING expression in C2C12 cells, and DNase I treatment and STING inhibitor efficiently inhibited p-STING expression, respectively. CONCLUSIONS: Increased ccf-DNA levels may be potential biomarkers for monitoring disease activity in anti-NXP2 antibody-positive DM. Activation of the cGAS/STING pathway is associated with PFA. Our findings identify the pathogenic role of ccf-DNA on skeletal muscle via the cGAS/STING pathway.

11.
Clin Genet ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39118480

ABSTRACT

Mitochondrial diseases (MtDs) present diverse clinical phenotypes, yet large-scale studies are hindered by their rarity. This retrospective, multicenter study, conducted across five Chinese hospitals' neurology departments from 2009 to 2019, aimed to address this gap. Nationwide, 1351 patients were enrolled, with a median onset age of 14.0 (18.5) years. The predominant phenotype was mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) (45.0%). Mitochondrial DNA (mtDNA) mutations were prevalent (87.4%), with m.3243A>G being the most common locus (48.7%). Meanwhile, POLG mutations in nuclear DNA (nDNA) accounted for 16.5%. Comparative analysis based on age groups (with a cut-off at 14 years) revealed the highest prevalence of MELAS, with Leigh syndrome (LS) and chronic progressive external ophthalmoplegia (CPEO) being the second most common phenotypes in junior and senior groups, respectively. Notably, the most commonly mutated nuclear genes varied across age groups. In conclusion, MELAS predominated in this Chinese MtD cohort, underscored by m.3243A>G and POLG as principal mtDNA mutations and pathogenic nuclear genes. The phenotypic and genotypic disparities observed among different age cohorts highlight the complex nature of MtDs.

12.
J Biomed Sci ; 31(1): 63, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877495

ABSTRACT

Within the intricate tapestry of molecular research, noncoding RNAs (ncRNAs) were historically overshadowed by a pervasive presumption of their inability to encode proteins or peptides. However, groundbreaking revelations have challenged this notion, unveiling select ncRNAs that surprisingly encode peptides specifically those nearing a succinct 100 amino acids. At the forefront of this epiphany stand lncRNAs and circRNAs, distinctively characterized by their embedded small open reading frames (sORFs). Increasing evidence has revealed different functions and mechanisms of peptides/proteins encoded by ncRNAs in cancer, including promotion or inhibition of cancer cell proliferation, cellular metabolism (glucose metabolism and lipid metabolism), and promotion or concerted metastasis of cancer cells. The discoveries not only accentuate the depth of ncRNA functionality but also open novel avenues for oncological research and therapeutic innovations. The main difficulties in the study of these ncRNA-derived peptides hinge crucially on precise peptide detection and sORFs identification. Here, we illuminate cutting-edge methodologies, essential instrumentation, and dedicated databases tailored for unearthing sORFs and peptides. In addition, we also conclude the potential of clinical applications in cancer therapy.


Subject(s)
Neoplasms , Peptides , RNA, Untranslated , Humans , Neoplasms/genetics , Neoplasms/metabolism , RNA, Untranslated/genetics , Peptides/genetics , Peptides/metabolism , Open Reading Frames
13.
Cell Commun Signal ; 22(1): 201, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566083

ABSTRACT

Lung cancer is a deeply malignant tumor with high incidence and mortality. Despite the rapid development of diagnosis and treatment technology, abundant patients with lung cancer are still inevitably faced with recurrence and metastasis, contributing to death. Lymphatic metastasis is the first step of distant metastasis and an important prognostic indicator of non-small cell lung cancer. Tumor-induced lymphangiogenesis is involved in the construction of the tumor microenvironment, except promoting malignant proliferation and metastasis of tumor cells, it also plays a crucial role in individual response to treatment, especially immunotherapy. Thus, this article reviews the current research status of lymphatic metastasis in non-small cell lung cancer, in order to provide some insights for the basic research and clinical and translational application in this field.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Lymphatic Vessels , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Lymphatic Metastasis/pathology , Lymphangiogenesis/physiology , Lymphatic Vessels/metabolism , Lymphatic Vessels/pathology , Tumor Microenvironment
14.
Cell Commun Signal ; 22(1): 343, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907279

ABSTRACT

Mitochondria are central to endothelial cell activation and angiogenesis, with the RNA polymerase mitochondrial (POLRMT) serving as a key protein in regulating mitochondrial transcription and oxidative phosphorylation. In our study, we examined the impact of POLRMT on angiogenesis and found that its silencing or knockout (KO) in human umbilical vein endothelial cells (HUVECs) and other endothelial cells resulted in robust anti-angiogenic effects, impeding cell proliferation, migration, and capillary tube formation. Depletion of POLRMT led to impaired mitochondrial function, characterized by mitochondrial depolarization, oxidative stress, lipid oxidation, DNA damage, and reduced ATP production, along with significant apoptosis activation. Conversely, overexpressing POLRMT promoted angiogenic activity in the endothelial cells. In vivo experiments demonstrated that endothelial knockdown of POLRMT, by intravitreous injection of endothelial specific POLRMT shRNA adeno-associated virus, inhibited retinal angiogenesis. In addition, inhibiting POLRMT with a first-in-class inhibitor IMT1 exerted significant anti-angiogenic impact in vitro and in vivo. Significantly elevated expression of POLRMT was observed in the retinal tissues of streptozotocin-induced diabetic retinopathy (DR) mice. POLRMT endothelial knockdown inhibited pathological retinal angiogenesis and mitigated retinal ganglion cell (RGC) degeneration in DR mice. At last, POLRMT expression exhibited a substantial increase in the retinal proliferative membrane tissues of human DR patients. These findings collectively establish the indispensable role of POLRMT in angiogenesis, both in vitro and in vivo.


Subject(s)
DNA-Directed RNA Polymerases , Human Umbilical Vein Endothelial Cells , Mitochondria , Humans , Animals , Mice , Mitochondria/metabolism , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/genetics , Diabetic Retinopathy/pathology , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/genetics , Mice, Inbred C57BL , Cell Proliferation , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Male , Neovascularization, Physiologic/genetics , Cell Movement , Apoptosis , Angiogenesis
15.
Muscle Nerve ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39044557

ABSTRACT

INTRODUCTION/AIMS: Oculopharyngodistal myopathy type 4 (OPDM4) arises from a CGG repeat expansion in the 5' UTR of the RILPL1 gene. Reported cases of OPDM4 have been limited. The aim of this study was to investigate the clinical and myopathological characteristics of OPDM4 patients with advanced disease. METHODS: We assessed a total of 8 affected and 12 unaffected individuals in an OPDM4 family with autosomal dominant inheritance. Muscle biopsy tissue from the proband underwent histological, enzyme histochemical, and immunohistochemical stains, and electron microscopy analysis. Whole exome sequencing and repeat primer PCR (RP-PCR) were conducted to investigate underlying variants. RESULTS: OPDM4 patients displayed a progressive disease course. Most experienced lower limb weakness and diminished walking ability in their 20s and 30s, followed by ptosis, ophthalmoplegia, swallowing difficulties, and dysarthria in their 30s to 50s, By their 50s to 70s, they became non-ambulatory. Muscle magnetic resonance imaging (MRI) of the proband in advanced disease revealed severe fatty infiltration of pelvic girdle and lower limb muscles. Biopsied muscle tissue exhibited advanced changes typified by adipose connective tissue replacement and the presence of multiple eosinophilic and p62-positive intranuclear inclusions. Immunopositivity for the intranuclear inclusions was observed with anti-glycine antibody and laboratory-made polyA-R1 antibody. RP-PCR unveiled an abnormal CGG repeat expansion in the 5' UTR of the RILPL1 gene. DISCUSSION: The clinical and radiological features in this family broaden the phenotypic spectrum of OPDM4. The presence of intranuclear inclusions in the proliferative adipose connective tissues of muscle biopsy specimens holds diagnostic significance for OPDM4 in advanced disease.

16.
BMC Neurol ; 24(1): 64, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360588

ABSTRACT

BACKGROUND: Vast economic and healthcare status discrepancies exist among regions in China, contributing to different treatment patterns. This study was aimed to investigate the current status of pharmacotherapy for acute ischemic stroke (AIS) and outcomes in China and explore the geographic variation in stroke care. METHODS: This study was a multicenter prospective registry study, which collected the data of patients with AIS from 80 hospitals in 46 cities in 2015-2017 across China. Poor functional outcome defined as a modified Rankin Scale score of 3-6 was assessed at 3 and 12 months. Multivariate logistic regression was used. RESULTS: Among 9973 eligible patients, the number of receiving intravenous thrombolysis (IVT), antiplatelet agents, anticoagulants, statin and human urinary kallidinogenase was 429 (4.3%), 9363 (93.9%), 1063 (10.7%), 6828 (74.7%) and 5112 (51.2%), respectively. Multivariable analysis showed IVT use in northeastern was significantly more frequent than in eastern region (OR = 3.17, 95% CI, 2.53-3.99), while the antiplatelets agents use were less frequent (OR = 0.46, 95%CI: 0.38-0.57). The proportions of poor outcomes at 3 and 12 months were 20.7% and 15.8%, respectively. Multivariate analysis showed AIS patients from northeastern and central region had significantly lower risk of poor outcome at month 3 and 12 than those from eastern region (all P < 0.05). CONCLUSIONS: There was a low IVT use and a high antiplatelet agent and statin use for AIS in China. The pharmacotherapy and prognosis of AIS had variation by geographic region. TRIAL REGISTRATION: This study was registered with ClinicalTrials.gov (NCT02470624).


Subject(s)
Brain Ischemia , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Ischemic Stroke , Stroke , Humans , Brain Ischemia/drug therapy , Brain Ischemia/epidemiology , Fibrinolytic Agents/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Ischemic Stroke/drug therapy , Platelet Aggregation Inhibitors/therapeutic use , Stroke/drug therapy , Stroke/epidemiology , Thrombolytic Therapy , Treatment Outcome , Prospective Studies
17.
Nature ; 560(7720): 661-665, 2018 08.
Article in English | MEDLINE | ID: mdl-30135584

ABSTRACT

SIRT6 acts as a longevity protein in rodents1,2. However, its biological function in primates remains largely unknown. Here we generate a SIRT6-null cynomolgus monkey (Macaca fascicularis) model using a CRISPR-Cas9-based approach. SIRT6-deficient monkeys die hours after birth and exhibit severe prenatal developmental retardation. SIRT6 loss delays neuronal differentiation by transcriptionally activating the long non-coding RNA H19 (a developmental repressor), and we were able to recapitulate this process in a human neural progenitor cell differentiation system. SIRT6 deficiency results in histone hyperacetylation at the imprinting control region of H19, CTCF recruitment and upregulation of H19. Our results suggest that SIRT6 is involved in regulating development in non-human primates, and may provide mechanistic insight into human perinatal lethality syndrome.


Subject(s)
Developmental Disabilities/genetics , Macaca fascicularis/genetics , Sirtuins/deficiency , Sirtuins/genetics , Acetylation , Animals , Animals, Newborn , Brain/cytology , Brain/embryology , CCCTC-Binding Factor/metabolism , Cell Differentiation/genetics , Female , Fetal Death , Gene Deletion , Gene Editing , Genomic Imprinting , Histones/metabolism , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Humans , Male , Muscles/cytology , Muscles/embryology , Neural Stem Cells/cytology , Neurogenesis/genetics , RNA, Long Noncoding/genetics , Sirtuins/metabolism , Transcriptome/genetics
18.
Neurol Sci ; 45(7): 3267-3275, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38372842

ABSTRACT

PURPOSE: This study aimed to assess alterations in retinal vascular density in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) patients using optical coherence tomography angiography (OCTA) and investigate their association with MRI and cognitive features. METHODS: Twenty-five patients with CADASIL and forty healthy controls were evaluated by Cirrus HD-OCT 5000 with AngioPlex OCTA to determine changes in macular retinal vasculature. Retinal vasculature parameters between two groups were compared. The MRI lesion burden and neuropsychological scales were also examined in patients. The association between OCTA parameters and MRI/cognitive features was evaluated using partial Spearman rank correlation. RESULTS: The vessel density and perfusion density of whole image in macular region (vessel density: t = - 2.834, p = 0.005; perfusion density: t = - 2.691, p = 0.007) were significantly decreased in patients with CADASIL. Moreover, vessel density of whole image in macular region was negatively associated with Fazekas scores (ρ = - 0.457; p = 0.025) and the number of lacunar infractions (ρ = - 0.425, p = 0.038) after adjustment for age. Decreased macular vessel density and perfusion density of whole image were also associated with MoCA scores (vessel density: ρ = 0.542, p = 0.006; perfusion density: ρ = 0.478, p = 0.018) and other domain-specific neuropsychological tests (p < 0.05) after adjustment for age. CONCLUSION: Decreased retinal vascular density was associated with increased MRI lesion burden and cognitive impairment in patients with CADASIL. Our findings suggest that the degree of retinal vascular involvement, as demonstrated by OCTA, may be consistent with the severity of MRI lesions and the degree of cognitive impairment in patients.


Subject(s)
CADASIL , Cognitive Dysfunction , Retinal Vessels , Tomography, Optical Coherence , Humans , CADASIL/diagnostic imaging , CADASIL/complications , CADASIL/pathology , Male , Female , Tomography, Optical Coherence/methods , Middle Aged , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/pathology , Retinal Vessels/diagnostic imaging , Retinal Vessels/pathology , Magnetic Resonance Imaging , Adult , Aged
19.
Neurol Sci ; 45(7): 2969-2976, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38652194

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) has been a great concern since 2019. Patients with myasthenia gravis (MG) may be at higher risk of COVID-19 and a more severe disease course. We examined the associations between COVID-19 and MG. METHODS: This single-center retrospective cohort study involved 134 patients who were diagnosed with MG from June 2020 to November 2022 and followed up until April 2023. They were divided into a COVID-19 group and non-COVID-19 group. Logistic regression analysis was used to detect factors potentially associating COVID-19 with MG. RESULTS: Of the 134 patients with MG, 108 (80.6%) had COVID-19. A higher number of comorbidities was significantly associated with an increased risk of COVID-19 (p = 0.040). A total of 103 patients (95.4%) had mild/moderate COVID-19 symptoms, and 4 patients (3.7%) were severe/critical symptoms (including 2 deaths). Higher age (p = 0.036), use of rituximab (p = 0.037), tumors other than thymoma (p = 0.031), Hashimoto's thyroiditis (p = 0.011), more comorbidities (p = 0.002), and a higher baseline MG activities of daily living (MG-ADL) score (p = 0.006) were risk factors for severe COVID-19 symptoms. The MG-ADL score increased by ≥ 2 points in 16 (15.7%) patients. Dry cough and/or expectoration (p = 0.011), use of oral corticosteroids (p = 0.033), and use of more than one kind of immunosuppressant (p = 0.017) were associated with the increase of the post-COVID-19 MG-ADL score. CONCLUSION: Most patients with MG have a mild course of COVID-19. However, patients with older age, many comorbidities, a high MG-ADL score, and use of a variety of immunosuppressants during COVID-19 may be more prone to severe symptoms.


Subject(s)
COVID-19 , Comorbidity , Myasthenia Gravis , Humans , Myasthenia Gravis/epidemiology , COVID-19/complications , COVID-19/epidemiology , Male , Female , Retrospective Studies , Middle Aged , China/epidemiology , Adult , Aged , SARS-CoV-2 , Risk Factors , Severity of Illness Index
20.
Neurol Sci ; 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39271635

ABSTRACT

BACKGROUND: Hereditary transthyretin amyloidosis (ATTR) is an autosomal dominant disease characterized by amyloid fibril deposition. The TTR c.148G > T mutation (V30L) in ATTR is rarely reported, and its biochemical properties are unknown. METHODS: Seven patients and two asymptomatic carriers from two unrelated families diagnosed with V30L variant of ATTR were included. Data on clinical manifestations, laboratory examination, electrophysiology, ophthalmological corneal confocal microscopy (CCM), pathology and molecular biological experiments was collected and analyzed. RESULTS: Most patients initially experienced paresthesia, with varying degrees of peripheral neuropathy, autonomic dysfunction, and cardiac involvement. Nerve conduction studies showed extensive motor and sensory nerve involvement in upper and lower limbs. CCM revealed reduced corneal nerve density and fiber length. Sural nerve biopsies indicated loss of myelinated nerve fibers, with neurogenic patterns in gastrocnemius muscle biopsies. Asymptomatic carriers had nearly normal electrophysiology but mild reductions in corneal nerve fiber density and length. Sural nerve biopsies in carriers showed mild reductions in small myelinated nerve fibers. V30L mutation impaired thermodynamic and kinetic stability of the mutant protein. Plasma TTR tetramer concentration was lower in ATTR V30L patients compared to healthy donors. Small molecule stabilizers failed to exhibit satisfactory inhibition on fibril formation of V30L mutation in vitro. CONCLUSION: This study highlights the multisystem involvement in ATTR V30L patients, including neuropathy and cardiac issues. Both patients and carriers showed abnormalities in nerve conduction, corneal microscopy, and pathology. The V30L mutation impaired protein stability and reduced plasma TTR tetramer levels. Small molecule stabilizers were ineffective, indicating a need for alternative treatments.

SELECTION OF CITATIONS
SEARCH DETAIL