Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
EMBO J ; 39(18): e104365, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32696520

ABSTRACT

Hair follicle stem cells (HFSCs) are maintained in a quiescent state until activated to grow, but the mechanisms that reactivate the quiescent HFSC reservoir are unclear. Here, we find that loss of Sirt7 in mice impedes hair follicle life-cycle transition from telogen to anagen phase, resulting in delay of hair growth. Conversely, Sirt7 overexpression during telogen phase facilitated HSFC anagen entry and accelerated hair growth. Mechanistically, Sirt7 is upregulated in HFSCs during the telogen-to-anagen transition, and HFSC-specific Sirt7 knockout mice (Sirt7f/f ;K15-Cre) exhibit a similar hair growth delay. At the molecular level, Sirt7 interacts with and deacetylates the transcriptional regulator Nfatc1 at K612, causing PA28γ-dependent proteasomal degradation to terminate Nfatc1-mediated telogen quiescence and boost anagen entry. Cyclosporin A, a potent calcineurin inhibitor, suppresses nuclear retention of Nfatc1, abrogates hair follicle cycle delay, and promotes hair growth in Sirt7-/- mice. Furthermore, Sirt7 is downregulated in aged HFSCs, and exogenous Sirt7 overexpression promotes hair growth in aged animals. These data reveal that Sirt7 activates HFSCs by destabilizing Nfatc1 to ensure hair follicle cycle initiation.


Subject(s)
Hair Follicle/enzymology , Sirtuins/metabolism , Stem Cells/enzymology , Aging/genetics , Aging/metabolism , Animals , Cellular Senescence/drug effects , Cyclosporine/pharmacology , Mice , Mice, Knockout , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Sirtuins/genetics
2.
J Neurosci ; 42(47): 8780-8794, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36202615

ABSTRACT

The mammalian brain contains numerous neurons distributed across forebrain, midbrain, and hindbrain that project axons to the lower spinal cord and work in concert to control movement and achieve homeostasis. Extensive work has mapped the anatomic location of supraspinal cell types and continues to establish specific physiological functions. The patterns of gene expression that typify and distinguish these disparate populations, however, are mostly unknown. Here, using adult mice of mixed sex, we combined retrograde labeling of supraspinal cell nuclei with fluorescence-activated nuclei sorting and single-nuclei RNA sequencing analyses to transcriptionally profile neurons that project axons from the brain to lumbar spinal cord. We identified 14 transcriptionally distinct cell types and used a combination of established and newly identified marker genes to assign an anatomic location to each. To validate the putative marker genes, we visualized selected transcripts and confirmed selective expression within lumbar-projecting neurons in discrete supraspinal regions. Finally, we illustrate the potential utility of these data by examining the expression of transcription factors that distinguish different supraspinal cell types and by surveying the expression of receptors for growth and guidance cues that may be present in the spinal cord. Collectively, these data establish transcriptional differences between anatomically defined supraspinal populations, identify a new set of marker genes of use in future experiments, and provide insight into potential differences in cellular and physiological activity across the supraspinal connectome.SIGNIFICANCE STATEMENT The brain communicates with the body through a wide variety of neuronal populations with distinct functions and differential sensitivity to damage and disease. We have used single-nuclei RNA sequencing technology to distinguish patterns of gene expression within a diverse set of neurons that project axons from the mouse brain to the lumbar spinal cord. The results reveal transcriptional differences between populations previously defined on the basis of anatomy, provide new marker genes to facilitate rapid identification of cell type in future work, and suggest distinct responsiveness of different supraspinal populations to external growth and guidance cues.


Subject(s)
Axons , Spinal Cord , Animals , Mice , Spinal Cord/physiology , Axons/physiology , Solitary Nucleus , Neurons , Mammals
3.
Anal Chem ; 94(4): 2305-2312, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35067054

ABSTRACT

This work reports a highly efficient electrogenerated chemiluminescence (ECL) quenching on lipid-coated multifunctional magnetic nanoparticles (MMNP) for the determination of proteases incorporating membrane-confined quenching with a specific cleavage reaction for the first time. A new ruthenium complex [Ru(bpy)2(ddcbpy)](PF6)2 (bpy = 2,2'-bipyridine, ddcbpy = 4,4'-didodecyl-carbonyl-2,2'-bipyridine with two hydrophobic long alkyl chains) was synthesized as a signal probe, while [cholesterol-(CH2)6-HSSKLQK(peptide)-ferrocene (quencher)] was designed as a specific peptide-quencher probe. The MMNP were prepared by inserting both the signal probe and the peptide-quencher probe into the cholesterol-phospholipid-coated Fe3O4 magnetic nanoparticles (Fe3O4 NP, ∼200 nm). When prostate specific antigen (PSA) taken as a model analyte was introduced into the suspension of MMNP, PSA cleaved the amide bond of SK in cholesterol-(CH2)6-HSSKLQK-Fc, and then the cleaved peptide-motif-Fc-quencher was deviated from the MMNP, resulting in the increase in the ECL intensity. It was found that the ECL quenching constant of [Ru(bpy)2(ddcbpy)]2+ on MMNP (KSV, NP/lipECL =2.68 × 107 M-1) is 137-folds higher than that on the lipid-coated electrode (KSV, lipECL=1.95 × 105 M-1) and 391-folds higher than that in the solution (KSV, aqECL =6.86 × 104 M-1). The ECL emission of Ru(bpy)32+ derivative-attached Fe3O4 NP was observed at ∼1.2 V, involving the tunnel-electron transfer pathway (TPA• + Ru(bpy)33+ = Ru(bpy)32+*). Based on the highly efficient ECL quenching of the ruthenium complex by ferrocene on the MMNP, a new ECL method was developed for PSA with a linear range from 0.01 to 1.0 ng/mL and a limit of detection of 3.0 pg/mL. This work demonstrates that the approach of ECL quenching by ferrocene on lipid-coated Fe3O4 NP is promising and could be easily extended to determine other proteases.


Subject(s)
Biosensing Techniques , Chemistry Techniques, Analytical , Peptide Hydrolases , Biosensing Techniques/methods , Chemistry Techniques, Analytical/methods , Lipids/chemistry , Luminescence , Luminescent Measurements/methods , Magnetite Nanoparticles , Peptide Hydrolases/analysis
4.
Nucleic Acids Res ; 48(6): 2912-2923, 2020 04 06.
Article in English | MEDLINE | ID: mdl-31970414

ABSTRACT

NAD+-dependent SIRT7 deacylase plays essential roles in ribosome biogenesis, stress response, genome integrity, metabolism and aging, while how it is transcriptionally regulated is still largely unclear. TGF-ß signaling is highly conserved in multicellular organisms, regulating cell growth, cancer stemness, migration and invasion. Here, we demonstrate that histone deacetylase HDAC8 forms complex with SMAD3/4 heterotrimer and occupies SIRT7 promoter, wherein it deacetylates H4 and thus suppresses SIRT7 transcription. Treatment with HDAC8 inhibitor compromises TGF-ß signaling via SIRT7-SMAD4 axis and consequently, inhibits lung metastasis and improves chemotherapy efficacy in breast cancer. Our data establish a regulatory feedback loop of TGF-ß signaling, wherein HDAC8 as a novel cofactor of SMAD3/4 complex, transcriptionally suppresses SIRT7 via local chromatin remodeling and thus further activates TGF-ß signaling. Targeting HDAC8 exhibits therapeutic potential for TGF-ß signaling related diseases.


Subject(s)
Cell Movement , Histone Deacetylases/metabolism , Repressor Proteins/metabolism , Sirtuins/metabolism , Smad3 Protein/metabolism , Smad4 Protein/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Survival/genetics , Chromatin Assembly and Disassembly/genetics , Drug Resistance, Neoplasm/genetics , HEK293 Cells , Humans , Neoplasm Metastasis , Promoter Regions, Genetic/genetics , Protein Binding , Repressor Proteins/antagonists & inhibitors , Signal Transduction , Sirtuins/genetics , Transcription, Genetic , Transforming Growth Factor beta/metabolism
5.
Nucleic Acids Res ; 48(6): 2982-3000, 2020 04 06.
Article in English | MEDLINE | ID: mdl-31970415

ABSTRACT

Genomic instability is an underlying hallmark of cancer and is closely associated with defects in DNA damage repair (DDR). Chromatin relaxation is a prerequisite for DDR, but how chromatin accessibility is regulated remains elusive. Here we report that the histone deacetylase SIRT6 coordinates with the chromatin remodeler CHD4 to promote chromatin relaxation in response to DNA damage. Upon DNA damage, SIRT6 rapidly translocates to DNA damage sites, where it interacts with and recruits CHD4. Once at the damage sites, CHD4 displaces heterochromatin protein 1 (HP1) from histone H3 lysine 9 trimethylation (H3K9me3). Notably, loss of SIRT6 or CHD4 leads to impaired chromatin relaxation and disrupted DNA repair protein recruitment. These molecular changes, in-turn, lead to defective homologous recombination (HR) and cancer cell hypersensitivity to DNA damaging agents. Furthermore, we show that SIRT6-mediated CHD4 recruitment has a specific role in DDR within compacted chromatin by HR in G2 phase, which is an ataxia telangiectasia mutated (ATM)-dependent process. Taken together, our results identify a novel function for SIRT6 in recruiting CHD4 onto DNA double-strand breaks. This newly identified novel molecular mechanism involves CHD4-dependent chromatin relaxation and competitive release of HP1 from H3K9me3 within the damaged chromatin, which are both essential for accurate HR.


Subject(s)
Chromatin/metabolism , DNA Repair , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Sirtuins/metabolism , Cell Line, Tumor , Cell Survival , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/metabolism , DNA Breaks, Double-Stranded , HEK293 Cells , Histones/metabolism , Humans , Lysine/metabolism , Methylation , Mi-2 Nucleosome Remodeling and Deacetylase Complex/chemistry , Models, Biological , Protein Binding , Protein Domains
6.
J Neurosci ; 38(49): 10566-10581, 2018 12 05.
Article in English | MEDLINE | ID: mdl-30341180

ABSTRACT

The brain communicates with the spinal cord through numerous axon tracts that arise from discrete nuclei, transmit distinct functions, and often collateralize to facilitate the coordination of descending commands. This complexity presents a major challenge to interpreting functional outcomes from therapies that target supraspinal connectivity after injury or disease, while the wide distribution of supraspinal nuclei complicates the delivery of therapeutics. Here we harness retrograde viral vectors to overcome these challenges. We demonstrate that injection of AAV2-Retro to the cervical spinal cord of adult female mice results in highly efficient transduction of supraspinal populations throughout the brainstem, midbrain, and cortex. Some supraspinal populations, including corticospinal and rubrospinal neurons, were transduced with >90% efficiency, with robust transgene expression within 3 d of injection. In contrast, propriospinal and raphe spinal neurons showed much lower rates of retrograde transduction. Using tissue clearing and light-sheet microscopy we present detailed visualizations of descending axons tracts and create a mesoscopic projectome for the spinal cord. Moreover, chemogenetic silencing of supraspinal neurons with retrograde vectors resulted in complete and reversible forelimb paralysis, illustrating effective modulation of supraspinal function. Retrograde vectors were also highly efficient when injected after spinal injury, highlighting therapeutic potential. These data provide a global view of supraspinal connectivity and illustrate the potential of retrograde vectors to parse the functional contributions of supraspinal inputs.SIGNIFICANCE STATEMENT The complexity of descending inputs to the spinal cord presents a major challenge in efforts deliver therapeutics to widespread supraspinal systems, and to interpret their functional effects. Here we demonstrate highly effective gene delivery to diverse supraspinal nuclei using a retrograde viral approach and combine it with tissue clearing and 3D microscopy to map the descending projectome from brain to spinal cord. These data highlight newly developed retrograde viruses as therapeutic and research tools, while offering new insights into supraspinal connectivity.


Subject(s)
Brain/diagnostic imaging , Imaging, Three-Dimensional/methods , Nerve Net/diagnostic imaging , Pyramidal Tracts/diagnostic imaging , Animals , Brain/physiology , Brain Chemistry/physiology , Female , Mice , Mice, Inbred C57BL , Nerve Net/chemistry , Nerve Net/physiology , Proprioception/physiology , Pyramidal Tracts/chemistry , Pyramidal Tracts/physiology , Signal Transduction/physiology , Spinal Cord
7.
J Neurosci ; 36(21): 5877-90, 2016 05 25.
Article in English | MEDLINE | ID: mdl-27225775

ABSTRACT

UNLABELLED: To restore function after injury to the CNS, axons must be stimulated to extend into denervated territory and, critically, must form functional synapses with appropriate targets. We showed previously that forced overexpression of the transcription factor Sox11 increases axon growth by corticospinal tract (CST) neurons after spinal injury. However, behavioral outcomes were not improved, raising the question of whether the newly sprouted axons are able to form functional synapses. Here we developed an optogenetic strategy, paired with single-unit extracellular recordings, to assess the ability of Sox11-stimulated CST axons to functionally integrate in the circuitry of the cervical spinal cord. Initial time course experiments established the expression and function of virally expressed Channelrhodopsin (ChR2) in CST cell bodies and in axon terminals in cervical spinal cord. Pyramidotomies were performed in adult mice to deprive the left side of the spinal cord of CST input, and the right CST was treated with adeno-associated virus (AAV)-Sox11 or AAV-EBFP control, along with AAV-ChR2. As expected, Sox11 treatment caused robust midline crossing of CST axons into previously denervated left spinal cord. Clear postsynaptic responses resulted from optogenetic activation of CST terminals, demonstrating the ability of Sox11-stimulated axons to form functional synapses. Mapping of the distribution of CST-evoked spinal activity revealed overall similarity between intact and newly innervated spinal tissue. These data demonstrate the formation of functional synapses by Sox11-stimulated CST axons without significant behavioral benefit, suggesting that new synapses may be mistargeted or otherwise impaired in the ability to coordinate functional output. SIGNIFICANCE STATEMENT: As continued progress is made in promoting the regeneration of CNS axons, questions of synaptic integration are increasingly prominent. Demonstrating direct synaptic integration by regenerated axons and distinguishing its function from indirect relay circuits and target field plasticity have presented technical challenges. Here we force the overexpression of Sox11 to stimulate the growth of corticospinal tract axons in the cervical spinal cord and then use specific optogenetic activation to assess their ability to directly drive postsynaptic activity in spinal cord neurons. By confirming successful synaptic integration, these data illustrate a novel optogenetic-based strategy to monitor and optimize functional reconnection by newly sprouted axons in the injured CNS.


Subject(s)
Axon Guidance , Pyramidal Tracts/pathology , Pyramidal Tracts/physiopathology , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology , Synapses/pathology , Animals , Female , Mice , Mice, Inbred C57BL , Neurogenesis , Optogenetics/methods , SOXC Transcription Factors/metabolism , Spinal Cord Regeneration/physiology
8.
Neurobiol Dis ; 99: 24-35, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27988344

ABSTRACT

Axon regeneration in the central nervous system is limited both by inhibitory extracellular cues and by an intrinsically low capacity for axon growth in some CNS populations. Chondroitin sulfate proteoglycans (CSPGs) are well-studied inhibitors of axon growth in the CNS, and degradation of CSPGs by chondroitinase has been shown to improve the extension of injured axons. Alternatively, axon growth can be improved by targeting the neuron-intrinsic growth capacity through forced expression of regeneration-associated transcription factors. For example, a transcriptionally active chimera of Krüppel-like Factor 7 (KLF7) and a VP16 domain improves axon growth when expressed in corticospinal tract neurons. Here we tested the hypothesis that combined expression of chondroitinase and VP16-KLF7 would lead to further improvements in axon growth after spinal injury. Chondroitinase was expressed by viral transduction of cells in the spinal cord, while VP16-KLF7 was virally expressed in sensory neurons of the dorsal root ganglia or corticospinal tract (CST) neurons. After transection of the dorsal columns, both chondroitinase and VP16-KLF7 increased the proximity of severed sensory axons to the injury site. Similarly, after complete crush injuries, VP16-KLF7 expression increased the approach of CST axons to the injury site. In neither paradigm however, did single or combined treatment with chondroitinase or VP16-KLF7 enable regenerative growth distal to the injury. These results substantiate a role for CSPG inhibition and low KLF7 activity in determining the net retraction of axons from sites of spinal injury, while suggesting that additional factors act to limit a full regenerative response.


Subject(s)
Axons/metabolism , Chondroitin ABC Lyase/administration & dosage , Kruppel-Like Transcription Factors/administration & dosage , Neurons, Afferent/metabolism , Pyramidal Tracts/metabolism , Spinal Cord Injuries/therapy , Animals , Axons/pathology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chondroitin ABC Lyase/genetics , Chondroitin ABC Lyase/metabolism , Disease Models, Animal , Female , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , Genetic Therapy , Genetic Vectors , HEK293 Cells , Humans , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Mice, Inbred C57BL , Mutant Chimeric Proteins/genetics , Mutant Chimeric Proteins/metabolism , Neuronal Outgrowth/physiology , Neurons, Afferent/pathology , Proteus vulgaris , Pyramidal Tracts/pathology , Sciatic Nerve/injuries , Sciatic Nerve/metabolism , Sciatic Nerve/pathology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology
9.
J Pathol ; 240(2): 184-96, 2016 10.
Article in English | MEDLINE | ID: mdl-27391422

ABSTRACT

Cancer stem cells (CSCs) are commonly associated with cancer recurrence and metastasis that occurs in up to 30-55% of non-small-cell lung carcinoma (NSCLC) patients. Herein, we showed that serine-arginine protein kinase 1 (SRPK1) was highly expressed at both the mRNA and the protein levels in human NCSLC. SRPK1 was associated with the clinical features of human NSCLC, including clinical stage (p < 0.001) and T (p = 0.001), N (p = 0.007), and M (p = 0.001) classifications. Ectopic overexpression of SRPK1 promoted the acquisition of a stem cell-like phenotype in human NSCLC cell lines cultured in vitro. Overexpression of SRPK1 increased sphere formation and the proportion of side-population cells that exclude Hoechst dye. Conversely, SRPK1 silencing reduced the number of spheres and the proportion of side-population cells. Mouse studies indicated that SRPK1 promoted NSCLC cell line tumour growth and SRPK1 overexpression reduced the number of tumour cells required to initiate tumourigenesis in vivo. Mechanistically, gene set enrichment analysis showed that Wnt/ß-catenin signalling correlated with SRPK1 mRNA levels and this signalling pathway was hyperactivated by ectopic SRPK1 expression in NSCLC cell lines. Immunofluorescence demonstrated that SRPK1 enhanced ß-catenin accumulation in the nuclei of NSCLC cell lines, and inhibition of ß-catenin signalling abrogated the SRPK1-induced stem cell-like phenotype. Together, our findings suggest that SRPK1 promotes a stem cell-like phenotype in NSCLC via Wnt/ß-catenin signalling. Moreover, SRPK1 may represent a novel target for human NSCLC diagnosis and therapy. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Protein Serine-Threonine Kinases/metabolism , Wnt Signaling Pathway/physiology , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Mice , Neoplastic Stem Cells/pathology , Phenotype , Protein Serine-Threonine Kinases/genetics
10.
J Neurosci ; 35(7): 3139-45, 2015 Feb 18.
Article in English | MEDLINE | ID: mdl-25698749

ABSTRACT

Embryonic neurons, peripheral neurons, and CNS neurons in zebrafish respond to axon injury by initiating pro-regenerative transcriptional programs that enable axons to extend, locate appropriate targets, and ultimately contribute to behavioral recovery. In contrast, many long-distance projection neurons in the adult mammalian CNS, notably corticospinal tract (CST) neurons, display a much lower regenerative capacity. To promote CNS repair, a long-standing goal has been to activate pro-regenerative mechanisms that are normally missing from injured CNS neurons. Sox11 is a transcription factor whose expression is common to a many types of regenerating neurons, but it is unknown whether suboptimal Sox11 expression contributes to low regenerative capacity in the adult mammalian CNS. Here we show in adult mice that dorsal root ganglion neurons (DRGs) and CST neurons fail to upregulate Sox11 after spinal axon injury. Furthermore, forced viral expression of Sox11 reduces axonal dieback of DRG axons, and promotes CST sprouting and regenerative axon growth in both acute and chronic injury paradigms. In tests of forelimb dexterity, however, Sox11 overexpression in the cortex caused a modest but consistent behavioral impairment. These data identify Sox11 as a key transcription factor that can confer an elevated innate regenerative capacity to CNS neurons. The results also demonstrate an unexpected dissociation between axon growth and behavioral outcome, highlighting the need for additional strategies to optimize the functional output of stimulated neurons.


Subject(s)
Gene Expression Regulation/physiology , Nerve Regeneration/physiology , Pyramidal Tracts/physiology , Recovery of Function/physiology , SOXC Transcription Factors/metabolism , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology , Adenoviridae/genetics , Animals , Disease Models, Animal , Exploratory Behavior/physiology , Female , Ganglia, Spinal/pathology , Hand Strength/physiology , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/metabolism , Psychomotor Performance/physiology , Pyramidal Tracts/pathology , SOXC Transcription Factors/genetics
11.
Mol Cell Neurosci ; 68: 272-83, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26306672

ABSTRACT

Neurons in the embryonic and peripheral nervous system respond to injury by activating transcriptional programs supportive of axon growth, ultimately resulting in functional recovery. In contrast, neurons in the adult central nervous system (CNS) possess a limited capacity to regenerate axons after injury, fundamentally constraining repair. Activating pro-regenerative gene expression in CNS neurons is a promising therapeutic approach, but progress is hampered by incomplete knowledge of the relevant transcription factors. An emerging hypothesis is that factors implicated in cellular growth and motility outside the nervous system may also control axon growth in neurons. We therefore tested sixty-nine transcription factors, previously identified as possessing tumor suppressive or oncogenic properties in non-neuronal cells, in assays of neurite outgrowth. This screen identified YAP1 and E2F1 as enhancers of neurite outgrowth, and PITX1, RBM14, ZBTB16, and HHEX as inhibitors. Follow-up experiments are focused on the tumor suppressor HHEX, one of the strongest growth inhibitors. HHEX is widely expressed in adult CNS neurons, including corticospinal tract neurons after spinal injury, but is present only in trace amounts in immature cortical neurons and adult peripheral neurons. HHEX overexpression in early postnatal cortical neurons reduced both initial axonogenesis and the rate of axon elongation, and domain deletion analysis strongly implicated transcriptional repression as the underlying mechanism. These findings suggest a role for HHEX in restricting axon growth in the developing CNS, and substantiate the hypothesis that previously identified oncogenes and tumor suppressors can play conserved roles in axon extension.


Subject(s)
Axons/physiology , Central Nervous System/cytology , Gene Expression Regulation, Developmental/physiology , Homeodomain Proteins/metabolism , Neurons/cytology , Animals , Animals, Newborn , Fluoresceins/metabolism , Gene Expression Regulation, Developmental/genetics , Homeodomain Proteins/genetics , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Rats , Rats, Sprague-Dawley , Transfection
12.
Proc Natl Acad Sci U S A ; 109(19): 7517-22, 2012 May 08.
Article in English | MEDLINE | ID: mdl-22529377

ABSTRACT

Axon regeneration in the central nervous system normally fails, in part because of a developmental decline in the intrinsic ability of CNS projection neurons to extend axons. Members of the KLF family of transcription factors regulate regenerative potential in developing CNS neurons. Expression of one family member, KLF7, is down-regulated developmentally, and overexpression of KLF7 in cortical neurons in vitro promotes axonal growth. To circumvent difficulties in achieving high neuronal expression of exogenous KLF7, we created a chimera with the VP16 transactivation domain, which displayed enhanced neuronal expression compared with the native protein while maintaining transcriptional activation and growth promotion in vitro. Overexpression of VP16-KLF7 overcame the developmental loss of regenerative ability in cortical slice cultures. Adult corticospinal tract (CST) neurons failed to up-regulate KLF7 in response to axon injury, and overexpression of VP16-KLF7 in vivo promoted both sprouting and regenerative axon growth in the CST of adult mice. These findings identify a unique means of promoting CST axon regeneration in vivo by reengineering a developmentally down-regulated, growth-promoting transcription factor.


Subject(s)
Axons/physiology , Kruppel-Like Transcription Factors/metabolism , Nerve Regeneration/physiology , Pyramidal Tracts/physiology , Animals , Axons/metabolism , Cells, Cultured , Etoposide , Female , Gene Expression , Genetic Engineering , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Herpes Simplex Virus Protein Vmw65/genetics , Humans , Immunohistochemistry , Kruppel-Like Transcription Factors/genetics , Luminescent Measurements/methods , Mice , Mice, Inbred C57BL , Mutation , Nerve Regeneration/genetics , Neurites/metabolism , Neurites/physiology , Neurons/cytology , Neurons/metabolism , Neurons/physiology , Pyramidal Tracts/cytology , Pyramidal Tracts/metabolism , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Spinal Cord Injuries/genetics , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/physiopathology , Transcriptional Activation
13.
Proc Natl Acad Sci U S A ; 108(30): 12325-30, 2011 Jul 26.
Article in English | MEDLINE | ID: mdl-21746928

ABSTRACT

Specific point mutations in lamin A gene have been shown to accelerate aging in humans and mice. Particularly, a de novo mutation at G608G position impairs lamin A processing to produce the mutant protein progerin, which causes the Hutchinson Gilford progeria syndrome. The premature aging phenotype of Hutchinson Gilford progeria syndrome is largely recapitulated in mice deficient for the lamin A-processing enzyme, Zmpste24. We have previously reported that Zmpste24 deficiency results in genomic instability and early cellular senescence due to the delayed recruitment of repair proteins to sites of DNA damage. Here, we further investigate the molecular mechanism underlying delayed DNA damage response and identify a histone acetylation defect in Zmpste24(-/-) mice. Specifically, histone H4 was hypoacetylated at a lysine 16 residue (H4K16), and this defect was attributed to the reduced association of a histone acetyltransferase, Mof, to the nuclear matrix. Given the reversible nature of epigenetic changes, rescue experiments performed either by Mof overexpression or by histone deacetylase inhibition promoted repair protein recruitment to DNA damage sites and substantially ameliorated aging-associated phenotypes, both in vitro and in vivo. The life span of Zmpste24(-/-) mice was also extended with the supplementation of a histone deacetylase inhibitor, sodium butyrate, to drinking water. Consistent with recent data showing age-dependent buildup of unprocessable lamin A in physiological aging, aged wild-type mice also showed hypoacetylation of H4K16. The above results shed light on how chromatin modifications regulate the DNA damage response and suggest that the reversal of epigenetic marks could make an attractive therapeutic target against laminopathy-based progeroid pathologies.


Subject(s)
Aging, Premature/metabolism , DNA Repair , Histones/chemistry , Histones/metabolism , Membrane Proteins/deficiency , Metalloendopeptidases/deficiency , Acetylation , Aging/drug effects , Aging/genetics , Aging/physiology , Aging, Premature/genetics , Animals , Cells, Cultured , Cellular Senescence/genetics , Cellular Senescence/physiology , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/metabolism , Disease Models, Animal , Histone Acetyltransferases/metabolism , Histone Deacetylase Inhibitors/pharmacology , Humans , Lamin Type A , Lysine/chemistry , Membrane Proteins/genetics , Metalloendopeptidases/genetics , Mice , Mice, Knockout , Nuclear Matrix/metabolism , Nuclear Proteins/metabolism , Protein Precursors/metabolism , RNA, Small Interfering/genetics , Tumor Suppressor p53-Binding Protein 1
14.
bioRxiv ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38854133

ABSTRACT

The ability of neurons to sense and respond to damage is fundamental to homeostasis and nervous system repair. For some cell types, notably dorsal root ganglia (DRG) and retinal ganglion cells (RGCs), extensive profiling has revealed a large transcriptional response to axon injury that determines survival and regenerative outcomes. In contrast, the injury response of most supraspinal cell types, whose limited regeneration constrains recovery from spinal injury, is mostly unknown. Here we employed single-nuclei sequencing in mice to profile the transcriptional responses of diverse supraspinal cell types to spinal injury. Surprisingly, thoracic spinal injury triggered only modest changes in gene expression across all populations, including corticospinal tract (CST) neurons. Moreover, CST neurons also responded minimally to cervical injury but much more strongly to intracortical axotomy, including upregulation of numerous regeneration and apoptosis-related transcripts shared with injured DRG and RGC neurons. Thus, the muted response of CST neuron to spinal injury is linked to the injury's distal location, rather than intrinsic cellular characteristics. More broadly, these findings indicate that a central challenge for enhancing regeneration after a spinal injury is the limited sensing of distant injuries and the subsequent modest baseline neuronal response.

15.
Cell Death Dis ; 15(5): 380, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816370

ABSTRACT

Senescent cell clearance is emerging as a promising strategy for treating age-related diseases. Senolytics are small molecules that promote the clearance of senescent cells; however, senolytics are uncommon and their underlying mechanisms remain largely unknown. Here, we investigated whether genomic instability is a potential target for senolytic. We screened small-molecule kinase inhibitors involved in the DNA damage response (DDR) in Zmpste24-/- mouse embryonic fibroblasts, a progeroid model characterized with impaired DDR and DNA repair. 4,5,6,7-tetrabromo-2-azabenzamidazole (TBB), which specifically inhibits casein kinase 2 (CK2), was selected and discovered to preferentially trigger apoptosis in Zmpste24-/- cells. Mechanistically, inhibition of CK2 abolished the phosphorylation of heterochromatin protein 1α (HP1α), which retarded the dynamic HP1α dissociation from repressive histone mark H3K9me3 and its relocalization with γH2AX to DNA damage sites, suggesting that disrupting heterochromatin remodeling in the initiation of DDR accelerates apoptosis in senescent cells. Furthermore, feeding Zmpste24-deficient mice with TBB alleviated progeroid features and extended their lifespan. Our study identified TBB as a new class senolytic compound that can reduce age-related symptoms and prolong lifespan in progeroid mice.


Subject(s)
Casein Kinase II , Cellular Senescence , DNA Damage , Longevity , Membrane Proteins , Metalloendopeptidases , Animals , Cellular Senescence/drug effects , Casein Kinase II/metabolism , Casein Kinase II/antagonists & inhibitors , Casein Kinase II/genetics , Mice , Longevity/drug effects , Membrane Proteins/metabolism , Membrane Proteins/genetics , DNA Damage/drug effects , Metalloendopeptidases/metabolism , Metalloendopeptidases/genetics , Metalloendopeptidases/deficiency , Apoptosis/drug effects , Chromobox Protein Homolog 5/metabolism , Histones/metabolism , Mice, Knockout , Fibroblasts/metabolism , Fibroblasts/drug effects , Chromosomal Proteins, Non-Histone/metabolism , Humans , Phosphorylation/drug effects
16.
Talanta ; 259: 124485, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37019008

ABSTRACT

This work reports the performance enhancement strategies on magnetic beads (MBs)-based electrochemiluminescence (ECL) platforms by using double magnetic field actuation of the ECL magnetic microbiosensors (MMbiosensors) for highly sensitive determination of cancer biomarker and exosomes. To obtain the high sensitivity and reproducibility of the ECL MMbiosensors, a series of strategies have been developed including replacing a conventional photomultiplier tube (PMT) with a diamagnetic PMT, replacing the stacked ring-disc magnets with circular-disc magnets lain-in glassy carbon electrode, adding a pre-concentration process of MBs using external magnet actuation. For fundamental research, the ECL MBs taken as the substitute of ECL MMbiosensors were prepared by binding biotinylated DNA tagged with Ru(bpy)32+ derivative (Ru1) to streptavidin-coated MB(MB@SA) were which showed that the developed strategies can enhance 45-fold sensitivity. Importantly, the developed MBs-based ECL platform was estimated by determination of prostate specific antigen (PSA) and exosomes. For PSA, MB@SA•biotin-Ab1(PSA) was taken as the capture probe and Ru1-labeled Ab2 (PSA) was done as ECL probe, while for exosomes, MB@SA•biotin-aptamer (CD63) was taken as the capture probe and Ru1-labeled Ab (CD9) was done as the ECL probe. The experiment results showed that the developed strategies can enhance 33-fold sensitivity of ECL MMbiosensors for PSA and exosomes. The detection limit is 0.28 ng mL-1 for PSA and 4.9 × 102 particle mL-1 for exosomes. This work demonstrated that a series of proposed magnetic field actuation strategies greatly increase the sensitivity of the ECL MMbiosensors. The developed strategies can be expanded to MBs-based ECL and electrochemical biosensors for clinical analysis with greater sensitivity.


Subject(s)
Biosensing Techniques , Exosomes , Neoplasms , Male , Humans , Biomarkers, Tumor , Prostate-Specific Antigen , Reproducibility of Results , Biosensing Techniques/methods , Luminescent Measurements/methods , Magnetic Phenomena , Magnetic Fields , Neoplasms/diagnosis
17.
Cells ; 12(4)2023 02 16.
Article in English | MEDLINE | ID: mdl-36831305

ABSTRACT

The nuclear matrix protein lamin A is a multifunctional protein with roles in DNA replication and repair, gene activation, transcriptional regulation, and maintenance of higher-order chromatin structure. Phosphorylation is the main determinant of lamin A mobility in the nucleus and nuclear membrane dissolution during mitosis. However, little is known about the regulation of lamin A phosphorylation during interphase. Interestingly, C-terminal lamin A mutations trigger cellular senescence. Recently, we showed that the C-terminal region of lamin A interacts with casein kinase II (CK2). In the present study, we have expanded on our previous research to further investigate lamin A phosphorylation and elucidate the mechanisms underlying the effect of C-terminal mutations on cellular senescence. Our results indicate that glycogen synthase kinase 3ß (GSK3ß) and CK2 jointly mediate the phosphorylation of lamin A at C-terminal Ser628 and Ser636 residues. Furthermore, a loss of phosphorylation at either of these two sites affects the nuclear distribution of lamin A, leading to an impaired DNA damage response as well as cellular senescence. Thus, phosphorylation at C-terminal sites in lamin A appears to be important for maintaining genomic stability and preventing cellular senescence. These findings provide insight into how loss of the C-terminal region of lamin A may induce premature aging. Furthermore, enhancement of GSK3ß and CK2 activity may represent a possible therapeutic approach for the treatment of aging-related diseases.


Subject(s)
DNA Damage , Lamin Type A , Cellular Senescence/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Lamin Type A/metabolism , Phosphorylation , Animals , Mice
18.
Anal Chim Acta ; 1253: 340926, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36965986

ABSTRACT

This work reports washing-free electrogenerated chemiluminescence (ECL) magnetic microbiosensors based on target assistant proximity hybridization (TAPH) for multiple protein biomarkers for the first time. As a principle-of-proof, alpha-fetoprotein (AFP) was chosen as a model analyte, and biotin-DNA1 bound streptavidin-coated magnetic microbeads (MMB@SA⋅biotin-DNA1) were designed as the universal capture MMB, while the corresponding two antibodies tagged with DNA2 or DNA3 were utilized as hybrid recognition probes, and ruthenium complex-tagged DNA4-10A was designed as a universal ECL signal probe. When the capture MMB was added into the mixture solution (containing the analyte, hybrid recognition probes, signal probe and tri-n-propylamine), biocomplexes were formed on the MMB. After the resulting MMB was efficiently brought to the surface of a magnetic glassy carbon electrode (MGCE), ECL measurement was performed without a washing step, resulting in an increase in the ECL intensity. A model for ECL measuring the second-order rate constants of hybridization reactions on MMB was derived. It was found that the rate constants for hybridization reactions on MMB in rotating mode are 1.6-fold higher than those in shaking mode, and a suitable DNA length of the signal probe can improve the signal-to-noise ratio. The washing-free ECL method was developed for the determination of AFP with a much lower detection limit (LOD) of 0.04 ng mL-1. The developed flexible strategy has been extended to determine D-dimer with an LOD of 0.1 ng mL-1 and myoglobinglobin with an LOD of 1.1 ng mL-1. This work demonstrated that the proposed strategy of ECL TAPH on MMB at MGCE is a washing-free and flexible promising strategy, and can be extended to qualify other multiple protein biomarkers in real clinical assays.


Subject(s)
Biosensing Techniques , alpha-Fetoproteins , Luminescence , Nucleic Acid Hybridization , Biomarkers , Luminescent Measurements/methods , Biosensing Techniques/methods
19.
Elife ; 112022 07 15.
Article in English | MEDLINE | ID: mdl-35838234

ABSTRACT

The supraspinal connectome is essential for normal behavior and homeostasis and consists of numerous sensory, motor, and autonomic projections from brain to spinal cord. Study of supraspinal control and its restoration after damage has focused mostly on a handful of major populations that carry motor commands, with only limited consideration of dozens more that provide autonomic or crucial motor modulation. Here, we assemble an experimental workflow to rapidly profile the entire supraspinal mesoconnectome in adult mice and disseminate the output in a web-based resource. Optimized viral labeling, 3D imaging, and registration to a mouse digital neuroanatomical atlas assigned tens of thousands of supraspinal neurons to 69 identified regions. We demonstrate the ability of this approach to clarify essential points of topographic mapping between spinal levels, measure population-specific sensitivity to spinal injury, and test the relationships between region-specific neuronal sparing and variability in functional recovery. This work will spur progress by broadening understanding of essential but understudied supraspinal populations.


Subject(s)
Connectome , Spinal Cord Injuries , Spinal Injuries , Animals , Brain , Mice , Recovery of Function , Spinal Cord
20.
Nat Commun ; 13(1): 6577, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36323699

ABSTRACT

17ß-hydroxysteroid dehydrogenase-13 is a hepatocyte-specific, lipid droplet-associated protein. A common loss-of-function variant of HSD17B13 (rs72613567: TA) protects patients against non-alcoholic fatty liver disease with underlying mechanism incompletely understood. In the present study, we identify the serine 33 of 17ß-HSD13 as an evolutionally conserved PKA target site and its phosphorylation facilitates lipolysis by promoting its interaction with ATGL on lipid droplets. Targeted mutation of Ser33 to Ala (S33A) decreases ATGL-dependent lipolysis in cultured hepatocytes by reducing CGI-58-mediated ATGL activation. Importantly, a transgenic knock-in mouse strain carrying the HSD17B13 S33A mutation (HSD17B1333A/A) spontaneously develops hepatic steatosis with reduced lipolysis and increased inflammation. Moreover, Hsd17B1333A/A mice are more susceptible to high-fat diet-induced nonalcoholic steatohepatitis. Finally, we find reproterol, a potential 17ß-HSD13 modulator and FDA-approved drug, confers a protection against nonalcoholic steatohepatitis via PKA-mediated Ser33 phosphorylation of 17ß-HSD13. Therefore, targeting the Ser33 phosphorylation site could represent a potential approach to treat NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Phosphorylation , Serine/metabolism , 17-Hydroxysteroid Dehydrogenases/genetics , Hepatocytes/metabolism , Liver/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL