Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
PLoS Genet ; 15(2): e1007945, 2019 02.
Article in English | MEDLINE | ID: mdl-30779740

ABSTRACT

Aversive learning and memories are crucial for animals to avoid previously encountered stressful stimuli and thereby increase their chance of survival. Neuropeptides are essential signaling molecules in the brain and are emerging as important modulators of learned behaviors, but their precise role is not well understood. Here, we show that neuropeptides of the evolutionarily conserved MyoInhibitory Peptide (MIP)-family modify salt chemotaxis behavior in Caenorhabditis elegans according to previous experience. MIP signaling, through activation of the G protein-coupled receptor SPRR-2, is required for short-term gustatory plasticity. In addition, MIP/SPRR-2 neuropeptide-receptor signaling mediates another type of aversive gustatory learning called salt avoidance learning that depends on de novo transcription, translation and the CREB transcription factor, all hallmarks of long-term memory. MIP/SPRR-2 signaling mediates salt avoidance learning in parallel with insulin signaling. These findings lay a foundation to investigate the suggested orphan MIP receptor orthologs in deuterostomians, including human GPR139 and GPR142.


Subject(s)
Caenorhabditis elegans Proteins/physiology , Caenorhabditis elegans/physiology , Learning/physiology , Neuropeptides/physiology , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Chemotaxis/physiology , Genes, Helminth , Insulin/metabolism , Memory, Long-Term/physiology , Mutation , Neuronal Plasticity , Neurons/physiology , Neuropeptides/genetics , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/physiology , Signal Transduction , Sodium Chloride/metabolism , Taste/physiology , Taste Perception/physiology
2.
J Neurosci ; 40(31): 6018-6034, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32576621

ABSTRACT

Aversive learning is fundamental for animals to increase chances of survival. In addition to classical neurotransmitters, neuropeptides have emerged to modulate such complex behaviors. Among them, neuropeptide Y (NPY) is well known to promote aversive memory acquisition in mammals. Here we identify an NPY/neuropeptide F (NPF)-related neuropeptide system in Caenorhabditis elegans and show that this FLP-34/NPR-11 system is required for learning negative associations, a process that is reminiscent of NPY signaling in mammals. The Caenorhabditis elegans NPY/NPF ortholog FLP-34 displays conserved structural hallmarks of bilaterian-wide NPY/NPF neuropeptides. We show that it is required for aversive olfactory learning after pairing diacetyl with the absence of food, but not for appetitive olfactory learning in response to butanone. To mediate diacetyl learning and thus integrate the aversive food context with the diacetyl odor, FLP-34 is released from serotonergic neurons and signals through its evolutionarily conserved NPY/NPF GPCR, NPR-11, in downstream AIA interneurons. NPR-11 activation in the AIA integration center results in avoidance of a previously attractive stimulus. This study opens perspectives for a deeper understanding of stress conditions in which aversive learning results in excessive avoidance.SIGNIFICANCE STATEMENT Aversive learning evolved early in evolution to promote avoidance of dangerous and stressful situations. In addition to classical neurotransmitters, neuropeptides are emerging as modulators of complex behaviors, including learning and memory. Here, we identified the evolutionary ortholog of neuropeptide Y/neuropeptide F in the nematode Caenorhabditis elegans, and we discovered that it is required for olfactory aversive learning. In addition, we elucidated the neural circuit underlying this avoidance behavior, and we discovered a novel coordinated action of Caenorhabditis elegans neuropeptide Y/neuropeptide F and serotonin that could aid in our understanding of the molecular mechanisms underlying stress disorders in which excessive avoidance results in maladaptive behaviors.


Subject(s)
Association Learning/physiology , Neuropeptide Y/physiology , Neuropeptides/physiology , Serotonergic Neurons/physiology , Smell/physiology , Animals , Appetitive Behavior , Avoidance Learning/drug effects , Butanones/pharmacology , Caenorhabditis elegans , Diacetyl/pharmacology , Dose-Response Relationship, Drug , Female , Gene Expression Regulation , Locomotion , Male , Neuropeptide Y/genetics , Neuropeptides/genetics
3.
Proc Natl Acad Sci U S A ; 114(20): E4065-E4074, 2017 05 16.
Article in English | MEDLINE | ID: mdl-28461507

ABSTRACT

In vertebrates thyrotropin-releasing hormone (TRH) is a highly conserved neuropeptide that exerts the hormonal control of thyroid-stimulating hormone (TSH) levels as well as neuromodulatory functions. However, a functional equivalent in protostomian animals remains unknown, although TRH receptors are conserved in proto- and deuterostomians. Here we identify a TRH-like neuropeptide precursor in Caenorhabditis elegans that belongs to a bilaterian family of TRH precursors. Using CRISPR/Cas9 and RNAi reverse genetics, we show that TRH-like neuropeptides, through the activation of their receptor TRHR-1, promote growth in Celegans TRH-like peptides from pharyngeal motor neurons are required for normal body size, and knockdown of their receptor in pharyngeal muscle cells reduces growth. Mutants deficient for TRH signaling have no defects in pharyngeal pumping or isthmus peristalsis rates, but their growth defect depends on the bacterial diet. In addition to the decrease in growth, trh-1 mutants have a reduced number of offspring. Our study suggests that TRH is an evolutionarily ancient neuropeptide, having its origin before the divergence of protostomes and deuterostomes, and may ancestrally have been involved in the control of postembryonic growth and reproduction.


Subject(s)
Caenorhabditis elegans/growth & development , Thyrotropin-Releasing Hormone/metabolism , Amino Acid Sequence , Animals , Body Size , CRISPR-Cas Systems , Caenorhabditis elegans/metabolism , Conserved Sequence , Diet , Evolution, Molecular , Gastrointestinal Motility , RNA Interference , Receptors, Thyrotropin-Releasing Hormone/metabolism , Transforming Growth Factor beta/metabolism
4.
J Biol Chem ; 293(16): 6052-6063, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29487130

ABSTRACT

Neuropeptides constitute a vast and functionally diverse family of neurochemical signaling molecules and are widely involved in the regulation of various physiological processes. The nematode Caenorhabditis elegans is well-suited for the study of neuropeptide biochemistry and function, as neuropeptide biosynthesis enzymes are not essential for C. elegans viability. This permits the study of neuropeptide biosynthesis in mutants lacking certain neuropeptide-processing enzymes. Mass spectrometry has been used to study the effects of proprotein convertase and carboxypeptidase mutations on proteolytic processing of neuropeptide precursors and on the peptidome in C. elegans However, the enzymes required for the last step in the production of many bioactive peptides, the carboxyl-terminal amidation reaction, have not been characterized in this manner. Here, we describe three genes that encode homologs of neuropeptide amidation enzymes in C. elegans and used tandem LC-MS to compare neuropeptides in WT animals with those in newly generated mutants for these putative amidation enzymes. We report that mutants lacking both a functional peptidylglycine α-hydroxylating monooxygenase and a peptidylglycine α-amidating monooxygenase had a severely altered neuropeptide profile and also a decreased number of offspring. Interestingly, single mutants of the amidation enzymes still expressed some fully processed amidated neuropeptides, indicating the existence of a redundant amidation mechanism in C. elegans All MS data are available via ProteomeXchange with the identifier PXD008942. In summary, the key steps in neuropeptide processing in C. elegans seem to be executed by redundant enzymes, and loss of these enzymes severely affects brood size, supporting the need of amidated peptides for C. elegans reproduction.


Subject(s)
Amidine-Lyases/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Mixed Function Oxygenases/metabolism , Multienzyme Complexes/metabolism , Neuropeptides/metabolism , Amidine-Lyases/chemistry , Amidine-Lyases/genetics , Amino Acid Sequence , Animals , Biosynthetic Pathways , Caenorhabditis elegans/chemistry , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Copper/metabolism , Gene Deletion , Humans , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/genetics , Multienzyme Complexes/chemistry , Multienzyme Complexes/genetics , Mutation , Neuropeptides/genetics , Sequence Alignment , Tandem Mass Spectrometry
5.
Front Endocrinol (Lausanne) ; 14: 1200407, 2023.
Article in English | MEDLINE | ID: mdl-37409228

ABSTRACT

In vertebrates, thyrostimulin is a highly conserved glycoprotein hormone that, besides thyroid stimulating hormone (TSH), is a potent ligand of the TSH receptor. Thyrostimulin is considered the most ancestral glycoprotein hormone and orthologs of its subunits, GPA2 and GPB5, are widely conserved across vertebrate and invertebrate animals. Unlike TSH, however, the functions of the thyrostimulin neuroendocrine system remain largely unexplored. Here, we identify a functional thyrostimulin-like signaling system in Caenorhabditis elegans. We show that orthologs of GPA2 and GPB5, together with thyrotropin-releasing hormone (TRH) related neuropeptides, constitute a neuroendocrine pathway that promotes growth in C. elegans. GPA2/GPB5 signaling is required for normal body size and acts through activation of the glycoprotein hormone receptor ortholog FSHR-1. C. elegans GPA2 and GPB5 increase cAMP signaling by FSHR-1 in vitro. Both subunits are expressed in enteric neurons and promote growth by signaling to their receptor in glial cells and the intestine. Impaired GPA2/GPB5 signaling causes bloating of the intestinal lumen. In addition, mutants lacking thyrostimulin-like signaling show an increased defecation cycle period. Our study suggests that the thyrostimulin GPA2/GPB5 pathway is an ancient enteric neuroendocrine system that regulates intestinal function in ecdysozoans, and may ancestrally have been involved in the control of organismal growth.


Subject(s)
Caenorhabditis elegans , Glycoproteins , Animals , Caenorhabditis elegans/genetics , Amino Acid Sequence , Glycoproteins/genetics , Glycoproteins/metabolism , Vertebrates/metabolism , Thyrotropin/metabolism
6.
Neuron ; 111(22): 3570-3589.e5, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37935195

ABSTRACT

Efforts are ongoing to map synaptic wiring diagrams, or connectomes, to understand the neural basis of brain function. However, chemical synapses represent only one type of functionally important neuronal connection; in particular, extrasynaptic, "wireless" signaling by neuropeptides is widespread and plays essential roles in all nervous systems. By integrating single-cell anatomical and gene-expression datasets with biochemical analysis of receptor-ligand interactions, we have generated a draft connectome of neuropeptide signaling in the C. elegans nervous system. This network is characterized by high connection density, extended signaling cascades, autocrine foci, and a decentralized topology, with a large, highly interconnected core containing three constituent communities sharing similar patterns of input connectivity. Intriguingly, several key network hubs are little-studied neurons that appear specialized for peptidergic neuromodulation. We anticipate that the C. elegans neuropeptidergic connectome will serve as a prototype to understand how networks of neuromodulatory signaling are organized.


Subject(s)
Connectome , Animals , Caenorhabditis elegans/physiology , Neurons/physiology , Gene Expression , Synapses
7.
Cell Rep ; 38(6): 110321, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35139379

ABSTRACT

A key question in current immunology is how the innate immune system generates high levels of specificity. Using the Caenorhabditis elegans model system, we demonstrate that functional loss of NMUR-1, a neuronal G-protein-coupled receptor homologous to mammalian receptors for the neuropeptide neuromedin U, has diverse effects on C. elegans innate immunity against various bacterial pathogens. Transcriptomic analyses and functional assays reveal that NMUR-1 modulates C. elegans transcription activity by regulating the expression of transcription factors involved in binding to RNA polymerase II regulatory regions, which, in turn, controls the expression of distinct immune genes in response to different pathogens. These results uncover a molecular basis for the specificity of C. elegans innate immunity. Given the evolutionary conservation of NMUR-1 signaling in immune regulation across multicellular organisms, our study could provide mechanistic insights into understanding the specificity of innate immunity in other animals, including mammals.


Subject(s)
Immunity, Innate/immunology , Neurons/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/immunology , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Pseudomonas aeruginosa/metabolism , Transcription Factors/metabolism
8.
J Neuroendocrinol ; 33(1): e12911, 2021 01.
Article in English | MEDLINE | ID: mdl-33350018

ABSTRACT

In an ever-changing environment, animals have to continuously adapt their behaviour. The ability to learn from experience is crucial for animals to increase their chances of survival. It is therefore not surprising that learning and memory evolved early in evolution and are mediated by conserved molecular mechanisms. A broad range of neuromodulators, in particular monoamines and neuropeptides, have been found to influence learning and memory, although our knowledge on their modulatory functions in learning circuits remains fragmentary. Many neuromodulatory systems are evolutionarily ancient and well-conserved between vertebrates and invertebrates. Here, we highlight general principles and mechanistic insights concerning the actions of monoamines and neuropeptides in learning circuits that have emerged from invertebrate studies. Diverse neuromodulators have been shown to influence learning and memory in invertebrates, which can have divergent or convergent actions at different spatiotemporal scales. In addition, neuromodulators can regulate learning dependent on internal and external states, such as food and social context. The strong conservation of neuromodulatory systems, the extensive toolkit and the compact learning circuits in invertebrate models make these powerful systems to further deepen our understanding of neuromodulatory pathways involved in learning and memory.


Subject(s)
Invertebrates/metabolism , Learning/physiology , Memory/physiology , Neurotransmitter Agents/metabolism , Animals , Signal Transduction/physiology
9.
Nat Commun ; 11(1): 2076, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32350283

ABSTRACT

Learning and memory are regulated by neuromodulatory pathways, but the contribution and temporal requirement of most neuromodulators in a learning circuit are unknown. Here we identify the evolutionarily conserved neuromedin U (NMU) neuropeptide family as a regulator of C. elegans gustatory aversive learning. The NMU homolog CAPA-1 and its receptor NMUR-1 are required for the retrieval of learned salt avoidance. Gustatory aversive learning requires the release of CAPA-1 neuropeptides from sensory ASG neurons that respond to salt stimuli in an experience-dependent manner. Optogenetic silencing of CAPA-1 neurons blocks the expression, but not the acquisition, of learned salt avoidance. CAPA-1 signals through NMUR-1 in AFD sensory neurons to modulate two navigational strategies for salt chemotaxis. Aversive conditioning thus recruits NMU signaling to modulate locomotor programs for expressing learned avoidance behavior. Because NMU signaling is conserved across bilaterian animals, our findings incite further research into its function in other learning circuits.


Subject(s)
Avoidance Learning/physiology , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/physiology , Nerve Net/physiology , Neuropeptides/metabolism , Signal Transduction , Sodium Chloride/adverse effects , Taste/physiology , Amino Acid Sequence , Animals , Animals, Genetically Modified , Behavior, Animal , Caenorhabditis elegans Proteins/chemistry , Calcium/metabolism , Food , Models, Biological , Mutation/genetics , Phylogeny , Sensory Receptor Cells/physiology
10.
Sci Rep ; 10(1): 9929, 2020 06 18.
Article in English | MEDLINE | ID: mdl-32555288

ABSTRACT

Sleep and wakefulness are fundamental behavioral states of which the underlying molecular principles are becoming slowly elucidated. Transitions between these states require the coordination of multiple neurochemical and modulatory systems. In Caenorhabditis elegans sleep occurs during a larval transition stage called lethargus and is induced by somnogenic neuropeptides. Here, we identify two opposing neuropeptide/receptor signaling pathways: NLP-22 promotes behavioral quiescence, whereas NLP-2 promotes movement during lethargus, by signaling through gonadotropin-releasing hormone (GnRH) related receptors. Both NLP-2 and NLP-22 belong to the RPamide neuropeptide family and share sequence similarities with neuropeptides of the bilaterian GnRH, adipokinetic hormone (AKH) and corazonin family. RPamide neuropeptides dose-dependently activate the GnRH/AKH-like receptors GNRR-3 and GNRR-6 in a cellular receptor activation assay. In addition, nlp-22-induced locomotion quiescence requires the receptor gnrr-6. By contrast, wakefulness induced by nlp-2 overexpression is diminished by deletion of either gnrr-3 or gnrr-6. nlp-2 is expressed in a pair of olfactory AWA neurons and cycles with larval periodicity, as reported for nlp-22, which is expressed in RIA. Our data suggest that the somnogenic NLP-22 neuropeptide signals through GNRR-6, and that both GNRR-3 and GNRR-6 are required for the wake-promoting action of NLP-2 neuropeptides.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/physiology , Gonadotropin-Releasing Hormone/metabolism , Neuropeptides/pharmacology , Receptors, LHRH/metabolism , Sleep/physiology , Wakefulness/physiology , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans Proteins/genetics , Gonadotropin-Releasing Hormone/genetics , Receptors, LHRH/genetics , Sleep/drug effects , Wakefulness/drug effects
11.
Front Neurosci ; 9: 120, 2015.
Article in English | MEDLINE | ID: mdl-25914615

ABSTRACT

[This corrects the article on p. 90 in vol. 5, PMID: 24982652.].

12.
Article in English | MEDLINE | ID: mdl-24982652

ABSTRACT

In the three decades since the FMRFamide peptide was isolated from the mollusk Macrocallista nimbosa, structurally similar peptides sharing a C-terminal RFamide motif have been identified across the animal kingdom. FMRFamide-like peptides (FLPs) represent the largest known family of neuropeptides in invertebrates. In the phylum Nematoda, at least 32 flp-genes are classified, making the FLP system of nematodes unusually complex. The diversity of the nematode FLP complement is most extensively mapped in Caenorhabditis elegans, where over 70 FLPs have been predicted. FLPs have shown to be expressed in the majority of the 302 C. elegans neurons including interneurons, sensory neurons, and motor neurons. The vast expression of FLPs is reflected in the broad functional repertoire of nematode FLP signaling, including neuroendocrine and neuromodulatory effects on locomotory activity, reproduction, feeding, and behavior. In contrast to the many identified nematode FLPs, only few peptides have been assigned a receptor and there is the need to clarify the pathway components and working mechanisms of the FLP signaling network. Here, we review the diversity, distribution, and functions of FLPs in nematodes.

SELECTION OF CITATIONS
SEARCH DETAIL