Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 361
Filter
Add more filters

Publication year range
1.
Am J Respir Crit Care Med ; 209(1): 70-82, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37878820

ABSTRACT

Rationale: Acute lung injury (ALI) carries a high risk of mortality but has no established pharmacologic therapy. We previously found that experimental ALI occurs through natural killer (NK) cell NKG2D receptor activation and that the cognate human ligand, MICB, was associated with ALI after transplantation. Objectives: To investigate the association of a common missense variant, MICBG406A, with ALI. Methods: We assessed MICBG406A genotypes within two multicenter observational study cohorts at risk for ALI: primary graft dysfunction (N = 619) and acute respiratory distress syndrome (N = 1,376). Variant protein functional effects were determined in cultured and ex vivo human samples. Measurements and Main Results: Recipients of MICBG406A-homozygous allografts had an 11.1% absolute risk reduction (95% confidence interval [CI], 3.2-19.4%) for severe primary graft dysfunction after lung transplantation and reduced risk for allograft failure (hazard ratio, 0.36; 95% CI, 0.13-0.98). In participants with sepsis, we observed 39% reduced odds of moderately or severely impaired oxygenation among MICBG406A-homozygous individuals (95% CI, 0.43-0.86). BAL NK cells were less frequent and less mature in participants with MICBG406A. Expression of missense variant protein MICBD136N in cultured cells resulted in reduced surface MICB and reduced NKG2D ligation relative to wild-type MICB. Coculture of variant MICBD136N cells with NK cells resulted in less NKG2D activation and less susceptibility to NK cell killing relative to the wild-type cells. Conclusions: These data support a role for MICB signaling through the NKG2D receptor in mediating ALI, suggesting a novel therapeutic approach.


Subject(s)
Acute Lung Injury , Primary Graft Dysfunction , Humans , Acute Lung Injury/genetics , Genomics , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , NK Cell Lectin-Like Receptor Subfamily K/genetics , NK Cell Lectin-Like Receptor Subfamily K/metabolism
2.
Am J Respir Crit Care Med ; 209(1): 37-47, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37487152

ABSTRACT

Background: Since publication of the 2012 Berlin definition of acute respiratory distress syndrome (ARDS), several developments have supported the need for an expansion of the definition, including the use of high-flow nasal oxygen, the expansion of the use of pulse oximetry in place of arterial blood gases, the use of ultrasound for chest imaging, and the need for applicability in resource-limited settings. Methods: A consensus conference of 32 critical care ARDS experts was convened, had six virtual meetings (June 2021 to March 2022), and subsequently obtained input from members of several critical care societies. The goal was to develop a definition that would 1) identify patients with the currently accepted conceptual framework for ARDS, 2) facilitate rapid ARDS diagnosis for clinical care and research, 3) be applicable in resource-limited settings, 4) be useful for testing specific therapies, and 5) be practical for communication to patients and caregivers. Results: The committee made four main recommendations: 1) include high-flow nasal oxygen with a minimum flow rate of ⩾30 L/min; 2) use PaO2:FiO2 ⩽ 300 mm Hg or oxygen saturation as measured by pulse oximetry SpO2:FiO2 ⩽ 315 (if oxygen saturation as measured by pulse oximetry is ⩽97%) to identify hypoxemia; 3) retain bilateral opacities for imaging criteria but add ultrasound as an imaging modality, especially in resource-limited areas; and 4) in resource-limited settings, do not require positive end-expiratory pressure, oxygen flow rate, or specific respiratory support devices. Conclusions: We propose a new global definition of ARDS that builds on the Berlin definition. The recommendations also identify areas for future research, including the need for prospective assessments of the feasibility, reliability, and prognostic validity of the proposed global definition.


Subject(s)
Respiratory Distress Syndrome , Humans , Prospective Studies , Reproducibility of Results , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/therapy , Oximetry , Oxygen
3.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L29-L38, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37991487

ABSTRACT

Cell-free hemoglobin (CFH) is elevated in the airspace of patients with acute respiratory distress syndrome (ARDS) and is sufficient to cause acute lung injury in a murine model. However, the pathways through which CFH causes lung injury are not well understood. Toll-like receptor 4 (TLR4) is a mediator of inflammation after detection of damage- and pathogen-associated molecular patterns. We hypothesized that TLR4 signaling mediates the proinflammatory effects of CFH in the airspace. After intratracheal CFH, BALBc mice deficient in TLR4 had reduced inflammatory cell influx into the airspace [bronchoalveolar lavage (BAL) cell counts, median TLR4 knockout (KO): 0.8 × 104/mL [IQR 0.4-1.2 × 104/mL], wild-type (WT): 3.0 × 104/mL [2.2-4.0 × 104/mL], P < 0.001] and attenuated lung permeability (BAL protein, TLR4KO: 289 µg/mL [236-320], WT: 488 µg/mL [422-536], P < 0.001). These mice also had attenuated production of interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α in the airspace. C57Bl/6 mice lacking TLR4 on myeloid cells only (LysM.Cre+/-TLR4fl/fl) had reduced cytokine production in the airspace after CFH, without attenuation of lung permeability. In vitro studies confirm that WT primary murine alveolar macrophages exposed to CFH (0.01-1 mg/mL) had dose-dependent increases in IL-6, IL-1 ß, CXC motif chemokine ligand 1 (CXCL-1), TNF-α, and IL-10 (P < 0.001). Murine MH-S alveolar-like macrophages show TLR4-dependent expression of IL-1ß, IL-6, and CXCL-1 in response to CFH. Primary alveolar macrophages from mice lacking TLR4 adaptor proteins myeloid differentiation primary response 88 (MyD88) or TIR-domain-containing adapter-inducing interferon-ß (TRIF) revealed that MyD88KO macrophages had 71-96% reduction in CFH-dependent proinflammatory cytokine production (P < 0.001), whereas macrophages from TRIFKO mice had variable changes in cytokine responses. These data demonstrate that myeloid TLR4 signaling through MyD88 is a key regulator of airspace inflammation in response to CFH.NEW & NOTEWORTHY Cell-free hemoglobin (CFH) is elevated in the airspace of most patients with acute respiratory distress syndrome and causes severe inflammation. Here, we identify that CFH contributes to macrophage-induced cytokine production via Toll-like receptor 4 (TLR4) and myeloid differentiation primary response 88 (MyD88) signaling. These data increase our knowledge of the mechanisms through which CFH contributes to lung injury and may inform development of targeted therapeutics to attenuate inflammation.


Subject(s)
Acute Lung Injury , Respiratory Distress Syndrome , Humans , Mice , Animals , Toll-Like Receptor 4/metabolism , Myeloid Differentiation Factor 88/metabolism , Interleukin-6/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Cytokines/metabolism , Macrophages/metabolism , Inflammation/etiology , Tumor Necrosis Factor-alpha/metabolism , Acute Lung Injury/metabolism , Hemoglobins/metabolism , Respiratory Distress Syndrome/complications , Mice, Inbred C57BL , Mice, Knockout
4.
Crit Care Med ; 52(5): 764-774, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38197736

ABSTRACT

OBJECTIVES: Improving the efficiency of clinical trials in acute hypoxemic respiratory failure (HRF) depends on enrichment strategies that minimize enrollment of patients who quickly resolve with existing care and focus on patients at high risk for persistent HRF. We aimed to develop parsimonious models predicting risk of persistent HRF using routine data from ICU admission and select research immune biomarkers. DESIGN: Prospective cohorts for derivation ( n = 630) and external validation ( n = 511). SETTING: Medical and surgical ICUs at two U.S. medical centers. PATIENTS: Adults with acute HRF defined as new invasive mechanical ventilation (IMV) and hypoxemia on the first calendar day after ICU admission. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We evaluated discrimination, calibration, and practical utility of models predicting persistent HRF risk (defined as ongoing IMV and hypoxemia on the third calendar day after admission): 1) a clinical model with least absolute shrinkage and selection operator (LASSO) selecting Pa o2 /F io2 , vasopressors, mean arterial pressure, bicarbonate, and acute respiratory distress syndrome as predictors; 2) a model adding interleukin-6 (IL-6) to clinical predictors; and 3) a comparator model with Pa o2 /F io2 alone, representing an existing strategy for enrichment. Forty-nine percent and 69% of patients had persistent HRF in derivation and validation sets, respectively. In validation, both LASSO (area under the receiver operating characteristic curve, 0.68; 95% CI, 0.64-0.73) and LASSO + IL-6 (0.71; 95% CI, 0.66-0.76) models had better discrimination than Pa o2 /F io2 (0.64; 95% CI, 0.59-0.69). Both models underestimated risk in lower risk deciles, but exhibited better calibration at relevant risk thresholds. Evaluating practical utility, both LASSO and LASSO + IL-6 models exhibited greater net benefit in decision curve analysis, and greater sample size savings in enrichment analysis, compared with Pa o2 /F io2 . The added utility of LASSO + IL-6 model over LASSO was modest. CONCLUSIONS: Parsimonious, interpretable models that predict persistent HRF may improve enrichment of trials testing HRF-targeted therapies and warrant future validation.


Subject(s)
Interleukin-6 , Respiratory Insufficiency , Adult , Humans , Prospective Studies , Respiratory Insufficiency/therapy , Hypoxia/therapy , Intensive Care Units
5.
Crit Care ; 28(1): 164, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38745253

ABSTRACT

BACKGROUND: Hypoinflammatory and hyperinflammatory phenotypes have been identified in both Acute Respiratory Distress Syndrome (ARDS) and sepsis. Attributable mortality of ARDS in each phenotype of sepsis is yet to be determined. We aimed to estimate the population attributable fraction of death from ARDS (PAFARDS) in hypoinflammatory and hyperinflammatory sepsis, and to determine the primary cause of death within each phenotype. METHODS: We studied 1737 patients with sepsis from two prospective cohorts. Patients were previously assigned to the hyperinflammatory or hypoinflammatory phenotype using latent class analysis. The PAFARDS in patients with sepsis was estimated separately in the hypo and hyperinflammatory phenotypes. Organ dysfunction, severe comorbidities, and withdrawal of life support were abstracted from the medical record in a subset of patients from the EARLI cohort who died (n = 130/179). Primary cause of death was defined as the organ system that most directly contributed to death or withdrawal of life support. RESULTS: The PAFARDS was 19% (95%CI 10,28%) in hypoinflammatory sepsis and, 14% (95%CI 6,20%) in hyperinflammatory sepsis. Cause of death differed between the two phenotypes (p < 0.001). Respiratory failure was the most common cause of death in hypoinflammatory sepsis, whereas circulatory shock was the most common cause in hyperinflammatory sepsis. Death with severe underlying comorbidities was more frequent in hypoinflammatory sepsis (81% vs. 67%, p = 0.004). CONCLUSIONS: The PAFARDS is modest in both phenotypes whereas primary cause of death among patients with sepsis differed substantially by phenotype. This study identifies challenges in powering future clinical trials to detect changes in mortality outcomes among patients with sepsis and ARDS.


Subject(s)
Phenotype , Respiratory Distress Syndrome , Sepsis , Humans , Sepsis/mortality , Sepsis/complications , Sepsis/physiopathology , Respiratory Distress Syndrome/mortality , Respiratory Distress Syndrome/physiopathology , Male , Female , Middle Aged , Aged , Prospective Studies , Cause of Death/trends , Cohort Studies , Inflammation
6.
JAMA ; 332(5): 390-400, 2024 08 06.
Article in English | MEDLINE | ID: mdl-38762798

ABSTRACT

Importance: Acetaminophen (paracetamol) has many pharmacological effects that might be beneficial in sepsis, including inhibition of cell-free hemoglobin-induced oxidation of lipids and other substrates. Objective: To determine whether acetaminophen increases days alive and free of organ dysfunction in sepsis compared with placebo. Design, Setting, and Participants: Phase 2b randomized, double-blind, clinical trial conducted from October 2021 to April 2023 with 90-day follow-up. Adults with sepsis and respiratory or circulatory organ dysfunction were enrolled in the emergency department or intensive care unit of 40 US academic hospitals within 36 hours of presentation. Intervention: Patients were randomized to 1 g of acetaminophen intravenously every 6 hours or placebo for 5 days. Main Outcome and Measures: The primary end point was days alive and free of organ support (mechanical ventilation, vasopressors, and kidney replacement therapy) to day 28. Treatment effect modification was evaluated for acetaminophen by prerandomization plasma cell-free hemoglobin level higher than 10 mg/dL. Results: Of 447 patients enrolled (mean age, 64 [SD, 15] years, 51% female, mean Sequential Organ Failure Assessment [SOFA] score, 5.4 [SD, 2.5]), 227 were randomized to acetaminophen and 220 to placebo. Acetaminophen was safe with no difference in liver enzymes, hypotension, or fluid balance between treatment arms. Days alive and free of organ support to day 28 were not meaningfully different for acetaminophen (20.2 days; 95% CI, 18.8 to 21.6) vs placebo (19.6 days; 95% CI, 18.2 to 21.0; P = .56; difference, 0.6; 95% CI, -1.4 to 2.6). Among 15 secondary outcomes, total, respiratory, and coagulation SOFA scores were significantly lower on days 2 through 4 in the acetaminophen arm as was the rate of development of acute respiratory distress syndrome within 7 days (2.2% vs 8.5% acetaminophen vs placebo; P = .01; difference, -6.3; 95% CI, -10.8 to -1.8). There was no significant interaction between cell-free hemoglobin levels and acetaminophen. Conclusions and Relevance: Intravenous acetaminophen was safe but did not significantly improve days alive and free of organ support in critically ill sepsis patients. Trial Registration: ClinicalTrials.gov Identifier: NCT04291508.


Subject(s)
Acetaminophen , Analgesics, Non-Narcotic , Critical Illness , Multiple Organ Failure , Organ Dysfunction Scores , Sepsis , Aged , Female , Humans , Male , Middle Aged , Acetaminophen/administration & dosage , Acetaminophen/adverse effects , Acetaminophen/therapeutic use , Analgesics, Non-Narcotic/administration & dosage , Analgesics, Non-Narcotic/adverse effects , Analgesics, Non-Narcotic/therapeutic use , Critical Illness/therapy , Double-Blind Method , Hemoglobins/analysis , Multiple Organ Failure/diagnosis , Multiple Organ Failure/etiology , Multiple Organ Failure/prevention & control , Renal Replacement Therapy , Respiration, Artificial , Sepsis/drug therapy , Sepsis/complications , Infusions, Intravenous
7.
Am J Physiol Cell Physiol ; 324(3): C665-C673, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36717098

ABSTRACT

Cell-free hemoglobin is a pathophysiological driver of endothelial injury during sepsis and acute respiratory distress syndrome (ARDS), but the precise mechanisms are not fully understood. We hypothesized that hemoglobin (Hb) increases leukocyte adhesion and endothelial activation in human lung microvascular endothelial cells (HLMVEC). We stimulated primary HLMVEC, or leukocytes isolated from healthy human donors, with Hb (0.5 mg/mL) and found that leukocyte adhesion to lung endothelium in response to Hb is an endothelial-dependent process. Next, we stimulated HLMVEC with Hb over time (1, 3, 6, and 24 h) and found increased transcription and release of inflammatory cytokines (IL-1ß, IL-8, and IL-6). In addition, Hb exposure variably upregulated transcription, total protein expression, and cell-surface localization of adhesion molecules E-selectin, P-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1). Since VCAM-1 was most upregulated by Hb, we further tested mechanisms for Hb-mediated upregulation of VCAM-1 in HLMVEC. Although upregulation of VCAM-1 was not prevented by hemoglobin scavenger haptoglobin, heme scavenger hemopexin, or inhibition of nod-like receptor protein 3 (NLRP3) signaling, blocking Toll-like receptor 4 (TLR4) with small molecule inhibitor TAK-242 (1 µM) prevented upregulation of VCAM-1 in response to Hb. Consistently, Hb increased nuclear factor-κB (NF-κB) activation and intracellular reactive oxygen species (ROS), which were both prevented by TLR4 inhibition. Together, these data demonstrate that Hb increases leukocyte-endothelial adhesion and activates HLMVEC through TLR4 signaling, indicating a potential mechanism for Hb-mediated pulmonary vascular injury during inflammatory and hemolytic conditions.


Subject(s)
Endothelial Cells , Toll-Like Receptor 4 , Humans , Toll-Like Receptor 4/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Cell Adhesion , Vascular Cell Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/metabolism , E-Selectin/metabolism , Leukocytes/metabolism , Hemoglobins/metabolism , Lung/metabolism
8.
Am J Physiol Lung Cell Mol Physiol ; 325(3): L368-L384, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37489855

ABSTRACT

There are no effective targeted therapies to treat acute respiratory distress syndrome (ARDS). Recently, the commonly used diabetes and obesity medications, glucagon-like peptide-1 (GLP-1) receptor agonists, have been found to have anti-inflammatory properties. We, therefore, hypothesized that liraglutide pretreatment would attenuate murine sepsis-induced acute lung injury (ALI). We used a two-hit model of ALI (sepsis+hyperoxia). Sepsis was induced by intraperitoneal injection of cecal slurry (CS; 2.4 mg/g) or 5% dextrose (control) followed by hyperoxia [HO; fraction of inspired oxygen ([Formula: see text]) = 0.95] or room air (control; [Formula: see text] = 0.21). Mice were pretreated twice daily with subcutaneous injections of liraglutide (0.1 mg/kg) or saline for 3 days before initiation of CS+HO. At 24-h post CS+HO, physiological dysfunction was measured by weight loss, severity of illness score, and survival. Animals were euthanized, and bronchoalveolar lavage (BAL) fluid, lung, and spleen tissues were collected. Bacterial burden was assessed in the lung and spleen. Lung inflammation was assessed by BAL inflammatory cell numbers, cytokine concentrations, lung tissue myeloperoxidase activity, and cytokine expression. Disruption of the alveolar-capillary barrier was measured by lung wet-to-dry weight ratios, BAL protein, and epithelial injury markers (receptor for advanced glycation end products and sulfated glycosaminoglycans). Histological evidence of lung injury was quantified using a five-point score with four parameters: inflammation, edema, septal thickening, and red blood cells (RBCs) in the alveolar space. Compared with saline treatment, liraglutide improved sepsis-induced physiological dysfunction and reduced lung inflammation, alveolar-capillary barrier disruption, and lung injury. GLP-1 receptor activation may hold promise as a novel treatment strategy for sepsis-induced ARDS. Additional studies are needed to better elucidate its mechanism of action.NEW & NOTEWORTHY In this study, pretreatment with liraglutide, a commonly used diabetes medication and glucagon-like peptide-1 (GLP-1) receptor agonist, attenuated sepsis-induced acute lung injury in a two-hit mouse model (sepsis + hyperoxia). Septic mice who received the drug were less sick, lived longer, and displayed reduced lung inflammation, edema, and injury. These therapeutic effects were not dependent on weight loss. GLP-1 receptor activation may hold promise as a new treatment strategy for sepsis-induced acute respiratory distress syndrome.


Subject(s)
Acute Lung Injury , Hyperoxia , Respiratory Distress Syndrome , Sepsis , Animals , Mice , Liraglutide/adverse effects , Hyperoxia/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/therapeutic use , Acute Lung Injury/etiology , Acute Lung Injury/chemically induced , Lung/metabolism , Cytokines/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/pharmacology , Glucagon-Like Peptide 1/therapeutic use , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/metabolism , Sepsis/complications , Sepsis/drug therapy , Sepsis/metabolism , Edema
9.
Lancet ; 400(10358): 1145-1156, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36070787

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a common clinical syndrome of acute respiratory failure as a result of diffuse lung inflammation and oedema. ARDS can be precipitated by a variety of causes. The pathophysiology of ARDS is complex and involves the activation and dysregulation of multiple overlapping and interacting pathways of injury, inflammation, and coagulation, both in the lung and systemically. Mechanical ventilation can contribute to a cycle of lung injury and inflammation. Resolution of inflammation is a coordinated process that requires downregulation of proinflammatory pathways and upregulation of anti-inflammatory pathways. The heterogeneity of the clinical syndrome, along with its biology, physiology, and radiology, has increasingly been recognised and incorporated into identification of phenotypes. A precision-medicine approach that improves the identification of more homogeneous ARDS phenotypes should lead to an improved understanding of its pathophysiological mechanisms and how they differ from patient to patient.


Subject(s)
Respiratory Distress Syndrome , Anti-Inflammatory Agents , Humans , Inflammation , Phenotype , Respiration, Artificial , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy
10.
Thorax ; 78(8): 816-824, 2023 08.
Article in English | MEDLINE | ID: mdl-37024277

ABSTRACT

BACKGROUND: Despite the availability of COVID-19 vaccinations, there remains a need to investigate treatments to reduce the risk or severity of potentially fatal complications of COVID-19, such as acute respiratory distress syndrome (ARDS). This study evaluated the efficacy and safety of the transient receptor potential channel C6 (TRPC6) inhibitor, BI 764198, in reducing the risk and/or severity of ARDS in patients hospitalised for COVID-19 and requiring non-invasive, supplemental oxygen support (oxygen by mask or nasal prongs, oxygen by non-invasive ventilation or high-flow nasal oxygen). METHODS: Multicentre, double-blind, randomised phase II trial comparing once-daily oral BI 764198 (n=65) with placebo (n=64) for 28 days (+2-month follow-up). PRIMARY ENDPOINT: proportion of patients alive and free of mechanical ventilation at day 29. Secondary endpoints: proportion of patients alive and discharged without oxygen (day 29); occurrence of either in-hospital mortality, intensive care unit admission or mechanical ventilation (day 29); time to first response (clinical improvement/recovery); ventilator-free days (day 29); and mortality (days 15, 29, 60 and 90). RESULTS: No difference was observed for the primary endpoint: BI 764198 (83.1%) versus placebo (87.5%) (estimated risk difference -5.39%; 95% CI -16.08 to 5.30; p=0.323). For secondary endpoints, a longer time to first response (rate ratio 0.67; 95% CI 0.46 to 0.99; p=0.045) and longer hospitalisation (+3.41 days; 95% CI 0.49 to 6.34; p=0.023) for BI 764198 versus placebo was observed; no other significant differences were observed. On-treatment adverse events were similar between trial arms and more fatal events were reported for BI 764198 (n=7) versus placebo (n=2). Treatment was stopped early based on an interim observation of a lack of efficacy and an imbalance of fatal events (Data Monitoring Committee recommendation). CONCLUSIONS: TRPC6 inhibition was not effective in reducing the risk and/or severity of ARDS in patients with COVID-19 requiring non-invasive, supplemental oxygen support. TRIAL REGISTRATION NUMBER: NCT04604184.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , COVID-19/complications , TRPC6 Cation Channel , SARS-CoV-2 , Respiratory Distress Syndrome/etiology , Oxygen , Treatment Outcome
11.
Blood Cells Mol Dis ; 98: 102699, 2023 01.
Article in English | MEDLINE | ID: mdl-36027791

ABSTRACT

Elevated levels of circulating cell-free hemoglobin (CFH) are an integral feature of several clinical conditions including sickle cell anemia, sepsis, hemodialysis and cardiopulmonary bypass. Oxidized (Fe3+, ferric) hemoglobin contributes to the pathophysiology of these disease states and is therefore widely studied in experimental models, many of which use commercially sourced CFH. In this study, we treated human endothelial cells with commercially sourced ferric hemoglobin and observed the appearance of dense cytoplasmic aggregates (CAgg) over time. These CAgg were intensely autofluorescent, altered intracellular structures (such as mitochondria), formed in multiple cell types and with different media composition, and formed regardless of the presence or absence of cells. An in-depth chemical analysis of these CAgg revealed that they contain inorganic components and are not pure hemoglobin. To oxidize freshly isolated hemoglobin without addition of an oxidizing agent, we developed a novel method to convert ferrous CFH to ferric CFH using ultraviolet light without the need for additional redox agents. Unlike commercial ferric hemoglobin, treatment of cells with the fresh ferric hemoglobin did not lead to CAgg formation. These studies suggest that commercially sourced CFH may contain stabilizers and additives which contribute to CAgg formation.


Subject(s)
Endothelial Cells , Ultraviolet Rays , Humans , Endothelial Cells/metabolism , Hemoglobins/metabolism , Oxidation-Reduction , Iron/metabolism
12.
Am J Respir Crit Care Med ; 206(3): 260-270, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35550018

ABSTRACT

Rationale: Constrictive bronchiolitis (ConB) is a relatively rare and understudied form of lung disease whose underlying immunopathology remains incompletely defined. Objectives: Our objectives were to quantify specific pathological features that differentiate ConB from other diseases that affect the small airways and to investigate the underlying immune and inflammatory phenotype present in ConB. Methods: We performed a comparative histomorphometric analysis of small airways in lung biopsy samples collected from 50 soldiers with postdeployment ConB, 8 patients with sporadic ConB, 55 patients with chronic obstructive pulmonary disease, and 25 nondiseased control subjects. We measured immune and inflammatory gene expression in lung tissue using the NanoString nCounter Immunology Panel from six control subjects, six soldiers with ConB, and six patients with sporadic ConB. Measurements and Main Results: Compared with control subjects, we found shared pathological changes in small airways from soldiers with postdeployment ConB and patients with sporadic ConB, including increased thickness of the smooth muscle layer, increased collagen deposition in the subepithelium, and lymphocyte infiltration. Using principal-component analysis, we showed that ConB pathology was clearly separable both from control lungs and from small airway disease associated with chronic obstructive pulmonary disease. NanoString gene expression analysis from lung tissue revealed T-cell activation in both groups of patients with ConB with upregulation of proinflammatory pathways, including cytokine-cytokine receptor interactions, NF-κB (nuclear factor-κB) signaling, TLR (Toll-like receptor) signaling, T-cell receptor signaling, and antigen processing and presentation. Conclusions: These findings indicate shared immunopathology among different forms of ConB and suggest that an ongoing T-helper cell type 1-type adaptive immune response underlies airway wall remodeling in ConB.


Subject(s)
Asthma , Bronchiolitis Obliterans , Pulmonary Disease, Chronic Obstructive , Airway Remodeling/physiology , Humans , Lung , NF-kappa B/metabolism
13.
Am J Respir Cell Mol Biol ; 67(3): 284-308, 2022 09.
Article in English | MEDLINE | ID: mdl-35679511

ABSTRACT

Clinical and molecular heterogeneity are common features of human disease. Understanding the basis for heterogeneity has led to major advances in therapy for many cancers and pulmonary diseases such as cystic fibrosis and asthma. Although heterogeneity of risk factors, disease severity, and outcomes in survivors are common features of the acute respiratory distress syndrome (ARDS), many challenges exist in understanding the clinical and molecular basis for disease heterogeneity and using heterogeneity to tailor therapy for individual patients. This report summarizes the proceedings of the 2021 Aspen Lung Conference, which was organized to review key issues related to understanding clinical and molecular heterogeneity in ARDS. The goals were to review new information about ARDS phenotypes, to explore multicellular and multisystem mechanisms responsible for heterogeneity, and to review how best to account for clinical and molecular heterogeneity in clinical trial design and assessment of outcomes. The report concludes with recommendations for future research to understand the clinical and basic mechanisms underlying heterogeneity in ARDS to advance the development of new treatments for this life-threatening critical illness.


Subject(s)
Respiratory Distress Syndrome , Humans , Lung , Risk Factors , Severity of Illness Index , Thorax
14.
Am J Respir Cell Mol Biol ; 67(3): 334-345, 2022 09.
Article in English | MEDLINE | ID: mdl-35687143

ABSTRACT

Loss of secretory IgA (SIgA) is common in chronic obstructive pulmonary disease (COPD) small airways and likely contributes to disease progression. We hypothesized that loss of SIgA results from reduced expression of pIgR (polymeric immunoglobulin receptor), a chaperone protein needed for SIgA transcytosis, in the COPD small airway epithelium. pIgR-expressing cells were defined and quantified at single-cell resolution in human airways using RNA in situ hybridization, immunostaining, and single-cell RNA sequencing. Complementary studies in mice used immunostaining, primary murine tracheal epithelial cell culture, and transgenic mice with secretory or ciliated cell-specific knockout of pIgR. SIgA degradation by human neutrophil elastase or secreted bacterial proteases from nontypeable Haemophilus influenzae was evaluated in vitro. We found that secretory cells are the predominant cell type responsible for pIgR expression in human and murine airways. Loss of SIgA in small airways was not associated with a reduction in secretory cells but rather a reduction in pIgR protein expression despite intact PIGR mRNA expression. Neutrophil elastase and nontypeable H. influenzae-secreted proteases are both capable of degrading SIgA in vitro and may also contribute to a deficient SIgA immunobarrier in COPD. Loss of the SIgA immunobarrier in small airways of patients with severe COPD is complex and likely results from both pIgR-dependent defects in IgA transcytosis and SIgA degradation.


Subject(s)
Immunoglobulin A, Secretory , Pulmonary Disease, Chronic Obstructive , Receptors, Polymeric Immunoglobulin , Animals , Haemophilus influenzae/enzymology , Humans , Immunoglobulin A, Secretory/metabolism , Leukocyte Elastase/metabolism , Mice , Proteolysis , Pulmonary Disease, Chronic Obstructive/metabolism , Receptors, Polymeric Immunoglobulin/genetics , Receptors, Polymeric Immunoglobulin/metabolism , Respiratory System/metabolism
15.
Am J Respir Cell Mol Biol ; 67(1): 50-60, 2022 07.
Article in English | MEDLINE | ID: mdl-35468042

ABSTRACT

Immune cells have been implicated in idiopathic pulmonary fibrosis (IPF), but the phenotypes and effector mechanisms of these cells remain incompletely characterized. We performed mass cytometry to quantify immune cell subsets in lungs of 12 patients with IPF and 15 organ donors without chronic lung disease and used existing single-cell RNA-sequencing data to investigate transcriptional profiles of immune cells overrepresented in IPF. Among myeloid cells, we found increased numbers of alveolar macrophages (AMØs) and dendritic cells (DCs) in IPF, as well as a subset of monocyte-derived DCs. In contrast, monocyte-like cells and interstitial macrophages were reduced in IPF. Transcriptomic profiling identified an enrichment for IFN-γ response pathways in AMØs and DCs from IPF, as well as antigen processing in DCs and phagocytosis in AMØs. Among T cells, we identified three subsets of memory T cells that were increased in IPF, including CD4+ and CD8+ resident memory T cells (TRM) and CD8+ effector memory cells. The response to the IFN-γ pathway was enriched in CD4 TRM and CD8 TRM cells in IPF, together with T cell activation and immune response-regulating signaling pathways. Increased AMØs, DCs, and memory T cells were present in IPF lungs compared with control subjects. In IPF, these cells possess an activation profile indicating increased IFN-γ signaling and upregulation of adaptive immunity in the lungs. Together, these studies highlight critical features of the immunopathogenesis of IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , Single-Cell Analysis , Gene Expression Profiling , Humans , Idiopathic Pulmonary Fibrosis/pathology , Lung/pathology , Macrophages, Alveolar/metabolism
16.
Am J Physiol Lung Cell Mol Physiol ; 322(2): L273-L282, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34936510

ABSTRACT

Mouse models of acute lung injury (ALI) have been instrumental for studies of the biological underpinnings of lung inflammation and permeability, but murine models of sepsis generate minimal lung injury. Our goal was to create a murine sepsis model of ALI that reflects the inflammation, lung edema, histological abnormalities, and physiological dysfunction that characterize ALI. Using a cecal slurry (CS) model of polymicrobial abdominal sepsis and exposure to hyperoxia (95%), we systematically varied the timing and dose of the CS injection, fluids and antibiotics, and dose of hyperoxia. We found that CS alone had a high mortality rate that was improved with the addition of antibiotics and fluids. Despite this, we did not see evidence of ALI as measured by bronchoalveolar lavage (BAL) cell count, total protein, C-X-C motif chemokine ligand 1 (CXCL-1) or by lung wet:dry weight ratio. Addition of hyperoxia [95% fraction of inspired oxygen ([Formula: see text])] to CS immediately after CS injection increased BAL cell counts, CXCL-1, and lung wet:dry weight ratio but was associated with 40% mortality. Splitting the hyperoxia treatment into two 12-h exposures (0-12 h and 24-36 h) after CS injection increased survival to 75% and caused significant lung injury compared with CS alone as measured by increased BAL total cell count (92,500 vs. 240,000, P = 0.0004), BAL protein (71 vs. 103 µg/mL, P = 0.0030), and lung wet:dry weight ratio (4.5 vs. 5.5, P = 0.0005), and compared with sham as measured by increased BAL CXCL-1 (20 vs. 2,372 pg/mL, P < 0.0001) and histological lung injury score (1.9 vs. 4.2, P = 0.0077). In addition, our final model showed evidence of lung epithelial [increased BAL and plasma receptor for advanced glycation end products (RAGE)] and endothelial (increased Syndecan-1 and sulfated glycosaminoglycans) injury. In conclusion, we have developed a clinically relevant mouse model of sepsis-induced ALI using intraperitoneal injection of CS, antibiotics and fluids, and hyperoxia. This clinically relevant model can be used for future studies of sepsis-induced ALI.


Subject(s)
Acute Lung Injury , Hyperoxia , Sepsis , Acute Lung Injury/pathology , Animals , Anti-Bacterial Agents/adverse effects , Bronchoalveolar Lavage Fluid , Disease Models, Animal , Hyperoxia/complications , Hyperoxia/pathology , Inflammation/pathology , Lung/metabolism , Mice , Permeability , Sepsis/pathology
17.
Thorax ; 77(1): 13-21, 2022 01.
Article in English | MEDLINE | ID: mdl-34253679

ABSTRACT

RATIONALE: Using latent class analysis (LCA), two subphenotypes of acute respiratory distress syndrome (ARDS) have consistently been identified in five randomised controlled trials (RCTs), with distinct biological characteristics, divergent outcomes and differential treatment responses to randomised interventions. Their existence in unselected populations of ARDS remains unknown. We sought to identify subphenotypes in observational cohorts of ARDS using LCA. METHODS: LCA was independently applied to patients with ARDS from two prospective observational cohorts of patients admitted to the intensive care unit, derived from the Validating Acute Lung Injury markers for Diagnosis (VALID) (n=624) and Early Assessment of Renal and Lung Injury (EARLI) (n=335) studies. Clinical and biological data were used as class-defining variables. To test for concordance with prior ARDS subphenotypes, the performance metrics of parsimonious classifier models (interleukin 8, bicarbonate, protein C and vasopressor-use), previously developed in RCTs, were evaluated in EARLI and VALID with LCA-derived subphenotypes as the gold-standard. RESULTS: A 2-class model best fit the population in VALID (p=0.0010) and in EARLI (p<0.0001). Class 2 comprised 27% and 37% of the populations in VALID and EARLI, respectively. Consistent with the previously described 'hyperinflammatory' subphenotype, Class 2 was characterised by higher proinflammatory biomarkers, acidosis and increased shock and worse clinical outcomes. The similarities between these and prior RCT-derived subphenotypes were further substantiated by the performance of the parsimonious classifier models in both cohorts (area under the curves 0.92-0.94). The hyperinflammatory subphenotype was associated with increased prevalence of chronic liver disease and neutropenia and reduced incidence of chronic obstructive pulmonary disease. Measurement of novel biomarkers showed significantly higher levels of matrix metalloproteinase-8 and markers of endothelial injury in the hyperinflammatory subphenotype, whereas, matrix metalloproteinase-9 was significantly lower. CONCLUSION: Previously described subphenotypes are generalisable to unselected populations of non-trauma ARDS.


Subject(s)
Acute Lung Injury , Respiratory Distress Syndrome , Biomarkers , Humans , Latent Class Analysis , Prospective Studies , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/etiology
18.
Am J Respir Crit Care Med ; 203(6): 699-706, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33030981

ABSTRACT

Rationale: The biological mechanisms of long-term cognitive impairment and disability after critical illness are unclear.Objectives: To test the hypothesis that markers of acute inflammation and coagulation are associated with subsequent long-term cognitive impairment and disability.Methods: We obtained plasma samples from adults with respiratory failure or shock on Study Days 1, 3, and 5 and measured concentrations of CRP (C-reactive protein), IFN-γ, IL-1ß, IL-6, IL-8, IL-10, IL-12, MMP-9 (matrix metalloproteinase-9), TNF-α (tumor necrosis factor-α), soluble TNF receptor 1, and protein C. At 3 and 12 months after discharge, we assessed global cognition, executive function, and activities of daily living. We analyzed associations between markers and outcomes using multivariable regression, adjusting for age, sex, education, comorbidities, baseline cognition, doses of sedatives and opioids, stroke risk (in cognitive models), and baseline disability scores (in disability models).Measurements and Main Results: We included 548 participants who were a median (interquartile range) of 62 (53-72) years old, 88% of whom were mechanically ventilated, and who had an enrollment Sequential Organ Failure Assessment score of 9 (7-11). After adjusting for covariates, no markers were associated with long-term cognitive function. Two markers, CRP and MMP-9, were associated with greater disability in basic and instrumental activities of daily living at 3 and 12 months. No other markers were consistently associated with disability outcomes.Conclusions: Markers of systemic inflammation and coagulation measured early during critical illness are not associated with long-term cognitive outcomes and demonstrate inconsistent associations with disability outcomes. Future studies that pair longitudinal measurement of inflammation and related pathways throughout the course of critical illness and during recovery with long-term outcomes are needed.


Subject(s)
Biomarkers/blood , Blood Coagulation Disorders/blood , C-Reactive Protein/analysis , Cognitive Dysfunction/blood , Inflammation/blood , Interferon Regulatory Factors/blood , Matrix Metalloproteinases/blood , Tumor Necrosis Factors/blood , Aged , Critical Illness , Disabled Persons , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Prospective Studies
19.
Int J Mol Sci ; 23(13)2022 Jul 03.
Article in English | MEDLINE | ID: mdl-35806422

ABSTRACT

Adipocyte iron overload is a maladaptation associated with obesity and insulin resistance. The objective of the current study was to determine whether and how adipose tissue macrophages (ATMs) regulate adipocyte iron concentrations and whether this is impacted by obesity. Using bone marrow-derived macrophages (BMDMs) polarized to M0, M1, M2, or metabolically activated (MMe) phenotypes, we showed that MMe BMDMs and ATMs from obese mice have reduced expression of several iron-related proteins. Furthermore, the bioenergetic response to iron in obese ATMs was hampered. ATMs from iron-injected lean mice increased their glycolytic and respiratory capacities, thus maintaining metabolic flexibility, while ATMs from obese mice did not. Using an isotope-based system, we found that iron exchange between BMDMs and adipocytes was regulated by macrophage phenotype. At the end of the co-culture, MMe macrophages transferred and received more iron from adipocytes than M0, M1, and M2 macrophages. This culminated in a decrease in total iron in MMe macrophages and an increase in total iron in adipocytes compared with M2 macrophages. Taken together, in the MMe condition, the redistribution of iron is biased toward macrophage iron deficiency and simultaneous adipocyte iron overload. These data suggest that obesity changes the communication of iron between adipocytes and macrophages and that rectifying this iron communication channel may be a novel therapeutic target to alleviate insulin resistance.


Subject(s)
Insulin Resistance , Iron Overload , Adipocytes/metabolism , Adipose Tissue/metabolism , Animals , Inflammation/metabolism , Iron/metabolism , Iron Overload/metabolism , Macrophages/metabolism , Mice , Mice, Obese , Obesity/metabolism , Phenotype
20.
Am J Respir Cell Mol Biol ; 64(1): 89-99, 2021 01.
Article in English | MEDLINE | ID: mdl-33058734

ABSTRACT

A history of chronic cigarette smoking is known to increase risk for acute respiratory distress syndrome (ARDS), but the corresponding risks associated with chronic e-cigarette use are largely unknown. The chromosomal fragile site gene, WWOX, is highly susceptible to genotoxic stress from environmental exposures and thus an interesting candidate gene for the study of exposure-related lung disease. Lungs harvested from current versus former/never-smokers exhibited a 47% decrease in WWOX mRNA levels. Exposure to nicotine-containing e-cigarette vapor resulted in an average 57% decrease in WWOX mRNA levels relative to vehicle-treated controls. In separate studies, endothelial (EC)-specific WWOX knockout (KO) versus WWOX flox control mice were examined under ARDS-producing conditions. EC WWOX KO mice exhibited significantly greater levels of vascular leak and histologic lung injury. ECs were isolated from digested lungs of untreated EC WWOX KO mice using sorting by flow cytometry for CD31+ CD45-cells. These were grown in culture, confirmed to be WWOX deficient by RT-PCR and Western blotting, and analyzed by electric cell impedance sensing as well as an FITC dextran transwell assay for their barrier properties during methicillin-resistant Staphylococcus aureus or LPS exposure. WWOX KO ECs demonstrated significantly greater declines in barrier function relative to cells from WWOX flox controls during either methicillin-resistant S. aureus or LPS treatment as measured by both electric cell impedance sensing and the transwell assay. The increased risk for ARDS observed in chronic smokers may be mechanistically linked, at least in part, to lung WWOX downregulation, and this phenomenon may also manifest in the near future in chronic users of e-cigarettes.


Subject(s)
Cigarette Smoking/adverse effects , Down-Regulation/drug effects , E-Cigarette Vapor/adverse effects , Lung/drug effects , Nicotine/adverse effects , Respiratory Distress Syndrome/chemically induced , WW Domain-Containing Oxidoreductase/metabolism , Animals , Humans , Lung/metabolism , Male , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Mice , Mice, Inbred C57BL , Respiratory Distress Syndrome/metabolism , Staphylococcal Infections/metabolism , Nicotiana/adverse effects , Tobacco Products/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL