Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Langmuir ; 34(26): 7598-7603, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29889536

ABSTRACT

Alternating current (ac) bipolar electropolymerization of 3,4-ethylenedioxythiophene (EDOT) was performed in the presence of hexachloroplatinate ([PtCl6]2-) or poly(styrenesulfonate) (PSS). We demonstrated that both [PtCl6]2- and PSS were successfully incorporated into electrogenerated poly(3,4-ethylenedioxythiophene) (PEDOT) as dopants to offer hybrid fibers composed of (i) PEDOT and platinum nanoparticles (PtNPs) (PEDOT-Pt hybrid fibers) and (ii) PEDOT and PSS (PEDOT-PSS hybrid fibers), respectively, in one step, grown from the very edges of Au wires used as bipolar electrodes (BPEs).

2.
ACS Macro Lett ; 7(5): 551-555, 2018 May 15.
Article in English | MEDLINE | ID: mdl-35632929

ABSTRACT

Alternating current (AC) bipolar electropolymerization of 3,4-ethylenedioxythiophene (EDOT) using a gold (Au) wire as a bipolar electrode (BPE) on a substrate surface resulted in gradual growth of the corresponding poly(3,4-ethylenedioxythiophene) (PEDOT) thin film from the terminals of the Au wire on the substrate. Studies to clarify the polymerization behavior were conducted under various electrolytic conditions, including monomer concentration, applied frequency, monomer structure, and substrate material. This method could be used to draw conducting polymer films on a nonconductive substrate, guided by an applied external electric field, and thus has potential for circuit patterning in organic electronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL