Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 157(4): 869-81, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24813610

ABSTRACT

Fragile X syndrome, a common form of inherited intellectual disability, is caused by loss of the fragile X mental retardation protein FMRP. FMRP is present predominantly in the cytoplasm, where it regulates translation of proteins that are important for synaptic function. We identify FMRP as a chromatin-binding protein that functions in the DNA damage response (DDR). Specifically, we show that FMRP binds chromatin through its tandem Tudor (Agenet) domain in vitro and associates with chromatin in vivo. We also demonstrate that FMRP participates in the DDR in a chromatin-binding-dependent manner. The DDR machinery is known to play important roles in developmental processes such as gametogenesis. We show that FMRP occupies meiotic chromosomes and regulates the dynamics of the DDR machinery during mouse spermatogenesis. These findings suggest that nuclear FMRP regulates genomic stability at the chromatin interface and may impact gametogenesis and some developmental aspects of fragile X syndrome.


Subject(s)
Spermatogenesis , Animals , Chromatin/metabolism , Chromosome Pairing , DNA Damage , Embryo, Mammalian/cytology , Fibroblasts , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Hippocampus/cytology , Histones/metabolism , Humans , Male , Meiosis , Mice , Mice, Knockout , Mutation , Neurons/metabolism , Prophase , Receptors, AMPA/metabolism
2.
Am J Hum Genet ; 109(8): 1500-1519, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35931052

ABSTRACT

Identifying causative gene(s) within disease-associated large genomic regions of copy-number variants (CNVs) is challenging. Here, by targeted sequencing of genes within schizophrenia (SZ)-associated CNVs in 1,779 SZ cases and 1,418 controls, we identified three rare putative loss-of-function (LoF) mutations in OTU deubiquitinase 7A (OTUD7A) within the 15q13.3 deletion in cases but none in controls. To tie OTUD7A LoF with any SZ-relevant cellular phenotypes, we modeled the OTUD7A LoF mutation, rs757148409, in human induced pluripotent stem cell (hiPSC)-derived induced excitatory neurons (iNs) by CRISPR-Cas9 engineering. The mutant iNs showed a ∼50% decrease in OTUD7A expression without undergoing nonsense-mediated mRNA decay. The mutant iNs also exhibited marked reduction of dendritic complexity, density of synaptic proteins GluA1 and PSD-95, and neuronal network activity. Congruent with the neuronal phenotypes in mutant iNs, our transcriptomic analysis showed that the set of OTUD7A LoF-downregulated genes was enriched for those relating to synapse development and function and was associated with SZ and other neuropsychiatric disorders. These results suggest that OTUD7A LoF impairs synapse development and neuronal function in human neurons, providing mechanistic insight into the possible role of OTUD7A in driving neuropsychiatric phenotypes associated with the 15q13.3 deletion.


Subject(s)
Induced Pluripotent Stem Cells , Schizophrenia , DNA Copy Number Variations , Humans , Neurons , Schizophrenia/metabolism , Synapses/metabolism
3.
Proc Natl Acad Sci U S A ; 119(22): e2118124119, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35617426

ABSTRACT

Fragile X­associated tremor/ataxia syndrome (FXTAS) is a debilitating late-onset neurodegenerative disease in premutation carriers of the expanded CGG repeat in FMR1 that presents with a spectrum of neurological manifestations, such as gait ataxia, intention tremor, and parkinsonism [P. J. Hagerman, R. J. Hagerman, Ann. N. Y. Acad. Sci. 1338, 58­70 (2015); S. Jacquemont et al., JAMA 291, 460­469 (2004)]. Here, we performed whole-genome sequencing (WGS) on male premutation carriers (CGG55­200) and prioritized candidate variants to screen for candidate genetic modifiers using a Drosophila model of FXTAS. We found 18 genes that genetically modulate CGG-associated neurotoxicity in Drosophila, such as Prosbeta5 (PSMB5), pAbp (PABPC1L), e(y)1 (TAF9), and CG14231 (OSGEPL1). Among them, knockdown of Prosbeta5 (PSMB5) suppressed CGG-associated neurodegeneration in the fly as well as in N2A cells. Interestingly, an expression quantitative trait locus variant in PSMB5, PSMB5rs11543947-A, was found to be associated with decreased expression of PSMB5 and delayed onset of FXTAS in human FMR1 premutation carriers. Finally, we demonstrate evidence that PSMB5 knockdown results in suppression of CGG neurotoxicity via both the RAN translation and RNA-mediated toxicity mechanisms, thereby presenting a therapeutic strategy for FXTAS.


Subject(s)
Ataxia , Fragile X Syndrome , Proteasome Endopeptidase Complex , Tremor , Animals , Ataxia/genetics , Disease Models, Animal , Drosophila melanogaster , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Humans , Male , Proteasome Endopeptidase Complex/genetics , Tremor/genetics
4.
Hum Mol Genet ; 29(2): 238-247, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31813999

ABSTRACT

Trisomy 18, sometimes called Edwards syndrome, occurs in about 1 in 6000 live births and causes multiple birth defects in affected infants. The extra copy of chromosome 18 causes the altered expression of many genes and leads to severe skeletal, cardiovascular and neurological systems malformations as well as other medical problems. Due to the low rate of survival and the massive genetic imbalance, little research has been aimed at understanding the molecular consequences of trisomy 18 or considering potential therapeutic approaches. Our research is the first study to characterize whole-genome expression in fibroblast cells obtained from two patients with trisomy 18 and two matched controls, with follow-up expression confirmation studies on six independent controls. We show a detailed analysis of the most highly dysregulated genes on chromosome 18 and those genome-wide. The identified effector genes and the dysregulated downstream pathways provide hints of possible genotype-phenotype relationships to some of the most common symptoms observed in trisomy 18. We also provide a possible explanation for the sex-specific differences in survival, a unique characteristic of trisomy 18. Our analysis of genome-wide expression data moves us closer to understanding the molecular consequences of the second most common human autosomal trisomy of infants who survive to term. These insights might also translate to the understanding of the etiology of associated birth defects and medical conditions among those with trisomy 18.


Subject(s)
Abnormalities, Multiple/genetics , Chromosomes, Human, Pair 18/genetics , Fibroblasts/metabolism , Gene Expression Regulation/genetics , Trisomy 18 Syndrome/genetics , Cells, Cultured , Female , Genetic Association Studies , Genome-Wide Association Study , Genomics , Genotype , Humans , Infant , Infant, Newborn , Male , Phenotype , RNA-Seq , Trisomy 18 Syndrome/etiology , Trisomy 18 Syndrome/pathology
5.
Mol Psychiatry ; 26(3): 772-783, 2021 03.
Article in English | MEDLINE | ID: mdl-30976085

ABSTRACT

The 3q29 deletion confers increased risk for neuropsychiatric phenotypes including intellectual disability, autism spectrum disorder, generalized anxiety disorder, and a >40-fold increased risk for schizophrenia. To investigate consequences of the 3q29 deletion in an experimental system, we used CRISPR/Cas9 technology to introduce a heterozygous deletion into the syntenic interval on C57BL/6 mouse chromosome 16. mRNA abundance for 20 of the 21 genes in the interval was reduced by ~50%, while protein levels were reduced for only a subset of these, suggesting a compensatory mechanism. Mice harboring the deletion manifested behavioral impairments in multiple domains including social interaction, cognitive function, acoustic startle, and amphetamine sensitivity, with some sex-dependent manifestations. In addition, 3q29 deletion mice showed reduced body weight throughout development consistent with the phenotype of 3q29 deletion syndrome patients. Of the genes within the interval, DLG1 has been hypothesized as a contributor to the neuropsychiatric phenotypes. However, we show that Dlg1+/- mice did not exhibit the behavioral deficits seen in mice harboring the full 3q29 deletion. These data demonstrate the following: the 3q29 deletion mice are a valuable experimental system that can be used to interrogate the biology of 3q29 deletion syndrome; behavioral manifestations of the 3q29 deletion may have sex-dependent effects; and mouse-specific behavior phenotypes associated with the 3q29 deletion are not solely due to haploinsufficiency of Dlg1.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Schizophrenia , Animals , Child , Chromosome Deletion , Clustered Regularly Interspaced Short Palindromic Repeats , Developmental Disabilities/genetics , Disease Models, Animal , Humans , Intellectual Disability/genetics , Mice , Mice, Inbred C57BL , Phenotype , Schizophrenia/genetics
6.
Mol Psychiatry ; 26(8): 4496-4510, 2021 08.
Article in English | MEDLINE | ID: mdl-32015465

ABSTRACT

Schizophrenia occurs in about one in four individuals with 22q11.2 deletion syndrome (22q11.2DS). The aim of this International Brain and Behavior 22q11.2DS Consortium (IBBC) study was to identify genetic factors that contribute to schizophrenia, in addition to the ~20-fold increased risk conveyed by the 22q11.2 deletion. Using whole-genome sequencing data from 519 unrelated individuals with 22q11.2DS, we conducted genome-wide comparisons of common and rare variants between those with schizophrenia and those with no psychotic disorder at age ≥25 years. Available microarray data enabled direct comparison of polygenic risk for schizophrenia between 22q11.2DS and independent population samples with no 22q11.2 deletion, with and without schizophrenia (total n = 35,182). Polygenic risk for schizophrenia within 22q11.2DS was significantly greater for those with schizophrenia (padj = 6.73 × 10-6). Novel reciprocal case-control comparisons between the 22q11.2DS and population-based cohorts showed that polygenic risk score was significantly greater in individuals with psychotic illness, regardless of the presence of the 22q11.2 deletion. Within the 22q11.2DS cohort, results of gene-set analyses showed some support for rare variants affecting synaptic genes. No common or rare variants within the 22q11.2 deletion region were significantly associated with schizophrenia. These findings suggest that in addition to the deletion conferring a greatly increased risk to schizophrenia, the risk is higher when the 22q11.2 deletion and common polygenic risk factors that contribute to schizophrenia in the general population are both present.


Subject(s)
DiGeorge Syndrome , Psychotic Disorders , Schizophrenia , Adult , Case-Control Studies , Cohort Studies , DiGeorge Syndrome/genetics , Humans , Schizophrenia/genetics
7.
J Neurosci ; 39(1): 28-43, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30389838

ABSTRACT

Neuronal hyperexcitability is one of the major characteristics of fragile X syndrome (FXS), yet the molecular mechanisms of this critical dysfunction remain poorly understood. Here we report a major role of voltage-independent potassium (K+)-channel dysfunction in hyperexcitability of CA3 pyramidal neurons in Fmr1 knock-out (KO) mice. We observed a reduction of voltage-independent small conductance calcium (Ca2+)-activated K+ (SK) currents in both male and female mice, leading to decreased action potential (AP) threshold and reduced medium afterhyperpolarization. These SK-channel-dependent deficits led to markedly increased AP firing and abnormal input-output signal transmission of CA3 pyramidal neurons. The SK-current defect was mediated, at least in part, by loss of FMRP interaction with the SK channels (specifically the SK2 isoform), without changes in channel expression. Intracellular application of selective SK-channel openers or a genetic reintroduction of an N-terminal FMRP fragment lacking the ability to associate with polyribosomes normalized all observed excitability defects in CA3 pyramidal neurons of Fmr1 KO mice. These results suggest that dysfunction of voltage-independent SK channels is the primary cause of CA3 neuronal hyperexcitability in Fmr1 KO mice and support the critical translation-independent role for the fragile X mental retardation protein as a regulator of neural excitability. Our findings may thus provide a new avenue to ameliorate hippocampal excitability defects in FXS.SIGNIFICANCE STATEMENT Despite two decades of research, no effective treatment is currently available for fragile X syndrome (FXS). Neuronal hyperexcitability is widely considered one of the hallmarks of FXS. Excitability research in the FXS field has thus far focused primarily on voltage-gated ion channels, while contributions from voltage-independent channels have been largely overlooked. Here we report that voltage-independent small conductance calcium-activated potassium (SK)-channel dysfunction causes hippocampal neuron hyperexcitability in the FXS mouse model. Our results support the idea that translation-independent function of fragile X mental retardation protein has a major role in regulating ion-channel activity, specifically the SK channels, in hyperexcitability defects in FXS. Our findings may thus open a new direction to ameliorate hippocampal excitability defects in FXS.


Subject(s)
Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/physiology , Hippocampus/physiology , Neurons/physiology , Small-Conductance Calcium-Activated Potassium Channels/metabolism , Action Potentials/physiology , Animals , CA3 Region, Hippocampal/cytology , CA3 Region, Hippocampal/physiology , Female , Fragile X Syndrome/genetics , Fragile X Syndrome/physiopathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mossy Fibers, Hippocampal/physiology , Pyramidal Cells/physiology , Receptors, Kainic Acid/genetics , Receptors, Kainic Acid/physiology , Small-Conductance Calcium-Activated Potassium Channels/agonists , Synaptic Transmission/physiology
8.
Eur J Neurosci ; 51(10): 2143-2157, 2020 05.
Article in English | MEDLINE | ID: mdl-31880363

ABSTRACT

Fragile X syndrome (FXS) is the most common genetic form of intellectual disability caused by a CGG repeat expansion in the 5'-UTR of the Fragile X mental retardation gene FMR1, triggering epigenetic silencing and the subsequent absence of the protein, FMRP. Reactivation of FMR1 represents an attractive therapeutic strategy targeting the genetic root cause of FXS. However, largely missing in the FXS field is an understanding of how much FMR1 reactivation is required to rescue FMRP-dependent mutant phenotypes. Here, we utilize FXS patient-derived excitatory neurons to model FXS in vitro and confirm that the absence of FMRP leads to neuronal hyperactivity. We further determined the levels of FMRP and the percentage of FMRP-positive cells necessary to correct this phenotype utilizing a mixed and mosaic neuronal culture system and a combination of CRISPR, antisense and expression technologies to titrate FMRP in FXS and WT neurons. Our data demonstrate that restoration of greater than 5% of overall FMRP expression levels or greater than 20% FMRP-expressing neurons in a mosaic pattern is sufficient to normalize a FMRP-dependent, hyperactive phenotype in FXS iPSC-derived neurons.


Subject(s)
Fragile X Syndrome , Induced Pluripotent Stem Cells , Epigenesis, Genetic , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Neurons/metabolism
9.
Proc Natl Acad Sci U S A ; 114(10): E1923-E1932, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28223510

ABSTRACT

The analysis of human whole-genome sequencing data presents significant computational challenges. The sheer size of datasets places an enormous burden on computational, disk array, and network resources. Here, we present an integrated computational package, PEMapper/PECaller, that was designed specifically to minimize the burden on networks and disk arrays, create output files that are minimal in size, and run in a highly computationally efficient way, with the single goal of enabling whole-genome sequencing at scale. In addition to improved computational efficiency, we implement a statistical framework that allows for a base by base error model, allowing this package to perform as well or better than the widely used Genome Analysis Toolkit (GATK) in all key measures of performance on human whole-genome sequences.


Subject(s)
Computational Biology/methods , Genome, Human/genetics , Software , Whole Genome Sequencing/methods , Algorithms , Databases, Genetic , Humans , Polymorphism, Single Nucleotide/genetics
10.
Mol Cell ; 42(5): 673-88, 2011 Jun 10.
Article in English | MEDLINE | ID: mdl-21658607

ABSTRACT

The molecular mechanism for how RISC and microRNAs selectively and reversibly regulate mRNA translation in response to receptor signaling is unknown but could provide a means for temporal and spatial control of translation. Here we show that miR-125a targeting PSD-95 mRNA allows reversible inhibition of translation and regulation by gp1 mGluR signaling. Inhibition of miR-125a increased PSD-95 levels in dendrites and altered dendritic spine morphology. Bidirectional control of PSD-95 expression depends on miR-125a and FMRP phosphorylation status. miR-125a levels at synapses and its association with AGO2 are reduced in Fmr1 KO. FMRP phosphorylation promotes the formation of an AGO2-miR-125a inhibitory complex on PSD-95 mRNA, whereas mGluR signaling of translation requires FMRP dephosphorylation and release of AGO2 from the mRNA. These findings reveal a mechanism whereby FMRP phosphorylation provides a reversible switch for AGO2 and microRNA to selectively regulate mRNA translation at synapses in response to receptor activation.


Subject(s)
Fragile X Mental Retardation Protein/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , MicroRNAs/physiology , Receptors, Metabotropic Glutamate/metabolism , Animals , Argonaute Proteins , Dendrites/metabolism , Disks Large Homolog 4 Protein , Eukaryotic Initiation Factor-2/metabolism , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/physiology , Gene Knockdown Techniques , Gene Knockout Techniques , Guanylate Kinases , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Phosphorylation , Protein Biosynthesis/physiology , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction
11.
Nucleic Acids Res ; 44(14): 6649-59, 2016 08 19.
Article in English | MEDLINE | ID: mdl-27378784

ABSTRACT

Fragile X mental retardation protein (FMRP) is a multifunctional RNA-binding protein with crucial roles in neuronal development and function. Efforts aimed at elucidating how FMRP target mRNAs are selected have produced divergent sets of target mRNA and putative FMRP-bound motifs, and a clear understanding of FMRP's binding determinants has been lacking. To clarify FMRP's binding to its target mRNAs, we produced a shared dataset of FMRP consensus binding sequences (FCBS), which were reproducibly identified in two published FMRP CLIP sequencing datasets. This comparative dataset revealed that of the various sequence and structural motifs that have been proposed to specify FMRP binding, the short sequence motifs TGGA and GAC were corroborated, and a novel TAY motif was identified. In addition, the distribution of the FCBS set demonstrates that FMRP preferentially binds to the coding region of its targets but also revealed binding along 3' UTRs in a subset of target mRNAs. Beyond probing these putative motifs, the FCBS dataset of reproducibly identified FMRP binding sites is a valuable tool for investigating FMRP targets and function.


Subject(s)
Consensus Sequence , Fragile X Mental Retardation Protein/metabolism , Base Sequence , Binding Sites , Codon/genetics , DNA Methylation/genetics , Databases, Protein , Fragile X Mental Retardation Protein/chemistry , G-Quadruplexes , HEK293 Cells , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Nucleotide Motifs/genetics , Protein Binding , RNA, Messenger/genetics , RNA, Messenger/metabolism
12.
Proc Natl Acad Sci U S A ; 112(47): E6553-61, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26554012

ABSTRACT

Fragile X syndrome is a common cause of intellectual disability and autism spectrum disorder. The gene underlying the disorder, fragile X mental retardation 1 (FMR1), is silenced in most cases by a CGG-repeat expansion mutation in the 5' untranslated region (UTR). Recently, we identified a variant located in the 3'UTR of FMR1 enriched among developmentally delayed males with normal repeat lengths. A patient-derived cell line revealed reduced levels of endogenous fragile X mental retardation protein (FMRP), and a reporter containing a patient 3'UTR caused a decrease in expression. A control reporter expressed in cultured mouse cortical neurons showed an expected increase following synaptic stimulation that was absent when expressing the patient reporter, suggesting an impaired response to neuronal activity. Mobility-shift assays using a control RNA detected an RNA-protein interaction that is lost with the patient RNA, and HuR was subsequently identified as an associated protein. Cross-linking immunoprecipitation experiments identified the locus as an in vivo target of HuR, supporting our in vitro findings. These data suggest that the disrupted interaction of HuR impairs activity-dependent translation of FMRP, which may hinder synaptic plasticity in a clinically significant fashion.


Subject(s)
3' Untranslated Regions/genetics , ELAV-Like Protein 1/metabolism , Fragile X Mental Retardation Protein/genetics , Neurons/metabolism , Protein Biosynthesis , Alleles , Animals , Base Sequence , Biotinylation , Cells, Cultured , Dendrites/metabolism , Electrophoretic Mobility Shift Assay , Fragile X Mental Retardation Protein/metabolism , Genes, Reporter , Genetic Loci , Humans , Luciferases/metabolism , Male , Mice , Molecular Sequence Data , Protein Binding , RNA Stability , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Glutamate/metabolism , Sequence Alignment , Signal Transduction/genetics , Synapses/metabolism , Tandem Mass Spectrometry
13.
Proc Natl Acad Sci U S A ; 112(4): 949-56, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25561520

ABSTRACT

Fragile X syndrome (FXS) results in intellectual disability (ID) most often caused by silencing of the fragile X mental retardation 1 (FMR1) gene. The resulting absence of fragile X mental retardation protein 1 (FMRP) leads to both pre- and postsynaptic defects, yet whether the pre- and postsynaptic functions of FMRP are independent and have distinct roles in FXS neuropathology remain poorly understood. Here, we demonstrate an independent presynaptic function for FMRP through the study of an ID patient with an FMR1 missense mutation. This mutation, c.413G > A (R138Q), preserves FMRP's canonical functions in RNA binding and translational regulation, which are traditionally associated with postsynaptic compartments. However, neuronally driven expression of the mutant FMRP is unable to rescue structural defects at the neuromuscular junction in fragile x mental retardation 1 (dfmr1)-deficient Drosophila, suggesting a presynaptic-specific impairment. Furthermore, mutant FMRP loses the ability to rescue presynaptic action potential (AP) broadening in Fmr1 KO mice. The R138Q mutation also disrupts FMRP's interaction with the large-conductance calcium-activated potassium (BK) channels that modulate AP width. These results reveal a presynaptic- and translation-independent function of FMRP that is linked to a specific subset of FXS phenotypes.


Subject(s)
Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome , Mutation, Missense , Seizures , Action Potentials/genetics , Amino Acid Substitution , Animals , Child , Child, Preschool , Drosophila , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Fragile X Syndrome/pathology , Fragile X Syndrome/physiopathology , Gene Expression Regulation/genetics , Humans , Male , Mice , Seizures/genetics , Seizures/metabolism , Seizures/pathology , Seizures/physiopathology
14.
Hum Mol Genet ; 24(6): 1733-40, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25416280

ABSTRACT

Fragile X syndrome, a common cause of intellectual disability and autism, is due to mutational silencing of the FMR1 gene leading to the absence of its gene product, fragile X mental retardation protein (FMRP). FMRP is a selective RNA binding protein owing to two central K-homology domains and a C-terminal arginine-glycine-glycine (RGG) box. However, several properties of the FMRP amino terminus are unresolved. It has been documented for over a decade that the amino terminus has the ability to bind RNA despite having no recognizable functional motifs. Moreover, the amino terminus has recently been shown to bind chromatin and influence the DNA damage response as well as function in the presynaptic space, modulating action potential duration. We report here the amino terminal crystal structures of wild-type FMRP, and a mutant (R138Q) that disrupts the amino terminus function, containing an integral tandem Agenet and discover a novel KH motif.


Subject(s)
Fragile X Mental Retardation Protein/chemistry , Amino Acid Motifs , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Humans , Mutation, Missense , Protein Structure, Tertiary
15.
J Neurosci Res ; 95(5): 1144-1160, 2017 05.
Article in English | MEDLINE | ID: mdl-27859486

ABSTRACT

Recent studies show that the complex genetic architecture of schizophrenia (SZ) is driven in part by polygenic components, or the cumulative effect of variants of small effect in many genes, as well as rare single-locus variants with large effect sizes. Here we discuss genetic aberrations known as copy number variants (CNVs), which fall in the latter category and are associated with a high risk for SZ and other neuropsychiatric disorders. We briefly review recurrent CNVs associated with SZ, and then highlight one CNV in particular, a recurrent 1.6-Mb deletion on chromosome 3q29, which is estimated to confer a 40-fold increased risk for SZ. Additionally, we describe the use of genetic mouse models, behavioral tools, and patient-derived induced pluripotent stem cells as a means to study CNVs in the hope of gaining mechanistic insight into their respective disorders. Taken together, the genomic data connecting CNVs with a multitude of human neuropsychiatric disease, our current technical ability to model such chromosomal anomalies in mouse, and the existence of precise behavioral measures of endophenotypes argue that the time is ripe for systematic dissection of the genetic mechanisms underlying such disease. © 2016 Wiley Periodicals, Inc.


Subject(s)
DNA Copy Number Variations/genetics , Genetic Predisposition to Disease , Intellectual Disability/genetics , Schizophrenia/genetics , Animals , Chromosome Deletion , Chromosomes, Human, Pair 3/genetics , Developmental Disabilities/genetics , Humans
16.
Hum Mol Genet ; 23(20): 5479-91, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-24876161

ABSTRACT

Fragile X syndrome, a common cause of intellectual disability and a well-known cause of autism spectrum disorder, is the result of loss or dysfunction of fragile X mental retardation protein (FMRP), a highly selective RNA-binding protein and translation regulator. A major research priority has been the identification of the mRNA targets of FMRP, particularly as recent studies suggest an excess of FMRP targets among genes implicated in idiopathic autism and schizophrenia. Several large-scale studies have attempted to identify mRNAs bound by FMRP through several methods, each generating a list of putative target genes, leading to distinct hypotheses by which FMRP recognizes its targets; namely, by RNA structure or sequence. However, no in depth analyses have been performed to identify the level of consensus among the studies. Here, we analyze four large FMRP target datasets to generate high-confidence consensus lists, and examine all datasets for sequence elements within the target RNAs to validate reported FMRP binding motifs (GACR, ACUK and WGGA). We found GACR to be highly enriched in FMRP datasets, while ACUK was not. The WGGA pattern was modestly enriched in several, but not all datasets. The previous association between FMRP and G-quadruplexes prompted the analysis of the distribution of WGGA in the target genes. Consistent with the requirements for G-quadruplex formation, we observed highly clustered WGGA motifs in FMRP targets compared with other genes, implicating both RNA structure and sequence in the recognition motif of FMRP. In addition, we generate a list of the top 40 FMRP targets associated with FXS-related phenotypes.


Subject(s)
Amino Acid Motifs , Fragile X Mental Retardation Protein/genetics , G-Quadruplexes , RNA, Messenger/chemistry , Amino Acid Sequence , Binding Sites , Fragile X Mental Retardation Protein/chemistry , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/genetics , Humans , RNA, Messenger/metabolism
17.
Genome Res ; 22(4): 623-32, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22300631

ABSTRACT

DNA methylation (DNAm) plays diverse roles in human biology, but this dynamic epigenetic mark remains far from fully characterized. Although earlier studies uncovered loci that undergo age-associated DNAm changes in adults, little is known about such changes during childhood. Despite profound DNAm plasticity during embryogenesis, monozygotic twins show indistinguishable childhood methylation, suggesting that DNAm is highly coordinated throughout early development. Here we examine the methylation of 27,578 CpG dinucleotides in peripheral blood DNA from a cross-sectional study of 398 boys, aged 3-17 yr, and find significant age-associated changes in DNAm at 2078 loci. These findings correspond well with pyrosequencing data and replicate in a second pediatric population (N = 78). Moreover, we report a deficit of age-related loci on the X chromosome, a preference for specific nucleotides immediately surrounding the interrogated CpG dinucleotide, and a primary association with developmental and immune ontological functions. Meta-analysis (N = 1158) with two adult populations reveals that despite a significant overlap of age-associated loci, most methylation changes do not follow a lifelong linear pattern due to a threefold to fourfold higher rate of change in children compared with adults; consequently, the vast majority of changes are more accurately modeled as a function of logarithmic age. We therefore conclude that age-related DNAm changes in peripheral blood occur more rapidly during childhood and are imperfectly accounted for by statistical corrections that are linear in age, further suggesting that future DNAm studies should be matched closely for age.


Subject(s)
CpG Islands/genetics , DNA Methylation , Gene Expression Profiling , Genome, Human/genetics , Adolescent , Adult , Age Factors , Binding Sites/genetics , Child , Child, Preschool , Cross-Sectional Studies , Humans , Male , Meta-Analysis as Topic , Models, Genetic , Oligonucleotide Array Sequence Analysis/methods , Sequence Analysis, DNA/methods
19.
PLoS Genet ; 8(3): e1002559, 2012.
Article in English | MEDLINE | ID: mdl-22412388

ABSTRACT

Crohn's disease (CD) is a complex disorder resulting from the interaction of intestinal microbiota with the host immune system in genetically susceptible individuals. The largest meta-analysis of genome-wide association to date identified 71 CD-susceptibility loci in individuals of European ancestry. An important epidemiological feature of CD is that it is 2-4 times more prevalent among individuals of Ashkenazi Jewish (AJ) descent compared to non-Jewish Europeans (NJ). To explore genetic variation associated with CD in AJs, we conducted a genome-wide association study (GWAS) by combining raw genotype data across 10 AJ cohorts consisting of 907 cases and 2,345 controls in the discovery stage, followed up by a replication study in 971 cases and 2,124 controls. We confirmed genome-wide significant associations of 9 known CD loci in AJs and replicated 3 additional loci with strong signal (p<5×10⁻6). Novel signals detected among AJs were mapped to chromosomes 5q21.1 (rs7705924, combined p = 2×10⁻8; combined odds ratio OR = 1.48), 2p15 (rs6545946, p = 7×10⁻9; OR = 1.16), 8q21.11 (rs12677663, p = 2×10⁻8; OR = 1.15), 10q26.3 (rs10734105, p = 3×10⁻8; OR = 1.27), and 11q12.1 (rs11229030, p = 8×10⁻9; OR = 1.15), implicating biologically plausible candidate genes, including RPL7, CPAMD8, PRG2, and PRG3. In all, the 16 replicated and newly discovered loci, in addition to the three coding NOD2 variants, accounted for 11.2% of the total genetic variance for CD risk in the AJ population. This study demonstrates the complementary value of genetic studies in the Ashkenazim.


Subject(s)
Crohn Disease/genetics , Genome-Wide Association Study , Jews/genetics , Chromosomes, Human, Pair 5/genetics , Cohort Studies , Genetic Predisposition to Disease , Humans , Linkage Disequilibrium , White People
20.
Am J Med Genet B Neuropsychiatr Genet ; 168(8): 649-59, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26198764

ABSTRACT

Schizophrenia is a common, clinically heterogeneous disorder associated with lifelong morbidity and early mortality. Several genetic variants associated with schizophrenia have been identified, but the majority of the heritability remains unknown. In this study, we report on a case-control sample of Ashkenazi Jews (AJ), a founder population that may provide additional insights into genetic etiology of schizophrenia. We performed a genome-wide association analysis (GWAS) of 592 cases and 505 controls of AJ ancestry ascertained in the US. Subsequently, we performed a meta-analysis with an Israeli AJ sample of 913 cases and 1640 controls, followed by a meta-analysis and polygenic risk scoring using summary results from Psychiatric GWAS Consortium 2 schizophrenia study. The U.S. AJ sample showed strong evidence of polygenic inheritance (pseudo-R(2) ∼9.7%) and a SNP-heritability estimate of 0.39 (P = 0.00046). We found no genome-wide significant associations in the U.S. sample or in the combined US/Israeli AJ meta-analysis of 1505 cases and 2145 controls. The strongest AJ specific associations (P-values in 10(-6) -10(-7) range) were in the 22q 11.2 deletion region and included the genes TBX1, GLN1, and COMT. Supportive evidence (meta P < 1 × 10(-4) ) was also found for several previously identified genome-wide significant findings, including the HLA region, CNTN4, IMMP2L, and GRIN2A. The meta-analysis of the U.S. sample with the PGC2 results provided initial genome-wide significant evidence for six new loci. Among the novel potential susceptibility genes is PEPD, a gene involved in proline metabolism, which is associated with a Mendelian disorder characterized by developmental delay and cognitive deficits.


Subject(s)
Jews/genetics , Schizophrenia/genetics , Case-Control Studies , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Israel/epidemiology , Jews/statistics & numerical data , Male , Middle Aged , Polymorphism, Single Nucleotide , Schizophrenia/epidemiology , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL