Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Publication year range
1.
Phys Rev Lett ; 130(24): 241402, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37390425

ABSTRACT

We produce gravitational waveforms for nonspinning compact binaries undergoing a quasicircular inspiral. Our approach is based on a two-timescale expansion of the Einstein equations in second-order self-force theory, which allows first-principles waveform production in tens of milliseconds. Although the approach is designed for extreme mass ratios, our waveforms agree remarkably well with those from full numerical relativity, even for comparable-mass systems. Our results will be invaluable in accurately modeling extreme-mass-ratio inspirals for the LISA mission and intermediate-mass-ratio systems currently being observed by the LIGO-Virgo-KAGRA Collaboration.

2.
Phys Rev Lett ; 128(15): 151101, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35499892

ABSTRACT

Perturbations of Kerr spacetime are typically studied with the Teukolsky formalism, in which a pair of gauge invariant components of the perturbed Weyl tensor are expressed in terms of separable modes that satisfy ordinary differential equations. However, for certain applications it is desirable to construct the full metric perturbation in the Lorenz gauge, in which the linearized Einstein field equations take a manifestly hyperbolic form. Here we obtain a set of Lorenz-gauge solutions to the linearized vacuum field equations on Kerr-Newman-Unti-Tamburino spacetimes in terms of homogeneous solutions to the spin-2, spin-1, and spin-0 Teukolsky equations. We also derive Lorenz-gauge completion pieces representing mass and angular momentum perturbations of Kerr spacetime.

3.
Phys Rev Lett ; 127(15): 151102, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34678035

ABSTRACT

Within the framework of self-force theory, we compute the gravitational-wave energy flux through second order in the mass ratio for compact binaries in quasicircular orbits. Our results are consistent with post-Newtonian calculations in the weak field, and they agree remarkably well with numerical-relativity simulations of comparable-mass binaries in the strong field. We also find good agreement for binaries with a spinning secondary or a slowly spinning primary. Our results are key for accurately modeling extreme-mass-ratio inspirals and will be useful in modeling intermediate-mass-ratio systems.

4.
Exp Astron (Dordr) ; 51(3): 1385-1416, 2021.
Article in English | MEDLINE | ID: mdl-34720415

ABSTRACT

Black holes are unique among astrophysical sources: they are the simplest macroscopic objects in the Universe, and they are extraordinary in terms of their ability to convert energy into electromagnetic and gravitational radiation. Our capacity to probe their nature is limited by the sensitivity of our detectors. The LIGO/Virgo interferometers are the gravitational-wave equivalent of Galileo's telescope. The first few detections represent the beginning of a long journey of exploration. At the current pace of technological progress, it is reasonable to expect that the gravitational-wave detectors available in the 2035-2050s will be formidable tools to explore these fascinating objects in the cosmos, and space-based detectors with peak sensitivities in the mHz band represent one class of such tools. These detectors have a staggering discovery potential, and they will address fundamental open questions in physics and astronomy. Are astrophysical black holes adequately described by general relativity? Do we have empirical evidence for event horizons? Can black holes provide a glimpse into quantum gravity, or reveal a classical breakdown of Einstein's gravity? How and when did black holes form, and how do they grow? Are there new long-range interactions or fields in our Universe, potentially related to dark matter and dark energy or a more fundamental description of gravitation? Precision tests of black hole spacetimes with mHz-band gravitational-wave detectors will probe general relativity and fundamental physics in previously inaccessible regimes, and allow us to address some of these fundamental issues in our current understanding of nature.

5.
Phys Rev Lett ; 124(2): 021101, 2020 Jan 17.
Article in English | MEDLINE | ID: mdl-32004014

ABSTRACT

Self-force theory is the leading method of modeling extreme-mass-ratio inspirals (EMRIs), key sources for the gravitational-wave detector LISA. It is well known that for an accurate EMRI model, second-order self-force effects are critical, but calculations of these effects have been beset by obstacles. In this Letter we present the first implementation of a complete scheme for second-order self-force computations, specialized to the case of quasicircular orbits about a Schwarzschild black hole. As a demonstration, we calculate the gravitational binding energy of these binaries.

6.
Phys Rev Lett ; 108(19): 191102, 2012 May 11.
Article in English | MEDLINE | ID: mdl-23003022

ABSTRACT

The motion of a charged particle is influenced by the self-force arising from the particle's interaction with its own field. In a curved spacetime, this self-force depends on the entire past history of the particle and is difficult to evaluate. As a result, all existing self-force evaluations in curved spacetime are for particles moving along a fixed trajectory. Here, for the first time, we overcome this long-standing limitation and present fully self-consistent orbits and waveforms of a scalar charged particle around a Schwarzschild black hole.

SELECTION OF CITATIONS
SEARCH DETAIL