Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Mol Pharm ; 21(5): 2298-2314, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38527915

ABSTRACT

Hypertrophic scars (HS) still remain an urgent challenge in the medical community. Traditional Chinese medicine (TCM) has unique advantages in the treatment of HS. However, due to the natural barrier of the skin, it is difficult for the natural active components of TCM to more effectively penetrate the skin and exert therapeutic effects. Therefore, the development of an efficient drug delivery system to facilitate enhanced transdermal absorption of TCM becomes imperative for its clinical application. In this study, we designed a compound Salvia miltiorrhiza-Blumea balsamifera nanoemulsion gel (CSB-NEG) and investigated its therapeutic effects on rabbit HS models. The prescription of CSB-NEG was optimized by single-factor, pseudoternary phase diagram, and central composite design experiments. The results showed that the average particle size and PDI of the optimized CSB-NE were 46.0 ± 0.2 nm and 0.222 ± 0.004, respectively, and the encapsulation efficiency of total phenolic acid was 93.37 ± 2.56%. CSB-NEG demonstrated excellent stability and skin permeation in vitro and displayed a significantly enhanced ability to inhibit scar formation compared to the CSB physical mixture in vivo. After 3 weeks of CSB-NEG treatment, the scar appeared to be flat, pink, and flexible. Furthermore, this treatment also resulted in a decrease in the levels of the collagen I/III ratio and TGF-ß1 and Smad2 proteins while simultaneously promoting the growth and remodeling of microvessels. These findings suggest that CSB-NEG has the potential to effectively address the barrier properties of the skin and provide therapeutic benefits for HS, offering a new perspective for the prevention and treatment of HS.


Subject(s)
Cicatrix, Hypertrophic , Emulsions , Gels , Salvia miltiorrhiza , Skin Absorption , Rabbits , Animals , Cicatrix, Hypertrophic/drug therapy , Salvia miltiorrhiza/chemistry , Skin Absorption/drug effects , Emulsions/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Disease Models, Animal , Skin/drug effects , Skin/pathology , Skin/metabolism , Administration, Cutaneous , Particle Size , Male , Nanoparticles/chemistry , Medicine, Chinese Traditional/methods , Ear/pathology , Drug Delivery Systems/methods
2.
Molecules ; 29(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731484

ABSTRACT

In this study, we developed a green and multifunctional bioactive nanoemulsion (BBG-NEs) of Blumea balsamifera oil using Bletilla striata polysaccharide (BSP) and glycyrrhizic acid (GA) as natural emulsifiers. The process parameters were optimized using particle size, PDI, and zeta potential as evaluation parameters. The physicochemical properties, stability, transdermal properties, and bioactivities of the BBG-NEs under optimal operating conditions were investigated. Finally, network pharmacology and molecular docking were used to elucidate the potential molecular mechanism underlying its wound-healing properties. After parameter optimization, BBG-NEs exhibited excellent stability and demonstrated favorable in vitro transdermal properties. Furthermore, it displayed enhanced antioxidant and wound-healing effects. SD rats wound-healing experiments demonstrated improved scab formation and accelerated healing in the BBG-NE treatment relative to BBO and emulsifier groups. Pharmacological network analyses showed that AKT1, CXCL8, and EGFR may be key targets of BBG-NEs in wound repair. The results of a scratch assay and Western blotting assay also demonstrated that BBG-NEs could effectively promote cell migration and inhibit inflammatory responses. These results indicate the potential of the developed BBG-NEs for antioxidant and skin wound applications, expanding the utility of natural emulsifiers. Meanwhile, this study provided a preliminary explanation of the potential mechanism of BBG-NEs to promote wound healing through network pharmacology and molecular docking, which provided a basis for the mechanistic study of green multifunctional nanoemulsions.


Subject(s)
Antioxidants , Emulsifying Agents , Emulsions , Glycyrrhizic Acid , Molecular Docking Simulation , Wound Healing , Wound Healing/drug effects , Animals , Emulsions/chemistry , Emulsifying Agents/chemistry , Emulsifying Agents/pharmacology , Rats , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Green Chemistry Technology , Humans , Rats, Sprague-Dawley , Nanoparticles/chemistry , Plant Oils/chemistry , Plant Oils/pharmacology , Fabaceae/chemistry , Male , Particle Size , Cell Movement/drug effects
3.
Molecules ; 29(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731501

ABSTRACT

Bacterial infection is a thorny problem, and it is of great significance to developing green and efficient biological antibacterial agents that can replace antibiotics. This study aimed to rapidly prepare a new type of green antibacterial nanoemulsion containing silver nanoparticles in one step by using Blumea balsamifera oil (BBO) as an oil phase and tea saponin (TS) as a natural emulsifier and reducing agent. The optimum preparation conditions of the AgNPs@BBO-TS NE were determined, as well as its physicochemical properties and antibacterial activity in vitro being investigated. The results showed that the average particle size of the AgNPs@BBO-TS NE was 249.47 ± 6.23 nm, the PDI was 0.239 ± 0.003, and the zeta potential was -35.82 ± 4.26 mV. The produced AgNPs@BBO-TS NE showed good stability after centrifugation and 30-day storage. Moreover, the AgNPs@BBO-TS NE had an excellent antimicrobial effect on Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. These results demonstrated that the AgNPs@BBO-TS NE produced in this study can be used as an efficient and green antibacterial agent in the biomedical field.


Subject(s)
Anti-Bacterial Agents , Emulsions , Green Chemistry Technology , Metal Nanoparticles , Microbial Sensitivity Tests , Particle Size , Silver , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Silver/chemistry , Silver/pharmacology , Metal Nanoparticles/chemistry , Staphylococcus aureus/drug effects , Plant Oils/chemistry , Plant Oils/pharmacology , Pseudomonas aeruginosa/drug effects , Escherichia coli/drug effects , Escherichia coli/growth & development , Saponins/chemistry , Saponins/pharmacology
4.
BMC Oral Health ; 24(1): 582, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764019

ABSTRACT

BACKGROUND: The operation accuracy and efficiency of dynamic navigated endodontic surgery were evaluated through in vitro experiments. This study provides a reference for future clinical application of dynamic navigation systems in endodontic surgery. MATERIALS AND METHODS: 3D-printed maxillary anterior teeth were used in the preparation of models for endodontic surgery. Endodontic surgery was performed with and without dynamic navigation by an operator who was proficient in dynamic navigation technology but had no experience in endodontic surgery. Optical scanning data were applied to evaluate the length and angle deviations of root-end resection. And the operation time was recorded. T tests were used to analyze the effect of dynamic navigation technology on the accuracy and duration of endodontic surgery. RESULTS: With dynamic navigation, the root-end resection length deviation was 0.46 ± 0.06 mm, the angle deviation was 2.45 ± 0.96°, and the operation time was 187 ± 22.97 s. Without dynamic navigation, the root-end resection length deviation was 1.20 ± 0.92 mm, the angle deviation was 16.20 ± 9.59°, and the operation time was 247 ± 61.47 s. Less deviation was achieved and less operation time was spent with than without dynamic navigation (P < 0.01). CONCLUSION: The application of a dynamic navigation system in endodontic surgery can improve the accuracy and efficiency significantly for operators without surgical experience and reduce the operation time.


Subject(s)
Printing, Three-Dimensional , Humans , Pilot Projects , In Vitro Techniques , Surgery, Computer-Assisted/methods , Apicoectomy/methods , Operative Time , Surgical Navigation Systems
5.
Molecules ; 28(15)2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37570859

ABSTRACT

Nanoemulsion is a new multi-component drug delivery system; the selection of different oil phases can give it special physiological activity, and play the role of "medicine and pharmaceutical excipients all-in-one". In this paper, we used glycyrrhizic acid as the natural surfactant, and Blumea balsamifera oil (BB) and tea tree oil (TTO) as the mixed oil phase, to obtain a new green functional composite nanoemulsion. Using the average particle size and polydispersion index (PDI) as the evaluation criteria, the effects of the oil ratio, oil content, glycyrrhizic acid concentration, and ultrasonic time on the nanoemulsion were systematically investigated. The stability and physicochemical properties and biological activities of BB-TTO NEs prepared via the optimum formulation were characterized. The optimal prescription was BB: TTO = 1:1, 5% oil phase, 0.7% glycyrrhizic acid, and 5 min ultrasonication time. The mean particle size, PDI, and zeta potential were 160.01 nm, 0.125, and -50.94 mV, respectively. The nanoemulsion showed non-significant changes in stability after centrifugation, dilution, and 120 days storage. These nanoemulsions were found to exhibit potential antibacterial and anti-inflammatory activities. The minimal inhibitory concentration (MIC) of BB-TTO NEs against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa is 2975 µg/mL, 2975 µg/mL, and 5950 µg/mL, respectively. A lower level of inflammatory cell infiltration and proportion of fibrosis were found in the synovial tissue of AIA rats treated with BB-TTO NEs. These findings demonstrate that the BB-TTO NEs produced in this study have significant potential for usage in antibacterial and anti-inflammatory areas.


Subject(s)
Tea Tree Oil , Rats , Animals , Tea Tree Oil/pharmacology , Tea Tree Oil/chemistry , Glycyrrhizic Acid/pharmacology , Escherichia coli , Drug Delivery Systems , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Emulsions/chemistry
6.
Arch Microbiol ; 203(4): 1477-1488, 2021 May.
Article in English | MEDLINE | ID: mdl-33394080

ABSTRACT

The gut microbiota inhabits the animal intestinal tract, and dysbiosis of the gut microbiota may result in disease. Senecio scandens has pharmaceutical antibacterial activities and is regarded as a broad-spectrum antibiotic in traditional Chinese medicine. Extracts of S. scandens are reported to show strong antimicrobial activity, and quercetin significantly decreases some species in the caecal microflora. However, the bactericidal effects of the extracts on the gut microbiota remain obscure. Here, we supplied ethanol extract of S. scandens, which might possibly be used as an alternative for chemical antibiotics, to mice to investigate the state of the intestinal microbiota. Our studies included a control group, low-, moderate-, and high-dose ethanol extract groups, and cefixime capsule group. The ethanol extract groups did not present reduced diversity or differences in the gut microbiota balance. There were significant differences between the ethanol extract and cefixime capsule groups in terms of the gut microbiota. The control and ethanol extract groups contained similar bacteria, which suggested that the ethanol extract has no inhibitory effect on the gut microbiota in vivo. Bifidobacteriales and Lactobacillus acidophilus were significantly increased in the high-dose group. Both secretory immunoglobulin A and mucin 2 concentrations increased as the dose of ethanol extract increased. The functional prediction differences between the control and ethanol extract groups decreased with increasing extract doses, which indicated that the low-dose and high-dose extract treatments might regulate different pathways and functions of the gut microbiota. The results also highlighted the prevention of bacterial drug resistance in the ethanol extract groups.


Subject(s)
Bacteria , Gastrointestinal Microbiome , Plant Extracts , Senecio , Animals , Bacteria/drug effects , Biodiversity , Ethanol/chemistry , Gastrointestinal Microbiome/drug effects , Gene Expression Regulation/drug effects , Immunoglobulin A/genetics , Mice , Mucin-2/genetics , Plant Extracts/pharmacology , Probiotics , Senecio/chemistry
7.
Zhongguo Zhong Yao Za Zhi ; 46(20): 5278-5283, 2021 Oct.
Article in Zh | MEDLINE | ID: mdl-34738430

ABSTRACT

Triptolide(TP), the main active and toxic component of Tripterygium wilfordii, has the limitations of low bioavailability, poor absorption, low concentration in plasma, and small lethal dose. Microneedle(MN), the hybrid of hypodermic needle and transdermal patch, is a physical penetration-enhancing system. Dissolving microneedles(DMNs) can be tailored to specific needs of degradation rate. In this study, the TP-loaded DMNs(DMNs-TP) were prepared with the two-step centrifugation method. The optimal ratio of PVA to PVP K30, water content in matrix solution, demoulding method, and plasticizer for preparing DMNs were investigated with the indexes of formability and mechanical strength. The drug loading capacity was determined by HPLC and morphological characteristics were observed under an optical microscope. The mechanical properties were investigated by H&E staining and Franz diffusion cell was used to detect the in vitro skin permeation characteristics. Through the experiment, we confirmed that the optimal backing material should be PVA and PVP K30(3∶1) and the optimal ratio of matrix material to water should be 3∶4. The prepared DMNs-TP were pyramidal with smooth surface and length of approximately 550 µm. Each patch(2.75 cm~2) had the drug loading capacity of(153.41±2.29) µg, and TP was located in the upper part of the needle. The results of in vitro skin permeation assay demonstrated that the cumulative penetration of TP in DMNs-TP reached 80% in 24 h, while little TP solution penetrated the skin, which proved that DMNs promoted the transdermal delivery of TP.


Subject(s)
Diterpenes , Phenanthrenes , Administration, Cutaneous , Drug Delivery Systems , Epoxy Compounds , Needles , Skin
8.
Int J Mol Sci ; 20(12)2019 Jun 19.
Article in English | MEDLINE | ID: mdl-31248076

ABSTRACT

Pancreatic cancer is a concealed and highly malignant tumor, and its early diagnosis plays an increasingly weighty role during the course of cancer treatment. In this study, we developed a polymeric magnetic resonance imaging (MRI) nanoplatform for MRI contrast agents. To improve tumor-targeting delivery of MRI contrast agents, we employed a pancreatic cancer targeting CKAAKN peptide to prepare a peptide-functionalized amphiphilic hyaluronic acid-vitamin E succinate polymer (CKAAKN-HA-VES) for delivering ultra-small superparamagnetic iron oxide (USPIO), namely, CKAAKN-HA-VES@USPIO. With the modification of the CKAAKN peptide, CKAAKN-HA-VES@USPIO could specifically internalize into CKAAKN-positive BxPC-3 cells. The CKAAKN-HA-VES@USPIO nanoparticles presented a more specific accumulation into pancreatic cancer cells than normal pancreatic cells, and an obvious decrease in signal intensity was observed in CKAAKN-positive BxPC-3 cells, compared with CKAAKN-negative HPDE6-C7 cells and non-targeting HA-VES@USPIO nanoparticles. The results demonstrated that our polymeric MRI nanoplatform could selectively internalize into CKAAKN-positive pancreatic cancer cells by the specific binding of CKAAKN peptide with pancreatic cancer cell membrane receptors, which provided a novel polymeric MRI contrast agent with high specificity for pancreatic cancer diagnosis, and makes it a very promising candidate for magnetic resonance imaging contrast enhancement.


Subject(s)
Biopolymers/chemistry , Contrast Media/chemistry , Magnetite Nanoparticles/chemistry , Peptides/chemistry , Theranostic Nanomedicine , Cell Line, Tumor , Cell Survival , Chemistry Techniques, Synthetic , Humans , Magnetic Resonance Imaging/methods , Magnetite Nanoparticles/ultrastructure , Molecular Structure , Pancreatic Neoplasms/diagnostic imaging , Theranostic Nanomedicine/methods
9.
Small ; 12(48): 6753-6766, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27677919

ABSTRACT

Near-infrared (NIR) laser-controlled gene delivery presents some benefits in gene therapy, inducing enhanced gene transfection efficiency. In this study, a "photothermal transfection" agent is obtained by wrapping poly(ethylenimine)-cholesterol derivatives (PEI-Chol) around single-walled carbon nanotubes (SWNTs). The PEI-Chol modified SWNTs (PCS) are effective in compressing DNA molecules and protecting them from DNaseI degradation. Compared to the complexes formed by PEI with DNA (PEI/DNA), complexes of PCS and DNA that are formed (PCS/DNA) exhibit a little lower toxicity to HEK293 and HeLa cells under the same PEI molecule weight and weight ratios. Notably, caveolae-mediated cellular uptake of PCS/DNA occurs, which results in a safer intracellular transport of the gene due to the decreased lysosomal degradation in comparison with that of PEI/DNA whose internalization mainly depends on clathrin rather than caveolae. Furthermore, unlike PEI/DNA, PCS/DNA exhibits a photothermal conversion ability, which promotes DNA release from PCS under NIR laser irradiation. The NIR laser-mediated photothermal transfection of PCS10K /plasmid TP53 (pTP53) results in more apoptosis and necrosis of HeLa cells in vitro than other groups, and achieves a higher tumor-growth inhibition in vivo than naked pTP53, PEI25K /pTP53, and PCS10K /pTP53 alone. The enhanced transfection efficiency of PCS/DNA can be attributed to more efficient DNA internalization into the tumor cells, promotes detachment of DNA from PCS under the mediation of NIR laser and higher DNA stability in the cells due to caveolae-mediated cellular uptake of the complexes.


Subject(s)
Gene Transfer Techniques , Nanotubes, Carbon/chemistry , DNA/genetics , HEK293 Cells , HeLa Cells , Humans , Plasmids/genetics , Polyethyleneimine/chemistry , Transfection
10.
Beijing Da Xue Xue Bao Yi Xue Ban ; 47(1): 120-3, 2015 Feb 18.
Article in Zh | MEDLINE | ID: mdl-25686341

ABSTRACT

OBJECTIVE: To evaluate effects of color matching of different cavosurface margins on the resin composites in vitro. METHODS: Twenty extracted human premolars with an A2 shade buccal surface were used in this study. Rectangular shaped cavities (3.0 mm depth, 2.0 mm width, 2.0 mm length) were prepared in the center of the buccal surfaces. The gingival and occlusal cavosurface margins were prepared to be either shoulder or bevel; the other cavosurface margins remained vertical. Ten teeth were filled with Clearfil AP-X (AP), the other ten with Clearfil Majesty (MJ) and light cured. The color difference at the cavosurface margin area was measured using a spectrophotometer (CrystalEye) and evaluated by 3 observers subjectively. The data were statistically analyzed using repeated measures ANOVA and Chi-square test. RESULTS: When measured by CrystalEye, the color difference between the tooth and resin composite was reduced from the center of restoration to the cavosurface margin area. Both objective and subjective evaluations showed that for AP, the color difference at the cavosurface margin area had no statistical difference among 3 types of the margins; for MJ, the color difference at bevel margin area was significantly smaller than that at the vertical margin area. CONCLUSION: The resin composite restorations produced the color matching at marginal area. The color matching of resin composites with higher diffused light transmission property is more susceptible to the type of cavosurface margins. Preparing bevels may reduce the color difference between the restoration and tooth surface.


Subject(s)
Color , Composite Resins , Dental Cavity Preparation , Dental Restoration, Permanent , Methacrylates , Bicuspid , Humans , Light
11.
Pharm Res ; 31(3): 554-65, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24022681

ABSTRACT

PURPOSE: To develop a near-infrared (NIR) light-sensitive liposome, which contains hollow gold nanospheres (HAuNS) and doxorubicin (DOX), and evaluate their potential utility for enhancing antitumor activity and controlling drug release. METHODS: The liposomes (DOX&HAuNS-TSL) were designed based on a thermal sensitive liposome (TSL) formulation, and hydrophobically modified HAuNS were attached onto the membrane of the liposomes. The behavior of DOX release from the liposomes was investigated by the dialysis, diffusion in agarose gel and cellular uptake of the drug. The biodistribution of DOX&HAuNS-TSL was assessed by i.v. injection in tumor-bearing nude mice. Antitumor efficacy was evaluated both histologically using excised tissue and intuitively by measuring the tumor size and weight. RESULTS: Rapid and repetitive DOX release from the liposomes (DOX&HAuNS-TSL), could be readily achieved upon NIR laser irradiation. The treatment of tumor cells with DOX&HAuNS-TSL followed by NIR laser irradiation showed significantly greater cytotoxicity than the treatment with DOX&HAuNS-TSL alone, DOX-TSL alone (chemotherapy alone) and HAuNS-TSL plus NIR laser irradiation (Photothermal ablation, PTA, alone). In vivo antitumor study indicated that the combination of simultaneous photothermal and chemotherapeutic effect mediated by DOX&HAuNS-TSL plus NIR laser presented a significantly higher antitumor efficacy than the PTA alone mediated by HAuNS-TSL plus NIR laser irradiation. CONCLUSIONS: Our study could be as the valuable reference and direction for the clinical application of PTA in tumor therapy.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Delayed-Action Preparations/chemistry , Doxorubicin/analogs & derivatives , Gold/chemistry , Liposomes/chemistry , Nanospheres/chemistry , Neoplasms/therapy , Animals , Antibiotics, Antineoplastic/pharmacokinetics , Antibiotics, Antineoplastic/therapeutic use , Cell Line, Tumor , Doxorubicin/administration & dosage , Doxorubicin/pharmacokinetics , Doxorubicin/therapeutic use , Humans , Hyperthermia, Induced , Infrared Rays , Light , Liposomes/ultrastructure , Male , Mice , Mice, Nude , Nanospheres/ultrastructure , Neoplasms/pathology , Photochemotherapy , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/pharmacokinetics , Polyethylene Glycols/therapeutic use , Tissue Distribution
12.
Beijing Da Xue Xue Bao Yi Xue Ban ; 46(1): 30-4, 2014 Feb 18.
Article in Zh | MEDLINE | ID: mdl-24535343

ABSTRACT

OBJECTIVE: To evaluate the effects of a commercial bleaching agent containing 35% (mass fraction) hydrogen peroxide on the growth of Streptococcus mutans biofilm on enamel disc surface. METHODS: A total of 20 enamel disks were made from human extracted teeth and the enamel surfaces were kept intact. The discs were autocalved and randomly divided into two groups: bleaching group and control group. Each group contained 10 discs. For bleaching group, the enamel discs were whitened by commercial 35% hydrogen peroxide according to the instruction (Beyond(TM) Professional Dental Whitening Kit, Beyond Technology, TX,USA ); no treatment for control group. All the discs were kept in sterile human saliva for 3.5 hours, and then the mixture of brain heart infusion broth (BHI) medium and Streptococcus mutans were added. The discs and Streptococcus mutans were incubated together in BHI medium with 5% CO(2) (volume fraction), at 37 °C. After 3, 7, 14, 21 and 28 d's incubation, two discs of each group were taken out and the biofilms on the enamel surfaces were evaluated by using conventional bacteria counts and confocal laser scanning microscope (CLSM). The bacteria in the biofilm on one disc enamel surface were analyzed by plating on BHIS agar and the colony-forming units were counted. The biofilm on the other disc surface was stained using a two-colour fluorescent dye kit (Bacerial Viability Kit L-7012) for CLSM. RESULTS: The vital bacteria counts of vital cells in the 3, 7, and 14 d's biofilms of the bleaching group were significantly fewer than those of the control group. Especially in the 3 days' biofilm on the whitened surface, the vital bacteria counts [(3 595 ± 2 903) µm(2) vs. (89 155 ± 65 963) µm(2),t = 8.71,P = 0.00] and proportion of vital bacteria [(26.0% ± 16.4%) vs.(92.2% ± 10.9%), t = 19.93, P = 0.00] were significantly fewer than those of the control. While, for the 21d's biofilm, the vital bacteria counts and the percentage of the vital cells of the bleaching group were more than those of the control group significantly [(66 262 ± 23 772) µm(2) vs. (51 184 ± 20 502) µm(2), t = 2.59, P = 0.012]. CONCLUSION: The hydrogen peroxide-containing bleaching agent may inhibit the growth of Streptococcus mutans biofilm for about 3 weeks; but after 3 weeks, it seems that the bleached surface will increase the growth of biofilm. Whether the whitening therapy will increase caries susceptibility of the bleached surface needs further research.


Subject(s)
Biofilms/drug effects , Dental Enamel/microbiology , Hydrogen Peroxide/chemistry , Streptococcus mutans/drug effects , Tooth Bleaching , Humans
13.
Beijing Da Xue Xue Bao Yi Xue Ban ; 46(1): 95-9, 2014 Feb 18.
Article in Zh | MEDLINE | ID: mdl-24535357

ABSTRACT

OBJECTIVE: To investigate the root canal configuration of mandibular anterior teeth with cone-beam computed tomography (CBCT). METHODS: The CBCT imaging data of 866 patients who visited Peking University School of Stomatology from October 2012 to July 2013 were inspected by an endodontist anda radiologists together. A total of 4 674 mandibular anterior teeth were involved. The number of root, root canals and root canal configuration were observed and analyzed statistically (Chi-squared test). RESULTS: All the mandibular central incisors and lateral incisors were single root, and 0.7% (11/1 542) of canines were double roots. 6.7% (105/1 566) of central incisors, 17.4% (273/1 566) of lateral incisors and 3.0% (46/1 542) of canines had double root canals. The frequency of symmetry of double root canal was 58.7% (37/63) in central incisors, 76.1% (108/142) in lateral incisors and 29.6% (8/27) in canines. The highest frequency of double root canals in different ages was 9.8% (28/287, 31-40 years) in central incisors, 21.5% (61/284, 31-40 years) in lateral incisors and 9.2% (19/207, ≥51 years) in canines. Vertucci type III canal configurations were the most prevalent in mandibular anterior teeth. CONCLUSION: The double root canals are most common in mandibular lateral incisors. The highest incidence of symmetry of double root canal is also observed in mandibular lateral incisors. Vertucci type III canal configurations are the most frequent type in mandibular anterior teeth.


Subject(s)
Cone-Beam Computed Tomography , Dental Pulp Cavity , Tooth Root , Humans , Incisor , Mandible
14.
Front Plant Sci ; 15: 1389864, 2024.
Article in English | MEDLINE | ID: mdl-38812734

ABSTRACT

Purpose: The large-scale planting of potatoes leads to soil degradation, thus limiting the potato yield. An effective method of improving soil quality involves the combined application of biochar and organic fertilizer. However, the proportion of biochar and organic fertilizer at which potato yield can be improved, as well as the improvement mechanism, remain unclear. Methods: A combined application experiment involving biochar (B) and organic fertilizer (O) with four concentration gradients was conducted using the equal carbon ratio method. On this basis, rhizosphere soil fertility, bacterial community composition, and bacterial diversity in potato crops, as well as the potato yield difference under different combined application ratios, were investigated. Then, the direct and indirect effects of these factors on potato yield were analyzed. Results: The results suggest that soil fertility was improved by the combined application of biochar and organic fertilizer, with the best effect being achieved at a ratio of B:O=1:2. The dominant bacterial communities in the potato rhizosphere included Proteobacteria, Actinobacteria, Gemmatimonadetes, Chloroflexi, and Bacteroidetes. When compared to the control, the relative abundance and diversity index of soil bacteria were significantly improved by the treatment at B:O=1:2, which exerted a stronger effect on improving the relative abundance of beneficial bacteria. Soil available phosphorus (AP), soil pH (SpH), and soil organic carbon (SOC) explained 47.52% of the variation in bacterial composition. Among them, the main factor was the content of soil available nutrients, while SpH generated the weakest effect. The bacterial diversity index showed a significant positive correlation with soil AP, SOC, available potassium (AK), total nitrogen (TN), and C/N ratio, and a significant negative correlation with SpH. Bacterial diversity directly affected the potato yield, while soil fertility indirectly affected potato yield by influencing the soil bacterial diversity. Conclusion: The combined application of biochar and organic fertilizer elevates potato yield mainly by improving the diversity of bacterial communities in potato rhizosphere soil, especially the combined application of biochar and organic fertilizer at a 1:2 ratio (biochar 0.66 t ha-1+organic fertilizer 4.46 t ha-1), which made the largest contribution to increasing potato yield.

15.
Front Immunol ; 15: 1380229, 2024.
Article in English | MEDLINE | ID: mdl-38911867

ABSTRACT

Background: Vitamin E, which is also known as tocopherol, is a compound with a polyphenol structure. Its esterified derivative, Vitamin E succinate (VES), exhibits unique anticancer and healthcare functions as well as immunomodulatory effects. Natural polysaccharides are proved to be a promising material for nano-drug delivery systems, which show excellent biodegradability and biocompatibility. In this study, we employed a novel bletilla striata polysaccharide-vitamin E succinate polymer (BSP-VES) micelles to enhance the tumor targeting and anti-colon cancer effect of andrographolide (AG). Methods: BSP-VES polymer was synthesized through esterification and its structure was confirmed using 1H NMR. AG@BSP-VES was prepared via the dialysis method and the drug loading, entrapment efficiency, stability, and safety were assessed. Furthermore, the tumor targeting ability of AG@BSP-VES was evaluated through targeted cell uptake and in vivo imaging. The antitumor activity of AG@BSP-VES was measured in vitro using MTT assay, Live&Dead cell staining, and cell scratch test. Results: In this study, we successfully loaded AG into BSP-VES micelles (AG@BSP-VES), which exhibited good stability, biosafety and sustained release effect. In addition, AG@BSP-VES also showed excellent internalization capability into CT26 cells compared with NCM460 cells in vitro. Meanwhile, the specific delivery of AG@BSP-VES micelles into subcutaneous and in-situ colon tumors was observed compared with normal colon tissues in vivo during the whole experiment process (1-24 h). What's more, AG@BSP-VES micelles exhibited significant antitumor activities than BSP-VES micelles and free AG. Conclusion: The study provides a meaningful new idea and method for application in drug delivery system and targeted treatment of colon cancer based on natural polysaccharides.


Subject(s)
Colonic Neoplasms , Diterpenes , Micelles , Polysaccharides , Animals , Colonic Neoplasms/drug therapy , Diterpenes/chemistry , Diterpenes/pharmacology , Diterpenes/administration & dosage , Humans , Mice , Cell Line, Tumor , Polysaccharides/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Drug Delivery Systems , Xenograft Model Antitumor Assays , Drug Carriers/chemistry , Nanoparticles/chemistry , Nanoparticle Drug Delivery System/chemistry , Mice, Nude , Mice, Inbred BALB C
16.
J Endod ; 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37633517

ABSTRACT

INTRODUCTION: The aim of this retrospective cohort study was to evaluate the clinical outcomes and identify the prognostic factors of endodontic microsurgery based on cone-beam computed tomographic (CBCT) scans. METHODS: Patients who underwent endodontic microsurgery in teeth with asymptomatic apical periodontitis were included. The clinical outcomes were determined based on clinical and radiographic examinations after surgery 12-48 months. Radiographic healing was assessed on CBCT images by using the modified PENN 3-dimensional criteria and classified into 4 categories: complete, limited, uncertain, and unsatisfactory healing. Multivariate logistic regression was performed to detect outcome risk factors. RESULTS: Of the 204 teeth in 173 invited patients, 148 teeth of 126 patients were examined at review. On CBCT images, 88 teeth (59.5%) showed complete healing, and 42 (28.4%) teeth showed limited healing. All these 130 teeth were asymptomatic and achieved a clinical success rate of 87.8%. Uncertain healing was observed in 9 teeth, one of which was symptomatic. The remaining 9 teeth were unsatisfactory healing on CBCT scans, including 6 teeth with clinical symptoms and 3 free. Lesion type and root-end filling quality were significant outcome predictors (P < .05). The risk of treatment failure for teeth with combined endodontic-periodontal lesions was 8.6 times higher than that for teeth with isolated endodontic lesions. Adequate root-end filling quality improved the probability of success by 5.3 times. CONCLUSIONS: Based on CBCT data, an adequate performed endodontic microsurgery could have predictable success in teeth without periodontal involvement.

17.
Curr Pharm Des ; 29(9): 686-696, 2023.
Article in English | MEDLINE | ID: mdl-36967466

ABSTRACT

AIMS: This study aims to develop a novel tumor-targeted molecular probe for pancreatic cancer imaging. The objective of this is to prepare a CKAAKN peptide-conjugated poly (lactic-co-glycolic acid)-poly (ethylene glycol) amphiphilic polymer (CKAAKN-PEG-PLGA) for the tumor-targeted delivery of magnetic resonance imaging (MRI) contrast agent ultrasmall superparamagnetic iron oxide (USPIO). BACKGROUND: The early diagnosis of pancreatic cancer is crucial for improving its prognosis, but the clinical application of many diagnostic methods is limited owing to a lack of specificity and sensitivity. METHODS: CKAAKN-PEG-PLGA was synthesized by the amidation reaction. USPIO-loaded polymeric magnetic nanoparticles (USPIO@CKAAKN-PEG-PLGA) were prepared by the emulsion solvent evaporation method. The in vitro tumor targeting and bio-safety of nanoparticles were evaluated by targeted cellular uptake, MR imaging and MTT assay. RESULTS: USPIO@CKAAKN-PEG-PLGA nanoparticles showed excellent biosafety with an average diameter of 104.5 ± 4.1 nm. Modification of CKAAKN peptide could improve USPIO binding ability to internalize into CKAAKN-positive BxPC-3 cells compared with non-targeting nanoparticles and the control group. The relative fluorescence intensity in BxPC-3 and HPDE6-C7 cells was 23.77 ± 4.18 and 6.44 ± 2.10 (p < 0.01), and respectively became 16.13 ± 0.83 and 11.74 ± 1.74 after the addition of free CKAAKN peptide. In vitro MR imaging studies showed that an obvious decrease in the signal intensity was observed in the targeted nanoparticles group incubated with BxPC-3 and HPDE6-C7 cells (p < 0.05). CONCLUSION: USPIO@CKAAKN-PEG-PLGA nanoparticles could significantly enhance the tumor specificity of USPIO in CKAAKN-positive pancreatic cancer cell BxPC-3, which is expected as a promising candidate of MRI contrast enhancement for the early diagnosis of pancreatic cancer.


Subject(s)
Adenocarcinoma , Magnetite Nanoparticles , Nanoparticles , Pancreatic Neoplasms , Humans , Polymers , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/drug therapy , Cell Line, Tumor , Magnetite Nanoparticles/chemistry , Contrast Media/chemistry , Polyethylene Glycols/chemistry , Magnetic Resonance Imaging/methods , Peptides , Pancreatic Neoplasms
18.
Int J Oral Sci ; 15(1): 43, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37723147

ABSTRACT

The dental operative microscope has been widely employed in the field of dentistry, particularly in endodontics and operative dentistry, resulting in significant advancements in the effectiveness of root canal therapy, endodontic surgery, and dental restoration. However, the improper use of this microscope continues to be common in clinical settings, primarily due to operators' insufficient understanding and proficiency in both the features and established operating procedures of this equipment. In October 2019, Professor Jingping Liang, Vice Chairman of the Society of Cariology and Endodontology, Chinese Stomatological Association, organized a consensus meeting with Chinese experts in endodontics and operative dentistry. The objective of this meeting was to establish a standard operation procedure for the dental operative microscope. Subsequently, a consensus was reached and officially issued. Over the span of about four years, the content of this consensus has been further developed and improved through practical experience.


Subject(s)
Dentistry, Operative , Endodontics , Humans , Consensus , Root Canal Therapy , Dental Care
19.
BMJ Open ; 12(12): e064901, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36523218

ABSTRACT

INTRODUCTION: Endodontic microsurgery is a very important technique for preserving the natural teeth. The outcomes of endodontic microsurgery largely depend on the skill and experience of the operators, especially for cases in which the apices are located far away from the labial/buccal cortical bone. A dynamic navigation system (DNS) could provide a more accurate and efficient way to carry out endodontic microsurgery. This study is devoted to comparing the clinical outcomes of the DNS technique with those of the freehand technique. METHODS AND ANALYSIS: Sixteen patients will be randomly assigned to one of two groups. For the experimental group, the osteotomy and root-end resection will be performed under the guidance of dynamic navigation. For the control group, these procedures will be performed freehand by an endodontist. The required time to perform these procedures will be used to evaluate the efficiency of the DNS technique. A Visual Analogue Scale will be used to evaluate pain at 1, 3 and 7 days after endodontic microsurgery. Preoperative and postoperative cone beam CT scans will be obtained to evaluate the accuracy of the DNS technique. The global coronal deviations, the apical deviations and the angular deflection will be measured. The root-end resection length deviation, the root-end resection angle deviations, the extent of the osteotomy and the volume change of the buccal cortical bone will also be measured. Periapical radiographs will be obtained to evaluate the outcome at 1 year after microsurgery. The time to execute the study, including follow-ups, will last from 1 June 2022 to 31 December 2025. ETHICS AND DISSEMINATION: The present study has received approval from the Ethics Committee of Peking University School and Hospital of Stomatology. The results will be disseminated through scientific journals. TRIAL REGISTRATION NUMBER: ChiCTR2200059389.


Subject(s)
Cone-Beam Computed Tomography , Microsurgery , Humans , Microsurgery/methods , Cortical Bone , Osteotomy , Randomized Controlled Trials as Topic
20.
Front Oncol ; 12: 903554, 2022.
Article in English | MEDLINE | ID: mdl-36452505

ABSTRACT

Background: Melanoma has dramatically increased during last 30 years with low 5-year survival and prognosis rate. Methods: Melanoma cells (A375 and G361) were chosen as the in vitro model. The immunohistochemical (IHC) analysis and bioinformatics mining exhibited the suppression of PCDH9 on melanoma. The interference and overexpression of PCDH9 were infected by lentivirus. The effects of PCDH9 on melanoma cells were assessed in terms of alteration of PCDH9 such as cell viability, apoptosis, cell cycle, and wound-healing assay. Moreover, expressions of PCDH9 with other genes (MMP2, MMP9, CCND1, and RAC1) were also assessed by PCR. Results: The alteration of PCDH9 has a negative correlation with MMP2, MMP9, and RAC1 but had a positive correlation with CCND1 (Cyclin D1) and apoptosis. Increase of PCDH9 could suppress melanoma cells and inhibit migration but not exert significant effects on cell cycle. IHC showed lower PCDH9 expression in melanoma tissue with main expression in cytoplasm. Conclusion: Overexpressed PCDH9 suppressed melanoma cells, and PCDH9 can be considered as an independent prognostic factor for melanoma; even re-expression of PCDH9 can serve as a potential therapeutic strategy for melanoma treatment.

SELECTION OF CITATIONS
SEARCH DETAIL