Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 825
Filter
Add more filters

Publication year range
1.
Nature ; 582(7812): E13, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32461696

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nature ; 582(7812): E14, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32472016

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Nature ; 566(7745): 480-485, 2019 02.
Article in English | MEDLINE | ID: mdl-30814710

ABSTRACT

Using a recently developed formalism called topological quantum chemistry, we perform a high-throughput search of 'high-quality' materials (for which the atomic positions and structure have been measured very accurately) in the Inorganic Crystal Structure Database in order to identify new topological phases. We develop codes to compute all characters of all symmetries of 26,938 stoichiometric materials, and find 3,307 topological insulators, 4,078 topological semimetals and no fragile phases. For these 7,385 materials we provide the electronic band structure, including some electronic properties (bandgap and number of electrons), symmetry indicators, and other topological information. Our results show that more than 27 per cent of all materials in nature are topological. We provide an open-source code that checks the topology of any material and allows other researchers to reproduce our results.

4.
Nano Lett ; 24(33): 10237-10243, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39092903

ABSTRACT

The Weyl semimetals represent a distinct category of topological materials wherein the low-energy excitations appear as the long-sought Weyl Fermions. Exotic transport and optical properties are expected because of the chiral anomaly and linear energy-momentum dispersion. While three-dimensional Weyl semimetals have been successfully realized, the quest for their two-dimensional (2D) counterparts is ongoing. Here, we report the realization of 2D Weyl Fermions in monolayer PtTe1.75, which has strong spin-orbit coupling and lacks inversion symmetry, by combined angle-resolved photoemission spectroscopy, scanning tunneling microscopy, second harmonic generation, X-ray photoelectron spectroscopy measurements, and first-principles calculations. The giant Rashba splitting and band inversion lead to the emergence of three pairs of critical Weyl cones. Moreover, monolayer PtTe1.75 exhibits excellent chemical stability in ambient conditions, which is critical for future device applications. The discovery of 2D Weyl Fermions in monolayer PtTe1.75 opens up new possibilities for designing and fabricating novel spintronic devices.

5.
J Am Chem Soc ; 146(6): 3890-3899, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38294957

ABSTRACT

Topological insulators offer significant potential to revolutionize diverse fields driven by nontrivial manifestations of their topological electronic band structures. However, the realization of superior integration between exotic topological states and superconductivity for practical applications remains a challenge, necessitating a profound understanding of intricate mechanisms. Here, we report experimental observations for a novel superconducting phase in the pressurized second-order topological insulator candidate Ta2Pd3Te5, and the high-pressure phase maintains its original ambient pressure lattice symmetry up to 45 GPa. Our in situ high-pressure synchrotron X-ray diffraction, electrical transport, infrared reflectance, and Raman spectroscopy measurements, in combination with rigorous theoretical calculations, provide compelling evidence for the association between the superconducting behavior and the densified phase. The electronic state change around 20 GPa was found to modify the topology of the Fermi surface directly, which synergistically fosters the emergence of robust superconductivity. In-depth comprehension of the fascinating properties exhibited by the compressed Ta2Pd3Te5 phase is achieved, highlighting the extraordinary potential of topological insulators for exploring and investigating high-performance electronic advanced devices under extreme conditions.

6.
BMC Plant Biol ; 24(1): 844, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39251915

ABSTRACT

This study investigated the influence of different temperatures (35℃ High temperature and average indoor ambient temperature of 25℃) and lactic acid bacterial additives (Lactiplantibacillus plantarym, Lentilactobacillus buchneri, or a combination of Lactiplantibacillus plantarym and Lentilactobacillus buchneri) on the chemical composition, fermentation quality, and microbial community of alfalfa silage feed. After a 60-day ensiling period, a significant interaction between temperature and additives was observed, affecting the dry matter (DM), crude protein (CP), acid detergent fiber (ADF), and neutral detergent fiber (NDF) of the silage feed (p < 0.05). Temperature had a highly significant impact on the pH value of the silage feed (p < 0.0001). However, the effect of temperature on lactic acid, acetic acid, propionic acid, and butyric acid was not significant (p > 0.05), while the inoculation of additives had a significant effect on lactic acid, acetic acid, and butyric acid (p > 0.05). As for the dynamic changes of microbial community after silage, the addition of three kinds of bacteria increased the abundance of lactobacillus. Among all treatment groups, the treatment group using complex bacteria had the best fermentation effect, indicating that the effect of complex lactic acid bacteria was better than that of single bacteria in high temperature fermentation. In summary, this study explained the effects of different temperatures and lactic acid bacterial additives on alfalfa fermentation quality and microbial community, and improved our understanding of the mechanism of alfalfa related silage at high temperatures.


Subject(s)
Medicago sativa , Silage , Temperature , Medicago sativa/microbiology , Silage/microbiology , Fermentation , Microbiota , Lactobacillales , Lactic Acid/metabolism
7.
BMC Plant Biol ; 24(1): 555, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877393

ABSTRACT

BACKGROUND: Selenium is essential for livestock and human health. The traditional way of adding selenium to livestock diets has limitations, and there is a growing trend to provide livestock with a safe and efficient source of selenium through selenium-enriched pasture. Therefore, this study was conducted to investigate the effects of selenium enrichment on fermentation characteristics, selenium content, selenium morphology, microbial community and in vitro digestion of silage alfalfa by using unenriched (CK) and selenium-enriched (Se) alfalfa as raw material for silage. RESULTS: In this study, selenium enrichment significantly increased crude protein, soluble carbohydrate, total selenium, and organic selenium contents of alfalfa silage fresh and post-silage samples, and it significantly decreased neutral detergent fiber and acid detergent fiber contents (p < 0.05). Selenium enrichment altered the form of selenium in plants, mainly in the form of SeMet and SeMeCys, which were significantly higher than that of CK (p < 0.05). Selenium enrichment could significantly increase the lactic acid content, reduce the pH value, change the diversity of bacterial community, promote the growth of beneficial bacteria such as Lactiplantibacillus and inhibit the growth of harmful bacteria such as Pantoea, so as to improve the fermentation quality of silage. The in vitro digestibility of dry matter (IVDMD), in vitro digestibility of acid detergent fibers (IVADFD) and in vitro digestibility of acid detergent fibers (IVNDFD) of silage after selenium enrichment were significantly higher than those of CK (p < 0.05). CONCLUSION: This study showed that the presence of selenium could regulate the structure of the alfalfa silage bacterial community and improve alfalfa silage fermentation quality. Selenium enrichment measures can change the morphology of selenium in alfalfa silage products, thus promoting the conversion of organic selenium.


Subject(s)
Fermentation , Medicago sativa , Microbiota , Selenium , Silage , Medicago sativa/metabolism , Silage/analysis , Selenium/metabolism , Animals , Animal Feed/analysis
8.
J Synchrotron Radiat ; 31(Pt 2): 378-384, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38241124

ABSTRACT

An integrated computer software system for macromolecular crystallography (MX) data collection at the BL02U1 and BL10U2 beamlines of the Shanghai Synchrotron Radiation Facility is described. The system, Finback, implements a set of features designed for the automated MX beamlines, and is marked with a user-friendly web-based graphical user interface (GUI) for interactive data collection. The Finback client GUI can run on modern browsers and has been developed using several modern web technologies including WebSocket, WebGL, WebWorker and WebAssembly. Finback supports multiple concurrent sessions, so on-site and remote users can access the beamline simultaneously. Finback also cooperates with the deployed experimental data and information management system, the relevant experimental parameters and results are automatically deposited to a database.

9.
Appl Environ Microbiol ; 90(2): e0145323, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38224623

ABSTRACT

Polymetallic exposure causes complex toxicity to microorganisms. In this study, we investigated the responses of Escherichia coli under co-existence of cadmium (Cd) and lead (Pb), primarily based on biochemical analysis and RNA sequencing. Cd completely inhibited bacterial growth at a concentration of 2.41 mmol/L, with its removal rate as low as <10%. In contrast, the Pb removal rate was >95% under equimolar sole Pb stress. In addition, the Raman analysis confirmed the loss of proteins for the bacterial cells. Under the co-existence of Cd and Pb, the Cd toxicity to E. coli was alleviated. Meanwhile, the biosorption of Pb cations was more intense during the competitive sorption with Cd. Transmission electron microscopy images showed that a few cells were elongated during incubation, i.e., the average cellular length increased from 1.535 ± 0.407 to 1.845 ± 0.620 µm. Moreover, NanoSIMS imaging showed that the intracellular distribution of Cd and Pb was coupled with sulfur. Genes regulating sulfate transporter were also upregulated to promote sulfate assimilation. Then, the subsequent production of biogenic sulfide and sulfur-containing amino acids was enhanced. Although this strategy based on S enrichment could resist the polymetallic stress, not all related genes were induced to upregulate under sole Cd stress. Therefore, the S metabolism might remodel the microbial resistance to variable occurrence of heavy metals. Furthermore, the competitive sorption (in contrast to sole Cd stress) could prevent microbial cells from strong Cd toxicity.IMPORTANCEMicrobial tolerance and resistance to heavy metals have been widely studied under stress of single metals. However, the polymetallic exposure seems to prevail in the environment. Though microbial resistance can alleviate the effects of exogenous stress, the taxonomic or functional response to polymetallic exposure is still not fully understood. We determined the strong cytotoxicity of cadmium (Cd) on growth, and cell elongation would be driven by Cd stress. The addition of appropriate lead (Pb) showed a stimulating effect on microbial bioactivity. Meanwhile, the biosorption of Pb was more intense during co-existence of Pb and Cd. Our work also revealed the spatial coupling of intracellular S and Cd/Pb. In particular, the S assimilation was promoted by Pb stress. This work elucidated the microbial responses to polymetallic exposure and may provide new insights into the antagonistic function during metal stresses.


Subject(s)
Metals, Heavy , Soil Pollutants , Cadmium/metabolism , Lead , Bioaccumulation , Escherichia coli/genetics , Escherichia coli/metabolism , Metals, Heavy/analysis , Sulfur , Soil Pollutants/metabolism
10.
BMC Microbiol ; 24(1): 380, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39354359

ABSTRACT

In this experiment, alfalfa silage with different packing densities (500 kg/m3、600 kg/m3 and 700 kg/m3) was prepared under the conditions of outdoor high temperature and indoor room temperature, respectively. At the same time, the same lactobacillus additive was used for fermentation in each density treatment group. The chemical composition, fermentation quality and microbial community of alfalfa silage were analyzed. The results showed that the contents of dry matter (DM) and water-soluble carbohydrate (WSC) decreased with the increase of density during fermentation at high temperature. At the same time, when the density is 600 kg/m³, CP (crude protein) content is the highest, ADF (acid detergent fiber) content is the lowest. The contents and pH values of neutral detergent fiber (NDF), lactic acid (LA) and lactic acid bacteria (LAB) were significantly affected by temperature (p < 0.05). Density had significant effects on DM, NDF, WSC and LA contents (p < 0.05). The interaction between temperature and density had significant effects on the content of ADF and LAB (p < 0.05). At the same time, the abundance of Lactiplantibacillus plantarum in high temperature fermented silage was lower than that in normal temperature fermented feed. The number of Lactiplantibacillus plantarum in room temperature treatment group decreased with the increase of density. In summary, this study clarified the effects of different temperature and density on alfalfa fermentation quality and microbial community, and clarified that the density should be reasonably controlled within 600 kg/m³ during alfalfa silage, providing theoretical support for production practice.


Subject(s)
Fermentation , Medicago sativa , Silage , Temperature , Silage/microbiology , Silage/analysis , Medicago sativa/microbiology , Medicago sativa/chemistry , Hydrogen-Ion Concentration , Lactobacillus/metabolism , Lactic Acid/metabolism , Lactic Acid/analysis , Microbiota
11.
Opt Lett ; 49(18): 5031-5034, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39270222

ABSTRACT

Recently, it is of great significance to explore near-infrared (NIR) phosphor with more application prospects. In this work, a series of Zn2.1 Mg(0.9 - y)GaySnyTa(2 - y)O8:0.003Cr3+ NIR broadband phosphors with high quantum yields and high thermal stability are discovered by uniquely replacing [Mg2+-Ta5+] in Zn2.1Mg0.9Ta2O8 with [Ga3+-Sn4+]. Under 460 nm excitation, Zn2.1Mg0.85Ga0.05Sn0.05Ta1.95O8: 0.003Cr3+ depicts the 600-1100 nm broadband emission with a full-width at half maximum (FWHM) of 210 nm, and the quantum yields can reach 61.2%. Finally, the phosphor was mixed with epoxy resin and encapsulated in a 460 nm blue light emitting diode (LED) chip to convert the NIR LED by phosphor (NIR pc-LED), which was applied in the field of biological nondestructive testing and night vision lighting.

12.
Langmuir ; 40(29): 15031-15037, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38988010

ABSTRACT

Currently, platinum (Pt)/carbon support composite materials have tremendous application prospects in the hydrogen evolution reaction (HER). However, one of the primary challenges for boosting their performance is designing a substrate with the desired microstructure. Herein, the intact hollow carbon spheres (HCSs) were prepared via template method. Based on the morphology variation of the as-prepared HCSs-x, we conjectured that the polydopamine (PDA) core was generated first and then slowly grew into a complete overburden (SiO2@PDA). Afterward, Pt atomic clusters were anchored on the outer shells of HCSs-4 to construct composite electrocatalysts (Pty/HCSs-4) by a chemical reduction method. Due to the low charge-transfer resistance, the HCSs have a large electrochemical surface area and provide a continuous electron transport pathway, boosting the atom utilization efficiency during hydrogen production and release. The synthesized Pt2.5/HCSs-4 electrocatalysts exhibit excellent HER activity in acidic media, which can be ascribed to the compositional modulation and delicate structural design. Specifically, when the overpotential is 10 A g-1, the overpotential can achieve 92 mV. This work opens a new route to fabricate Pt-based electrocatalysts and brings a new understanding of the formation mechanism of HCSs.

13.
Langmuir ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38320286

ABSTRACT

All-inorganic perovskite solar cells (PSCs) have recently received increasing attention due to their outstanding thermal stability. However, the performance of these devices, especially for the devices with a p-i-n structure, is still inferior to that of the typical organic-inorganic counterparts. In this study, we introduce phenylammonium iodides with different side groups on the surface of the CsPbI2Br perovskite film and investigate their passivation effects. Our studies indicate that the 4-trifluoromethyl phenylammonium iodide (CFPA) molecule with the -CF3 side group effectively decreases the trap density of the perovskite film by forming interactions with the undercoordinated Pb2+ ions and significantly inhibits the nonradiative recombination in the derived PSC, leading to an enhanced open-circuit voltage (Voc) from 0.96 to 1.10 V after passivation. Also, the CFPA post-treatment enables better energy-level alignment between the conduction band minimum of CsPbI2Br perovskite and [6,6]-phenyl C61 butyric acid methyl ester, thereby enhancing the charge extraction from the perovskite to the charge transport layer. These combined benefits result in a significant enhancement of the power conversion efficiency from 11.22 to 14.37% for inverted CsPbI2Br PSCs. The device without encapsulation exhibits a degradation of only ≈4% after 1992 h in a N2 glovebox.

14.
Crit Rev Food Sci Nutr ; : 1-20, 2024 Oct 25.
Article in English | MEDLINE | ID: mdl-39450774

ABSTRACT

Plant-based food consumption has increased substantially owing to its positive effects on human and global health. However, ensuring the quality and safety of plant-based foods remains a challenge. Diagnostic ultrasonic technology is widely used for rapid and nondestructive determination owing to its ability to penetrate optically opaque materials, strong directivity, rapid detection capabilities, low equipment costs, and ease of operation. This review provides a comprehensive understanding of diagnostic ultrasonic technology by summarizing the principles of food characterization, factors that influence detection accuracy and methods to mitigate their impact, composition of ultrasonic machine systems, and application of diagnostic ultrasound for monitoring plant-based foods. The detection principle of ultrasonic technology is based on empirical equations that establish a relationship between the ultrasonic and physicochemical indicators of food. To improve the detection accuracy, a compensation mechanism for the temperature and pressure should be established, measurement distances should be set in the far-field region, and liquid samples should be degassed. Furthermore, the sample platform design and the choice of detection mode depend on the nature of the food. Combining ultrasonic technology with machine learning techniques presents promising prospects for real-time process monitoring in the food and beverage industries.

15.
Inorg Chem ; 63(43): 20093-20101, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-38346933

ABSTRACT

Zintl compounds have continuously received significant attention, primarily due to their structural characteristics that align with the properties of the electron crystal and phonon glass. In this study, the crystal structure and thermoelectric properties of the quaternary Zintl chalcogenide BaScCuTe3 are investigated. The band structure calculations for BaScCuTe3 reveal a slight energy split of 0.08 eV between the second valence band and the valence band maximum, suggesting the presence of multiband-transport behaviors. Substitution of rare earth Gd for Sc is conducted, which significantly increases the hole concentration from 4.1 × 1019 cm-3 to 8.2 × 1019 cm-3 at room temperature. Meanwhile, the Seebeck coefficient increases because of the participation of the second valence band. A maximum power factor of 6.56 µW/cm·K2 at 773 K is obtained, which is 72% higher than that of the pristine sample. Moreover, the lattice thermal conductivity decreases from 0.57 W/m·K for BaScCuTe3 to 0.48 W/m·K for BaSc0.97Gd0.03CuTe3 at 773 K, owing to the introduction of point-defect scattering. As a result, there is a noteworthy improvement in the thermoelectric figure of merit zT, increasing from 0.44 for the undoped sample to 0.85 for BaSc0.98Gd0.02CuTe3. Considering these findings, BaScCuTe3 exhibits great potential and holds promise for further investigation in the field of thermoelectric materials.

16.
Phys Chem Chem Phys ; 26(5): 4702-4715, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38251937

ABSTRACT

To identify superalkali-alkaline earthide ion pairs, it's theoretically shown that, as a novel class of excess electron superalkali compounds, both chair and boat forms of (AM-HMHC)-AM' (AM = Li, Na, and K; AM' = Be, Mg, and Ca; HMHC = 1,4,7,10,13,16-hexamethyl-1,4,7,10,13,16-hexaazacyclooctadecane) are good candidates. An attractive superalkali-alkaline earthide ion pair in δ+(AM-HMHC)-AM'δ- is firstly exhibited, which possesses alkaline-earthide characteristics and nonlinear optical response superior to similar M+(calix[4]pyrrole)M'- (M = Li, Na, and K; M' = Be, Mg, and Ca) with high stability. The electronic and vibrational second order hyperpolarizabilities and the frequency-dependent first hyperpolarizabilities of δ+(AM-HMHC)-AM'δ- are presented. For each pair of (AM-HMHC)-AM', the boat conformation is preferred to its chair one in the case of Hyper-Rayleigh scattering response (ßHRS). These alkaline earthides suggest prominently high ßHRS up to 2.59 × 104 a.u. (boat forms of δ+(Na-HMHC)-Caδ-). We expect that this work will inspire the preparation and characterization of these new alkaline earthides as high-performance NLO materials.

17.
J Appl Microbiol ; 135(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39284782

ABSTRACT

AIMS: Rhodotorula mucilaginosa (Rho) can develop a range of strategies to resist the toxicity of heavy metals. This study aimed to investigate the physiological responses and transcriptomic regulation of the fungus under different heavy metal stresses. METHODS AND RESULTS: This study applied transmission electron microscopy and RNA-seq to investigate the fungal resistance to Pb, Cd, and Cu stresses. Under Pb stress, the activated autophagy-related genes, vesicle-fusing ATPase, and vacuolar ATP synthase improved vacuolar sequestration. This offsets the loss of lipids. However, the metal sequestration by vacuoles was not improved under Cd stress. Vacuolar fusion was also inhibited following the interference of intravacuolar Ca2+ due to their similar ionic radii. Cu2+ showed the maximum toxic effects due to its lowest cellular sorption (as low as 7%) with respect to Pb2+ and Cd2+, although the efflux pumps and divalent metal ion transporters partially contributed to the detoxification. CONCLUSIONS: Divalent cation transporters and vacuolar sequestration are the critical strategies for Rho to resist Pb stress. Superoxide dismutase (SOD) is the main strategy for Cd resistance in Rho. The intracellular Cu level was decreased by efflux pump and divalent metal ion transporters.


Subject(s)
Metals, Heavy , Rhodotorula , Vacuoles , Rhodotorula/metabolism , Rhodotorula/genetics , Vacuoles/metabolism , Metals, Heavy/metabolism , Cadmium/metabolism , Lead/metabolism , Lead/toxicity , Copper/metabolism , Inactivation, Metabolic
18.
J Phys Chem A ; 128(40): 8645-8658, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39344781

ABSTRACT

The effect of an oriented external electric field (EEF) on materials has led to the ongoing development, which stimulates us to consider whether intracage microelectric fields (IMEFs) can be used to substitute for the EEF. Focusing on the manipulation and evaluation of the IMEF of asymmetric molecular containers, the host-guest compounds of interesting pineapple-shaped Y@C64X4 (X = vacant, Cl, F, and H; Y = NH4Cl, H3O-Cl, and 2H2O) are theoretically constructed and the strength of the IMEF was evaluated by the intrapotential energy surface analysis by using the point charge (q = +1) scanning method. Interestingly, the left and right halves of each cage are like two IMEFs connected in reverse series. Both the addition of four X atoms and the orientation of the guest can sensitively influence the IMEF's strengths and directions of both half cages and further determine the entire cage's IMEF. Subsequently, the IMEF can sensitively change the binding characteristics and properties of the guest species. Therefore, the manipulation and evaluation of the IMEF can be achievable. This work may provide support for an asymmetric molecular container with an IMEF to manipulate the novel structural and chemical bond characteristics of the guest species.

19.
J Chem Phys ; 160(9)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38426522

ABSTRACT

All-inorganic CsPbI2Br inverted perovskite solar cells (PSCs) have drawn increasing attention because of their outstanding thermal stability and compatible process with tandem cells. However, relatively low open circuit voltage (Voc) has lagged their progress far behind theoretical limits. Herein, we introduce phenylmethylammonium iodide and 4-trifluoromethyl phenylmethylammonium iodide (CFPMAI) on the surface of a CsPbI2Br perovskite film and investigate their passivation effects. It is found that CFPMAI with a -CF3 substituent significantly decreases the trap density of the perovskite film by forming interactions with the under-coordinated Pb2+ ions and effectively suppresses the non-radiative recombination in the resulting PSC. In addition, CFPMAI surface passivation facilitates the optimization of energy-level alignment at the CsPbI2Br perovskite/[6,6]-phenyl C61 butyric acid methyl ester interface, resulting in improved charge extraction from the perovskite to the charge transport layer. Consequently, the optimized inverted CsPbI2Br device exhibits a markedly improved champion efficiency of 14.43% with a Voc of 1.12 V, a Jsc of 16.31 mA/cm2, and a fill factor of 79.02%, compared to the 10.92% (Voc of 0.95 V) efficiency of the control device. This study confirms the importance of substituent groups on surface passivation molecules for effective passivation of defects and optimization of energy levels, particularly for Voc improvement.

20.
Sleep Breath ; 28(3): 1319-1327, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38413555

ABSTRACT

PURPOSE: Diaphragmatic impairment has been reported in obstructive sleep apnea-hypopnea syndrome (OSAHS) patients. However, the risk factors of diaphragmatic dysfunction are unclear. This study was conducted to evaluate the diaphragmatic function and to investigate impact factors of ultrasonographic changes of the diaphragm in OSAHS patients. METHODS: This cross-sectional study recruited 150 snoring patients. All patients were divided into the control group (AHI < 5/h, n = 20), the mild-to-moderate OSAHS group (5/h ≤ AHI ≤ 30/h, n = 61), and the severe OSAHS group (AHI > 30/h, n = 69). Diaphragmatic thickness at function residual capacity (TFRC) and total lung capacity (TTLC) were measured by two-dimensional ultrasound, and the diaphragmatic excursion during tidal and deep breath was measured by M-mode ultrasound. The diaphragmatic thickening fraction (TF) was calculated. Spearman analysis and multiple linear stepwise regression analysis were conducted to analyze the impact factors of diaphragmatic function. RESULTS: TFRC in the control group, mild-to-moderate OSAHS group, and severe OSAHS group was 1.23 (1.10, 1.39) mm, 1.60 (1.43, 1.85) mm, and 1.90 (1.70, 2.25) mm; TTLC was 2.75 (2.53, 2.93) mm, 3.25 (2.90, 3.55) mm, and 3.60 (3.33, 3.90) mm, and TF was 119.23% (102.94, 155.97), 96.55% (74.34, 119.11), and 85.29% (60.68,101.22). There were across-group significant differences in TFRC, TTLC, and TF (P < 0.05). The oxygen desaturation index was the influencing factor of TFRC, TTLC, and TF (P < 0.05). CONCLUSION: The diaphragm is thickened and diaphragmatic contractility is decreased in OSAHS patients. Nocturnal intermittent hypoxia is a risk factor for diaphragmatic hypertrophy and impaired diaphragmatic contractility.


Subject(s)
Diaphragm , Sleep Apnea, Obstructive , Ultrasonography , Humans , Sleep Apnea, Obstructive/physiopathology , Sleep Apnea, Obstructive/diagnostic imaging , Diaphragm/physiopathology , Diaphragm/diagnostic imaging , Male , Cross-Sectional Studies , Female , Middle Aged , Adult , Polysomnography
SELECTION OF CITATIONS
SEARCH DETAIL